Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3814170 A
Publication typeGrant
Publication dateJun 4, 1974
Filing dateFeb 11, 1972
Priority dateJun 8, 1971
Publication numberUS 3814170 A, US 3814170A, US-A-3814170, US3814170 A, US3814170A
InventorsKahn F
Original AssigneeKahn F
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for melting and casting material under pressure
US 3814170 A
Abstract
In a melting furnace the melting zone is sealed off from the air and a pipe is connected to the bottom of the melt, which pipe reaches outside the furnace with its upper end to the height of the molten material inside the furnace. The casting mold is arranged on the top of the pipe. An atmosphere of protective gas is established above the surface of the molten material in the furnace; the pressure of the protective gas being controlled by a special equipment. Casting is accomplished by introducing the material to be molten through a gas lock and through the protective gas atmosphere into the melt, causing the pressure inside the furnace to increase and forcing the molten material through the rising pipe into the mold. After the mold is filled the pressure of the gas is increased in order to feed the shrinkage and to achieve a fine grained and dense casting.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

1 June 4, 1974 1 APPARATUS FOR MELTING AND CASTING MATERIAL UNDER PRESSURE [76] Inventor: Friedhelm Kahn, 2,

Muhlbachstrasse, 6332 Ehringshausen, Germany [22] Filed: Feb. 11, 1972 [21] Appl. No.: 225,512

[30] Foreign Application Priority Data June 8. 1971 Germany 2128425 [52] U.S. Cl 164/309, 164/80, 164/119 [51] Int. Cl 822d 17/06 [58] Field of Search 164/80, 113, 119, 120, 164/316, 317, 318, 319, 320, 306, 309

[561 References Cited UNITED STATES PATENTS 1.219.358 3/1917 Stewart 164/113 1.403.955 1/1922 Hill 164/80 X 2,520,348 8/1950 Tama 164/316 X 2.947.045 8/1960 Goldhamer 164/303 3.523.570 8/1970 G roteke et a1 164/120 X 3.700.025 10/1972 Tenner 164/120 FOREIGN PATENTS OR APPLICATIONS l.028,736 5/1966 Great Britain 164/119 Primary Examiner.1. Spencer Overholser Assistant ExaminerJohn E. Roethel Attorney, Agent, or Firm-Krafft & Wells [5 7 ABSTRACT In a melting furnace the melting zone is sealed off from the air and a pipe is connected to the bottom of the melt, which pipe reaches outside the furnace with its upper end to the height of the molten material inside the furnace. The casting mold is arranged on the top of the pipe. An atmosphere of protective gas is established above the surface of the molten material in the furnace; the pressure of the protective gas being controlled by a special equipment. Casting is accomplished by introducing the material to be molten through a gas lock and through the protective gasatmosphere into the melt, causing the pressure inside the furnace to increase and forcing the molten material through the rising pipe into the mold. After the mold is filled the pressure of the gas is increased in order to feed the shrinkage and to achieve a fine grained and dense casting.

9 Claims, 2 Drawing Figures APPARATUS FOR MELTING AND CASTING MATERIAL UNDER PRESSURE BACKGROUND OF THE INVENTION When pouring molten material into molds it is generally required that during the melting process and during the pouring no products form which may render the casting impure and which may unfavorably influence the structure of the casting, thereby preventing the casting from becoming a true to measurement workpiece upon solidification in the mold. And it is further required that the casting process is performed in an economical manner, preferably as much automated as possible.

In the known casting processes the melting and the pouring is usually done in successive operations, often at different places. For transporting the molten material to the mold the forces of gravity are utilized. During the transport the air can freely influence the material which causes a contamination mainly by the formation of oxides, nitrides and hydrogen. This may considerably lower the quality of the casting. For filling of the molds free from turbulence and for feeding the solidifying casting usually a considerable effort is required in the form of complicated filling and charging apparatuses which often fail to achieve the desired results. Many casting processes have become known which try to overcome these disadvantages. Some of the processes achieve at the same time a high degree of automation. It is also known that for special requirements the metal is molten in the furnace in a vacuum or under the cover of a protective gas. But when the furnace is recharged and when the melt is transported to the mold the influence of air on the melt cannot be avoided under shop conditions.

With the known low-pressure die casting process an I almost turbulence-free filling of the mold'and dense castings may be achieved with very little molten material needed. It is, however, a disadvantage of this process that the production must be stopped every time the furnace has to be recharged. The latter may be emptied only up to one third of the original charge. Owing to the oxidation of the molten material when being poured freely into the furnace the formation of scum cannot be prevented. For the same reason it is also practically impossible to melt additional solid material. The same dangerous effect occurs also in the rising pipe just below the mold. The effect is caused by the column of molten material which rises and recedes according to the cycles of casting operations. If high quality castings are to be produced the formation of scum must be prevented by inserting a sieving screen between the end ofthe rising pipe and the mold. It has also been suggested to overcome the disadvantages of the known casting processes by keeping the molten material after the casting operation on the level with the end of the rising pipe. However, this has proved to be very difficult on account of the constantly varying amount of molten material in the furnace. Further, the method has the disadvantage that for each casting operationa considerable amount of compressed gas is needed. For price reasons only compressed air can be used, which, if not carefully dried, may cause a contamination with hydrogen and may also cause the burn-out of such important components as magnesium and sodium. The air volume must be enlarged constantly with the decrease of the molten material in the furnace during the production. Together with the unavoidable thermal expansion of the air this leads to irregular filling conditions of the mold. A further disadvantage rests with the cast-iron rising pipe of which the durability is very limited, depending on the particular material which is molten and cast (see also the German periodical GieBerei," 1969, Volume 4, page 83-90). The pressure exerted on the melt, which pressure is important for the density of the solidifying casting, must be kept at a low degree because it also effects the inner space of the whole furnace.

Further there are known a number of methods of automatically proportioning the molten metal for the molds or for pressure die casting machines, which methods make use of various valve and pump systems. But they all have the drawback that the air will come into contact with the molten material during the casting process, which results in the above mentioned disadvantages (see also the German periodical GieBerei," 1962, Volume 8, page -189 and Volume 14, page 391-395 and page 400-402).

Further in this connection, there must be mentioned proportioning methods using solid charging material, such as pigs or continuous cast ingots, for displacing molten material out of the furnace. But here again the contact with the air cannot be prevented and, moreover, these methods can only be used with specific types of alloys (see also DB? 1 263 995, further see German periodical GieBerei, 1968, Volume 25, page 765-768 and Volume 18, page 557).

It is therefore an object of the invention to suggest a novel method of melting material and producing high quality castings in an economical manner. It is an other object tosuggest a method by which the disadvantages of the prior art methods are overcome. And it is a further object of the invention to provide a furnace for performing the new method.

SUMMARY OF THE INVENTION According to the invention the above stated objects are attained by a method of melting charging material in a pressure-tight furnace under a cover of protective gas and by using the overpressure developed mainly thereby for displacing molten material out of the furnace. Preferably the furnace used is an induction furnace having an airtight or gastight charging portion and comprising a pipe which rises on one side of the furnace from'the furnace bottom. The rising pipe can be heated and is, of course, used for casting the molten material into the mold.

The charging portion of the furnace is formed by a pressuretight chamber into which the material to be molten is introduced in the form of solid elements hav- 7 ing a shape suitable for sealing off the chamber. In its The gas filling is preserved throughout a longer period of time, i.e. throughout several casting cycles; only losses by leakages must be replaced.

In order to avoid any noticeable loss of heat out of the melting zone of the furnace by way of the solid charging material the latter is subdivided into smaller pieces which are interconnected by elements having only little heat conductivity. A special conveyor system is provided which transports the charging material into the pressure chamber and into the melt in the furnace.

-The introduction of air into the pressure chamber,

which could easily occur at the places of interconnection of two adjacent charging pieces, is prevented with the help of a flush nozzle which sprays the same gas that is used as the protective gas. The charging portion of the furnace is sealed off from the melting zone by a gastight inset element up to which the level of the molten material reaches.

Further, the charging portion of the furnace is provided with an opening for filling additives into the melt, as for example substances for achieving a fine grain. This opening is also provided with a seal. Also, the termperature may be measured through such an opening; and, further, melt can be filled in here.

The invented method of producing castings is started by transporting, by means of the conveyor system, the

charging material into the melt to such an extent that the introduced volume of the charging material corresponds to the volume of the casting to be produced. Prior to the beginning of the operation the normal level of the melt in the furnace corresponds of course to the upper end of the rising pipe. On account of the increase of the pressure in the charging portion, which pressure is in addition regulated through the pressure control system, the melt rises out of the rising pipe into the mold. After the mold has been filled the pressure is further increased through the solidification period in order to achieve a dense casting, and this increased pressure is maintained until the front zone of solidification approaches the upper end of the rising pipe. Subsequently the pressure control system regulates the pressure to the normal value so that the mold may be opened for extracting the casting in the case of the permanent mold process, or that the filled mold may be replaced by an empty one. During this phase of operation the new portion of the charging material transported into the melt is molten.

The new method has mainly the advantage that'the melt obtained under the protective gas is free from con-' taminations, which melt is cast by the apparatus into true-to-measurement workpieces. The melt enters the mold from below in a turbulence-free flow and solidifies mainly in the direction from the top to the bottom so that an especially dense and perfect casting-is obtained. At the same time very little additional material is needed in the form of gating and feeding system.

Owing to the practically constant level of molten material in the furnace, caused'by the introduction of solid material interrelated with the casting process, a'high degreefof homogeneousness in filling the molds is achieved through numerous casting cycles. Limiting the gas pressure to the charging portion of the furnace makes the furnace less expensive and allows the employment of a considerably higher pressure, as compared to the prior art methods. The higher pressure is advantageous for a dense solidification of the casting. Since, contrary to the prior art methods, a change of the protective gas with every casting cycle is avoided,

used. Thereby not only a contamination of the melt is avoided but also a loss of material by oxidation in the furnace.

The introduction of additives into the melt is possible without interrupting the continuous production process. The new casting method is applicable with nearly all material whichcan be molten and cast and difficulties caused by the rising pipe, as are encountered with the low pressure die casting method, do not occur. The method is also generally applicable if castings of a larger volume are to be produced, and also in mass production of small size castings. Even sand castings of extreme size and volume may be produced according to this method and, due to the very exact proportioning of the material displaced from the furnace, the method is also suitable for the permanent mold process and high pressure die casting. The high degree of mechanisation entails a saving of both energy and material. The melting of compact charging elements, such as continuous cast ingots, is much more economical than the melting of pigs, mainly because in the melting house no mixing of alloying constituents is required, this work being left to only a few larger smelteries. The atmosphere in the melting house-is improved by melting the material in a tightly closed furnace. This also helps to prevent air pollution.

The new method described works on the condition that the material to bemolten is introduced into the heated furnace in solid form and molten therein. These steps are required and advantageous if the fou'ndry'receives its raw material in solid form. If, however, a melting house is located close by the foundry it is advantageous to work with the same apparatuses and, at least partially, according to the same method. This requires an introduction of the material to be cast into the furnace in a molten state and a generation of the pressure needed for casting by different means.

in a further embodiment of the invention it is therefore suggested first to introduce the melt into the furnace and then to lower a displacing element inthe charging portion of the furnace, which displacing element takes the place of the previously used charging material. The pressure which is thus generated forces the melt through the rising pipe into the mold. When the molten material is cast into the furnace it will, of course, be advantageous to lift the displacing element out of the furnace. The molten material may be poured into the furnace through the opening provided in the furnace for adding the additives'to the melt, or it may be poured through the rising pipe. in a different embodiment, however, the furnace may be provided with a separate valve-controlled channel near the furnace bottom through which the molten material may flow into the furnace.

The displacing element must consistof a material resistent to the heat and also against the attack of the may be poured into the furnace after every casting process. To this end the displacing element is lifted by the height of the previously cast volume and a corresponding amount of molten material is brought into the furnace by one of the above described ways.

BRIEF DESCRIPTION OF THE DRAWINGS The invention will be more readily comprehended from the following description when taken in conjunction with the appending drawings, wherein:

FIG. 1 is a cross-sectional view of a first embodiment of a furnace for performing the invented casting method, and

FIG. 2 is a cross-sectional view of a second embodiment of a furnace for performing the invented casting method.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings, the embodiment shown in FIG. 1 comprises mainly an induction furnace 1 provided on one side with a rising pipe 2, and further provided with a gastight charging portion 3. The mold is designated by the numeral 4. The carging portion 3 is made gastight relative to the outside by means of a suitable sealing 9 and relative to the furnace l by means of an inset 10 made of a gastight, heat resistant material and by the surface of the melt 11 is this area. Above the sealing 9 there is arranged a gas nozzle 18 which may be connected to a gas source 12 by way of a valve 19. The charging portion 3 is connected to a pressure cylinder 14 and contains a protective gas, e.g. argon, which is also introduced through the gas source 12 and a valve 13. The gas is controlled to the various pressures required during the casting process in accordance with the lowering of the charging element 5 by the pressure cylinder 14. The charging element 5 consists, for example, of continuously cast ingots which are separated from one another by narrow gaps and mechanically interconnected across the gaps by threaded bolts 6 of similarmaterial. Controllable. motordriven conveying pulleys 7 transport the charging elements 5 through the charging portion 3 for melting into the area of the induction coil 8 in the furnace 1.

Casting may begin as soon as the melt 15 in the furnace has risen to its normal'level, which is up to the upper end 16 of the rising pipe 2. The lowering of the I charging element 5 into the melt causesthe melt.l5 to rise above its normal level. But only in the rising pipe 2, because in the charging portion 3 a counter pressure is generated by the gas controlled by the pressure cylinder 14. The counter pressure keeps the melt level in the charging portion at its normal height, i.e. at the height of the inset 10. The melt 1 is displaced through the ending 16 of the rising pipe 2 into the space 17 of the mold 4 and fills this space. When the mold is filled the charging element 5 comes to a standstill. A further increase of the gas pressure improves the feeding and consequently the density of the solidifying casting in the mold 4.

As soon as the solidification has progressed close to the upper end 16 of the rising pipe 2 the gas pressure in the charging portion 3 may be reduced to normal and the mold may be opened for taking out the casting, or the mold may be replaced by an empty one for a new casting cycle. In order to prevent the penetration of air into the charging portion of the furnace, gas is pumped through the nozzle 18 by way of the valve 19 wnenever a gap between two charging elements 5 passes in front of the nozzle. In the interior of the charging portion 3 the elements are guided by a ring 20. The sealed-off conveying device 21 allows for the introduction of additives in wire-form into the melt without disturbing the casting process.

The device illustrated in FIG. 2 comprises mainly the furnace 31 (as does the embodiment shown in FIG. 1) having on one side a rising pipe 32 with the mold 34, and also having a charging portion 33. The latter is sealed-off from the atmosphere by means of a sealing 39 and from the melting zone of the furnace by means of the gastight, heat resisting inset 40 and also by the surface 41 of the melt in this area. The charging portion 33 is connected to the pressure cylinder 44 and contains a protective gas, e.g. argon, which comes from a gas source 42 by way of a shut-off valve 43. The gas is regulated to the various pressures required during the casting process by the pressure cylinder 44 in accordance with the lowering of the displacingelement 37.

The displacing element 37 consists of a material resistant against the heat of the furnace and also against the attack of the melt. The element maybe provided with its own heat source, either aheat source installed in its interior or it may be warmed up by induction heatingfrom the outside, and it may be used for additionally heating up the melt. The displacing element 37 is suspended and operated in the manner required by the different steps by a lifting and lowering device 36.-

For a casting process the furnace is first filled with the melt 45, either by way of the valve-controlled channel 35 or through the opening 48 for-introducing additives, or through the open end of the rising pipe 46. If the melt is to be introduced through the rising pipe 46 the mold 34 must beremoved prior to filling. The filling process can be performed rather turbulence-free under the cover of the protective gas if the displacing element, which has previously been completely lowered into the furnace, is lifted slowly upwards during the filling process by the lifting and lowering device.

The casting cycle may begin as soon as the melt 45 in the furnace 31 has reached its normal level in the area of the inset 40, whichlevel corresponds to the height of the end 46 of the rising pipe 32. A lowering of the displacing element 37 into the melt 45 causes the latter to rise above the normal level, but only in the rising pipe 32 because at the same time there is generated a gas counter pressure in the chargingportion 33'by means of the pressure cylinder 44 which here keeps the level of the melt at the height of the normal level, i.e. in the area of the inset 40.

The melt is displaced through the end 46 of the rising pipe 32 into the space 47 of the mold 34 and fills this space. When the mold is filled the displacing element 37 is brought to a rest. A further increase of the pres sure with the help of the pressure cylinder 44 improves the feeding and consequently the density of the solidifying casting in the mold 34. As soon as the solidification has progressed to the area of the end 46 of the rising pipe 32 the pressure in the charging portion 33 may be reduced to normal. The mold 34 may then be opened for extracting the casting, or the mold may be replaced by an empty one for the next casting cycle. In case the casting is performed continuously into a die for continuous casting the process may be carried on until the furnace 31 is completely empty.

The above describes only one casting cycle. in case the furnace has a bigger volume the next casting cycle and any further cycle is started by further lowering the displacing element. In case of a smaller furnace there is the possibility of lifting the displacing element at the end of every casting cycle to its starting position and, at the same time, to refill the melt into the furnace.

What is claimed is:

l. A furnace for melting material and casting workpieces, into which furnace the material in introduced in the form of continuously cast ingots, said furnace comprising a. a melting zone for heating and melting the material,

b. a gastight charging portion attached to the melting zone for continuously introducing the material to be molten,

c. a first sealing provided on the charging portion at the front end thereof, the inner shape of the sealing corresponding to the cross sectional form of the ingots,

d. a second sealing on the charging portion at the lower end thereof in the area'where the material immerses into the melt, said second sealing consisting ofa gastight and heat resisting inset in combination with the melt surface and the solid ingot,

e. a pipe being connected to the melting zone and rising on the outside of the furnace to the level of the molten material inside the furnace, and

"f. means for introducing a protective gas into the charging portion of the furnace, said means including means for controlling the pressure of the gas, the casting being accomplished by generating an over-pressure both by the introduction ofthe material and by the gas pressure control means above the melting zone so that molten material is displaced therefrom through the rising pipe. I

2. A furnace according to claim 1, and further comprising means interrelating the gas pressure control means and the means for feeding the material to be molten into the furnace so that the gas pressure is automatically regulated to a valve which keeps the molten material inside the furnace at a constant level.

3. A furnace according to claim I, wherein the material to be molten is introduced in the form of ingots,

which ingots are provided with connection means at both ends, the connection means being oflow heat conductivity. 1

4. A furnace as claimed in claim I, and further comprising a gas nozzle in the area of the first sealing in the charging portion of the furnace for preventing air from entering the furnace together with the ingots, the nozzle being connected to the protective gas source via a c. a displacing element being movable in the housing so that the element may be lowered into the melt,

d. a valve controlled channel connected to the bottom of the heating zone for filling molten material into the furnace,

e. pipe means interconnecting the gastight housing and a protective gas source for introducing a protective gas into the housing, said means includin a gas pressure control mechanism,

f. a rising pipe connected to the heating zone through which pipe the molten material rises into a mold, the casting being'performed by generating an overpressure in the gastight housing both by lowering the displacing element into the melt and by the gas pressure control mechanism, thereby displacing molten material through the rising pipe into the mold.

6. A furnace as claimed in claim 5, and further comprising means for additionally filling molten material into the furnace through the rising pipe.

7. A furnace as claimed in claim 5, and further comprising an aperture for introducing additives into the melt.

8. A furnace as claimed in claim 5, and further comprising a heat source in the interior of the displacing element for keeping the element at about the melting temperature of the material to be cast.

9. A gastight furnace for melting and casting workpieces comprising:

a. means for continuously introducing material to be molded into said furance under the cover of a protective gas;

b. a zone for maintaining said material in a melt;

' c. solid means for displacing said melt;

d. means for applying pressure from a protective gas to said melt;

e. a mold elevated above said zone; and

f. conduit means for conducting said melt from said zone up into the bottom of said mold, said solid means and said means for applying pressure applied simultaneously to said melt displacing said melt through said conduit-means into said mold and casting said melt therein.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1219358 *Nov 20, 1915Mar 13, 1917John K StewartMethod of molten-metal feed for die-casting.
US1403955 *May 26, 1920Jan 17, 1922Harriet HillApparatus for die-casting metals
US2520348 *Dec 5, 1947Aug 29, 1950Ajax Engineering CorpDischarging apparatus
US2947045 *Sep 6, 1957Aug 2, 1960 goldhamer
US3523570 *Dec 27, 1966Aug 11, 1970American Standard IncMethod of press forming thin-walled cast iron parts
US3700025 *Aug 30, 1971Oct 24, 1972Gravicast Patent GmbhMethod of casting quiet melts
GB1028736A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4085791 *Jan 26, 1976Apr 25, 1978International Lead Zinc Research Organization, Inc.Method of pore-free die casting
US5385456 *May 25, 1993Jan 31, 1995Mancini; FlavioPump for hot chamber die casting of corrosive light alloys
US5465777 *May 18, 1994Nov 14, 1995The Budd CompanyFor pouring molten metal directly in a mold
US5983976 *Sep 25, 1998Nov 16, 1999Takata CorporationMethod and apparatus for manufacturing metallic parts by fine die casting
US6065526 *Aug 25, 1998May 23, 2000Takata CorporationMethod and apparatus for manufacturing light metal alloy
US6135196 *Sep 25, 1998Oct 24, 2000Takata CorporationMethod and apparatus for manufacturing metallic parts by injection molding from the semi-solid state
US6241001Jun 11, 1999Jun 5, 2001Takata CorporationMethod and apparatus for manufacturing light metal alloy
US6276434Jun 11, 1999Aug 21, 2001Takata CorporationMethod and apparatus for manufacturing metallic parts by ink injection molding from the semi-solid state
US6283197Jun 11, 1999Sep 4, 2001Takata CorporationMethod and apparatus for manufacturing metallic parts by fine die casting
US6474399Sep 12, 2001Nov 5, 2002Takata CorporationInjection molding method and apparatus with reduced piston leakage
US6540006Apr 26, 2001Apr 1, 2003Takata CorporationMethod and apparatus for manufacturing metallic parts by fine die casting
US6655445Nov 4, 2002Dec 2, 2003Takata CorporationInjection molding method and apparatus with reduced piston leakage
US6666258Jun 30, 2000Dec 23, 2003Takata CorporationMethod and apparatus for supplying melted material for injection molding
US6739379Apr 26, 2001May 25, 2004Takata CorporationMethod and apparatus for manufacturing light metal alloy
US6742570May 1, 2002Jun 1, 2004Takata CorporationInjection molding method and apparatus with base mounted feeder
US6789603Feb 2, 2004Sep 14, 2004Takata CorporationInjection molding method and apparatus with base mounted feeder
US6880614May 19, 2003Apr 19, 2005Takata CorporationVertical injection machine using three chambers
US6942006Oct 14, 2003Sep 13, 2005Takata CorporationInjection molding method and apparatus with reduced piston leakage
US6945310May 19, 2003Sep 20, 2005Takata CorporationMethod and apparatus for manufacturing metallic parts by die casting
US6951238May 19, 2003Oct 4, 2005Takata CorporationVertical injection machine using gravity feed
US7150308Sep 1, 2004Dec 19, 2006Takata CorporationMethod and apparatus for manufacturing metallic parts by die casting
US7296611Dec 1, 2006Nov 20, 2007Advanced Technologies, Inc.Method and apparatus for manufacturing metallic parts by die casting
Classifications
U.S. Classification164/309, 164/80, 164/119
International ClassificationB22D18/04
Cooperative ClassificationB22D18/04
European ClassificationB22D18/04