Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3813026 A
Publication typeGrant
Publication dateMay 28, 1974
Filing dateMar 11, 1971
Priority dateFeb 7, 1968
Publication numberUS 3813026 A, US 3813026A, US-A-3813026, US3813026 A, US3813026A
InventorsBiancamaria J
Original AssigneeLhomme Sa
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same
US 3813026 A
In order to obtain helically wound multi-layer cardboard tubes of accurate diameter and very smooth external surface, the tubes are coated with a thermo-setting resin and forced through the bore of a heated jacket to cause (1) curing of the resin and (2) reduction of the tube diameter to the precise desired dimensions. This reduction is taken up by a radially compressible layer of the tube.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Unite States atent 1 1 Biancamaria 1 1 May 28, 1974 ACCURATELY DIMENSEONED SMOOTH-SURFACE!) MULTl-LAYER CARDBOARD TUBES AND METHOD OF AND APPARATUS FOR MAKING THE SAME Inventor: Joseph Biancamaria, lvry sur Seine,

France Assignee: Lhomme (Societe Anonyme), Paris,

France Filed: Mar. 11, 1971 Appl. No.: 123,392

Related US. Application Data Division of Ser. No. 797,487, Feb. 7, 1969, Pat. No. 3,580,146.

Foreign Application Priority Data Feb. 7, 1968 France 68.139051 US. Cl 229/45, 93/83, 138/144, 138/150, 156/188, 161/268, 229/ R, 229/93 Int. Cl Bd 3/04 Field of Search 229/45, 93, 3.5 R;

AL lG/VED SURF/1 05 [755,85

138/141, 144, 150, 140; 93/94 R, 80, 83, 94 FC; 156/188, 161/268, 270

[56] References Cited UNITED STATES PATENTS 1,287,945 12/1918 Ford 138/150 1,301,840 4/1919 Hawkins 229/45 1,605,953 11/1926 Howard 229/35 R Primary ExaminerGeorge E. Lowrance Assistant Examiner-Stephen P. Garbe Attorney, Agent, or Firm-Edwin E. Greigg [57] ABSTRACT In order to obtain helically wound multi-layer cardboard tubes of accurate diameter and very smooth external surface, the tubes are coated with a thermosetting resin and forced through the bore of a heated jacket to cause (1) curing of the resin and (2) reduction of the tube diameter to the precise desired dimensions. This reduction is taken up by a radially compressible layer of the tube.

7 Claims, Drawing ale-1302s PATENTEB MAY 2 8 \914 SHEET Ir BF 4 3 N .u m9 NS g. mg 3 5 M N\ \\\\s\ \k \\\x vs g mg mg Na 9 ACCURATELY DTMENSIONED SMOOTH-SURFACED MULTI-LAYER CARDBOARD TUBES AND METHOD OF AND APPARATUS FOR MAKHNG THE SAME This application is a divisional application of application Ser. No. 797,487, filed Feb. 7, 1969. now US. Pat. No. 3,580,146.

BACKGROUND OF THE INVENTION It is well known to make cardboard tubes from a plurality of strips or layers of fibrous material, suitably glued, which are wound around a mandrel in a helix with a pitch approximately equal to the width of one strip. The successive superposed strips are offset relative to one another in the longitudinal direction of the tube. 7

Usually, for the manufacture of such tubes winding machines are used in which each of the strips is stored on a reel and passes, with the exception of the first, through a glueing bath before being wound around a fixed mandrel at a fixed angle relative to the axis thereof and slightly offset relative to the preceding, underlying strip. The tube thus formed is caused to rotate about the mandrel and is simultaneously longitudinally advanced by an endless belt turning about said mandrel.

In this manner a continuous tube is obtained which is cut into separate tubes of a given length by a severing device located at a distance from the winding head of the tube winding machine.

The surface condition of such a tube depends, in the first place, on the material constituting the outside layer, but is also affected by the setting of the tube winding machine. Since it is not possible to regulate the pitch of the winding in a perfect manner so as to obtain accurately abutting adjacent turns of the helically extending strip, small tolerances have to be accepted. For this reason it may occur that adjoining edges of two consecutive spiral turns are positioned either with a slight gap or with a slight overlap.

Similarly, it is necessary to accept a small tolerance in the outside diameter of the tube. Such a tolerance is a function of the tolerances of the thickness of the strips and of the tension applied to the said strips. Such tubes, with the imperfections noted, are acceptable for the majority of uses.

When, however, tubes of the aforenoted type are intended, for example, for the reeling of thin sheets or films, such as plastic films or any other product which may be easily damaged by defects in the surface of the tube, particularly when its material is sensitive to humidity or to heat, it is essential to use precisely gauged tubes having a perfectly smooth surface void of any irregularity or any helically extending depression.

Presently known processes relating to the manufacture of precisely gauged smooth tubes involve prohibitive expenses.

OBJECTS AND SUMMARY OF THE INVENTION It is an object of the invention to provide an improved, helically wound, multi-layer cardboard tube having a very smooth external face and an exact, predetermined diameter.

It is a further object of the invention to provide an improved method of manufacturing helically wound,

multi-layer cardboard tubes having a very smooth external face and an exact, predetermined diameter.

It is a further object of the invention to provide an improved apparatus for the manufacturing of helically wound, multi-layer cardboard tubes having a very smooth external face and an exact, predetermined diameter.

Briefly stated, according to the invention, first a multi-layer, helically wound rough tube of continuous length is prepared, preferably on a mandrel-type tube winding machine of known structure. One of the layers is of a low density material and is thus substantially compressible in a radial direction. Then the rough tube is externally coated with a thermosetting resin, cut into predetermined lengths and dried. Finally, the rough tubes are forcibly introduced, by means of a pusher head, into the bore of a heated matrix to reduce the circumference of the tube to the desired precise diameter and to cause polymerization of the resin coating. The diameter of the bore is smaller than that of the rough tubes. The circumferential shrinkage of the tubes is taken up by said low density layer which is compressed radially under the external, radially inwardly directed force generated by the cooperation of said pusher head and said bore.

The invention will be better understood and further objects as well as'advantages will become apparent from the ensuing detailed specification taken in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagrammatic view of a tube winding machine and some of the treating stations according to the invention;

FIG. 2 is a perspective view illustrating the winding of the outer layer of a rough tube according to the invention;

FIG. 3 is a partial longitudinal section on an enlarged scale of the rough tube of FIG. 2.;

FIG. 4 is a diagrammatic view of a surfacing machine to ensure the precise gauging and the finishing of the tube surface according to the invention;

FIG. 5 is a partial longitudinal section on an enlarged scale of the last two layers of a rough tube according to another embodiment of the invention, and

FIG. 6 is a view similar to FIG. 5, showing the embodiment in a finished condition.

DESCRIPTION OF THE APPARATUS AND THE ARTICLE MADE THEREWITH Turning now to FIG. 1, first a rough tube 1 is prepared from which, ultimately, precisely gauged and smooth lengths of cardobard tube such as 1a, (FIG. 1) or lb, (FIG. 4) are obtained. Tube 1 is made by the helical winding of a plurality of suitably gummed strips, thirteen in the example shown, each strip representing a fraction or layer of the thickness of the wall of the tube.

The winding is performed in a tube winding machine 2. The machine incorporates a fixed mandrel 3 on which there are first wound a base strip 3 and ten intermediate strips 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, Si and Sj, constituting a basic tube onto which are then wound a penultimate strip 6 and a final strip 7. Each of the strips is stored on a reel; the strip 4 is disposed on a simple reel 8 while all the others are held on two-spindle reels, such as reel 9 carrying strips 5e and 5f.

In the example illustrated, said two-spindle reels are each provided with a gumming device to coat the lower face of each strip with adhesive. Any other gumming means may be used; for example, both surfaces of each strip may be coated with the exception of the first strip 4 and the last strip 7.

The first eleven strips, that is, strips 4 and 5a 5j form the basic tube and are made of fibrous material, such as kraft board, and are of substantially equal widths. The strip 6, forming the penultimate layer is of a low-density fibrous material, for example, felt board, having a normal thickness. The strip 7 constitutes the outside layer and is made of a dense material having long fibers, such as absorbent paper. The strip 7 is only slightly gummed; it has a width slightly greater than that of the other strips and is provided with a chamfered edge 70 opposite to the direction of advance of the tube (FIGS. 2 and 3). Said chamfered edge is the result of an abrading operation.

Each strip approaches the mandrel tangentially and is wound thereon in such a manner that it is out of alignment therealong relative to the preceding, underlying strip.

The article thus prepared constitutes the rough tube 1 which is driven so that it rotates about the mandrel 3 and is axially advanced in the direction of arrow Fl away from the head 10 by an endless belt 11 following a course 11a about the tube. Belt 11 is driven by two driving pulleys 12a and 12b, the axes of which are perpendicular to that of the mandrel. The directions of motion of the pulleys and the belt flights are indicated by the arrows F2, F3, F4, F5 and F6. I

The winding pitch is controlled in such a manner that adjacent edges of two consecutive turns of any layer, with the exception of the final strip 7, are as close as possible without risking overlapping. Stated in different terms, the only tolerance to be accepted will merely vary the size of a slight spacing, such as 13a, 13b, 13c (FIGS. 2 and 3). Since the strip 7 is broader than the others, the adjacent edges of its successive turns overlap: the simple edge 7b of the strip 7 covers the chamfered edge 7a. It is to be noted that the tolerance discussed hereinabove may vary only the size of the slight overlap of the edge 7b on the beginning of the chamfer.

With the tube winding machine 2 there is associated a cutting station 14 in which a saw or knives sever the tube 1 into predetermined lengths such as 1a (FIG. 1),

Between the tube winding'machine and the cutting station 14 there are disposed a sanding station 15 and a coating station 16. For sake of clarity, the stations 15 and 16 are shown in elevation while the tube winding machine 2 is shown in a plan view in FIG. 1.

In the example illustrated, the sanding station 15 is constituted by an endless abrasive belt 17 tensioned between two rollers 18a, l8b, one of which provides the drive. The whole unit is contained in a casing open towards the tube to be treated and linked by a conduit 20 to a dust-removing vacuum unit (not shown). The belt 17 bears upon the external surface of the tube 1, and erases the rough, helically extending-portions formed by the edge 7b of the outside strip 7 and, at the same time, straightens'out or aligns its long fibers. On leaving the sanding station 15, the outer surface of the still rough tube 1 is thus uniform and felted.

Next, the tube 1 arrives at the coating station 16. In the example shown, this station comprises a roller 21 partially immersed in a bath 22 containing the coating liquid 23. The latter is constituted by an aqueous solution of thermosetting resin to which a polymerization catalyst is added. Good results are obtained with a phenol resin in aqueous solution having a pH value in the vicinity of 8.5 and containing 35-50 eEfitJaE/ex- The number and the thickness of the layers, the adhesive and resin coatings, are calculated in such a manner as to obtain an external tube diameter 1 2 percent greater than the nominal diameter desired for the finished tubes.

From the outlet of the cutting station 14 the lengths la are advanced into a drier, not shown, heated to a temperature below the polymerization temperature of the resin for example C) yet sufficient to cause evaporation of the solvents.

Finally, the dried lengths are conveyed to a surfacing machine (FIG. 4) which comprises stand 24 on which there are coaxially arranged a hydraulic jack 25 and a steel die or matrix 26. Th jack 25 comprises, in a known manner, a plunger 27 integral with a rod 28 tcrminating in a head 29. The plunger 27 reciprocates in a cylinder 30, one end of which has a fluid-tight opening 30a through which the rod 28 extends. The cylinder is further provided at each of its ends with an aperture 31a and 31b serving alternately for the admission and the discharge of the actuating fluid. The total stroke of the plunger 27 is greater than a cut tube length. The matrix 26 is formed of a cylindrical jacket having an inner wall 26a which has a length substantially equal to a cut tube length. One end of inner wall 26a facing jack 25 terminates in a conically flaring inlet opening 26b. The jacket further has an outer wall 32 which, together with inner wall 26a, defines an annular space 33 in which a heated fluid circulates. This fluid isintroduced into annular space 33 through a channel 340 and taken out through a channel 34b. The outer wall 32 is thermally insulated; the fluid therein is circulated with a speed that is'sufficiently great to ensure a substantially uniform and constant temperature of the inner wall 260 of the matrix. This temperature should correspond to the polymerization temperature of the resinflsed at station 16. The inner wall 26a is accurately dimensioned; its bore taking into account its heat expansion corresponds to the desired nominal external diameter for the finished tubes. Further, the internal surface of inner wall 26a is chromed so that the lubricant added to the resin suffices to prevent the adhesion of the resin to the hot metal.

OPERATION OF THE SURFACING MACHINE In view of theforegoing structural description of the surfacing machine the method practiced therewith will be easily understood:

First, the plunger 27 is in a withdrawn position adjacent the aperture 3lb and the head 29 is spaced from the cylinder 30 when the cut length 1a has completely I entered the inner wall 26a. In order to be received by inner wall 26a, the diameter of tube ta undergoes a reduction which is made possible to a large extent by the radial compression of the penultimate layer a made of felt board. By virtue of the temperature of the inner wall 26a, the resin deposited on the outside surface of the tube undergoes a polymerization which gives said surface a very smooth finish and a certain degree of hardness. The driving fluid of the jack is then reversed by admitting it under pressure through the aperture 31a. Simultaneously, the aperture 31b is relieved of all pressure to allow the evacuation of the fluid filling the rear chamber of the jack. The plunger 27 withdraws and returns to its initial position in the vicinity of the aperture 31b. The cycle restarts when a new cut tube length lb is engaged by the head 29. As tube lb enters into the matrix, it displaces finished tube 1a, which is thus ejected.

DESCRIPTION OF AN ALTERNATE TUBE STRUCTURE Turning now to FIGS. 5 and 6, there is shown a modified tube structure before (FIG. 5) and after (FIG. 6) treatment in the surfacing machine described in connection with FIG. 4. In these figures only a penultimate layer 101 and a final layer 1 .02 are shown; both are wound helically. The basic tube structure is thus not shown.

The penultimate layer 101 is a strip of a low-density material, for example, felted board, between the consecutive turns Mia, 101b, Mile, of which there is shown a spacing 103a, 1103b.

the final layer 102 is a strip of abosrbent paper, both edges 105a, 1105b of which are chamfered. The width of this strip is such that its consecutive turns 102a, 102b do not overlap but define a smallest possible spacing 104.

The final layer 102 is glued to the penultimate layer by means of a coating 1% of a thermosetting adhesive resin.

The treatment of the advancing rough tube having a structure according to H6. 5, is, with the exception of the sanding step, identical to that described hereinbefore. Thus, its treatment comprises coating with a thermosetting resin mixed with a polymerization catalyst, cutting the tube into lengths, drying and finally reduction of circumference and setting in a surfacing machine.

The shrinkage or reduction in circumference is, to a large extent, taken up by the penultimate layer 101 which is compressed under the effect of external forces (FIG. 6). This compression or collapse of strip 101 is irregular: it is greater along the central part of the final layer 102 than along the chamfered edges a, 1051] thereof. At the same time, the spacings 103a, 1031; between the turns of the layer 101 are reduced to a greater or lesser extent.

Since the diametrical reduction of the tubes takes place in the matrix under elevated temperatures, simultaneously with the polymerization of the external resin coating R07, a polymerization of the layer 1% of adhesive resin is also achieved. This last-named polymerization stabilizes the layer 101, the deformation of which, as shown in FIG. 6, becomes permanent, while the cured resin in the helical space or gap 104 between consecutive turns of the external layer 102 acts as a seal.

Again, very smooth and accurately gauged tubes are obtained.

What is claimed is:

i. A multi-layer, helically wound cardboard tube comprising, in combination:

A. a basic tube;

B. a compressed penultimate strip of low-density, compressible material helically wound about said basic tube, adjacent edges of consecutive turns of said strip disposed in a close, non-overlapping relation;

C. an outer strip of high-density material helically wound about and slightly glued to said penultimate strip; and

D. an external polymerized thermosetting layer coherently covering the outside of said outer strip.

2. A tube as defined in claim 1, wherein at least one edge of said outer strip is provided with a chamfer.

3. A tube as defined in claim 1, wherein the external face of said outer strip is provided with aligned fibers.

4. A tube as defined in claim 2, wherein both edges of said outer strip are provided with a chamfer said penultimate layer completely fills the space defined by the juxtaposed chamfers of adjacent edges of said outer strip.

5. A tube as defined in claim 4, wherein said penultimate strip and said outer strip are glued together by a polymerized adhesive thermosetting resin layer forming a seal at adjacent chamfered edges of said outer strip.

6. A tube as defined in claim 1, wherein said lowdensity material is fibrous.

7. A tube as defined in claim 1, wherein said highdensity material is a dense-material having long fibers. =9: i=

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1287945 *Apr 11, 1918Dec 17, 1918Ben K FordTube.
US1301840 *Jul 6, 1918Apr 29, 1919Edwin C HawkinsWaterproofed paper container.
US1605953 *Nov 28, 1923Nov 9, 1926 Chusetts
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4645553 *May 31, 1985Feb 24, 1987L'homme, S.A.Process and apparatus for forming a multilayer tube
US4792326 *Mar 30, 1987Dec 20, 1988Kimberly-Clark CorporationRapidly disintegrating paper tubes
US4872933 *Aug 5, 1988Oct 10, 1989Kimberly-Clark CorporationMethod of forming rapidly disintegrating paper tubes
US5106356 *May 30, 1991Apr 21, 1992Sonoco Products CompanyMethod and apparatus for the manufacture of paperboard tubes having controlled outside diameter
US5505395 *Jan 21, 1994Apr 9, 1996Sonoco Products CompanyMulti-grade paperboard winding cores for yarns and films having enhanced resistance to inside diameter reduction
US6815022 *Jun 18, 2002Nov 9, 2004Sonoco Development, Inc.Laminated structures constructed from adhesively joined sheet material layers
US6851643Jan 27, 2003Feb 8, 2005Sonoco Development, Inc.Spirally wound tube with enhanced inner diameter stiffness, and method of making same
US9090039 *Dec 4, 2013Jul 28, 2015Kline SmylyPaper tube for winding materials
US20030232162 *Jun 18, 2002Dec 18, 2003Sonoco Development, Inc.Laminated structures constructed from adhesively joined sheet material layers
US20080128583 *Jul 17, 2007Jun 5, 2008Doug SmoljoForm and method and apparatus for making a form
US20110057069 *Sep 9, 2009Mar 10, 2011Sonoco Development, Inc.Coated Paperboard Core For Elastomeric Fiber Production
US20110174956 *Nov 16, 2010Jul 21, 2011Doug SmoljoForm and method and apparatus for making a form
US20140319202 *Dec 4, 2013Oct 30, 2014Smyly KinePaper Tube for Winding Materials
EP0627306A1 *Jun 2, 1994Dec 7, 1994Sonoco Products CompanyEnhanced crush strength construction multi-grade paperboard tubes
U.S. Classification229/4.5, 229/93, 493/291, 138/144, 428/535, 156/188, 428/34.2, 138/150, 229/5.84
International ClassificationB31C3/00
Cooperative ClassificationB31C3/00
European ClassificationB31C3/00
Legal Events
Nov 17, 1981ASAssignment
Owner name: MENASHA 1980 CORPORATION, P.O. BOX 367, HWY. 41, N
Effective date: 19810320
Effective date: 19810325