Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3815673 A
Publication typeGrant
Publication dateJun 11, 1974
Filing dateFeb 16, 1972
Priority dateFeb 16, 1972
Also published asCA967550A1
Publication numberUS 3815673 A, US 3815673A, US-A-3815673, US3815673 A, US3815673A
InventorsBruce G, Ilfrey W
Original AssigneeExxon Production Research Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations
US 3815673 A
Abstract
An improved system for offshore drilling is disclosed which is particularly useful in those operations where a floating vessel is situated at the surface of a body of water and circulation of drilling fluid is accomplished by introducing drilling fluid into a drill string extending from the vessel into a borehole in the floor of the body of water and returning it through a separate conduit to the vessel. A surface detectable signal is generated which is proportional to the hydrostatic head exerted by the drilling fluid within the return conduit. Hydrostatic head of the drilling fluid within the return conduit is controlled in response to the signal, as by injecting gas into the conduit near its lower end, to regulate the hydrostatic head of the fluid in the borehole.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 Bruce et al.

METHOD AND APPARATUS FOR CONTROLLING I'IYDROSTATIC PRESSURE GRADIENT IN OFFSHORE DRILLING OPERATIONS Inventors: George H. Bruce; William T. Ilfrey,

both of Houston, Tex.

Esso Production Research Company, Houston, Tex.

Filed: Feb. 16, 1972 Appl. No.: 226,843

Assignee:

McNeilI et al.

Bauer ct al.

Townsend 175/5 Ragland et a1 175/69 1 June 11, 1974 3,459,259 8/1969 Matthews 175/7 X 3,595,075 7/1971 Dower v 175/48 3,603,409 9/1971 Watkins 175/25 Primary Examiner-Henry C. Sutherland Assistant Examiner-Richard E. Favreau Attorney, Agent, or Firm-James E. Gilchrist [57] ABSTRACT An improved system for offshore drilling is disclosed which is particularly useful in those operations where a floating vessel is situated at the surface of a body of water and circulation of drilling fluid is accomplished by introducing drilling fluid into a drill string extending from the vessel into a borehole in the floor of the body of water and returning it through a separate conduit to the vessel. A surface detectable signal is generated which is proportional to the hydrostatic head exerted by the drilling fluid within the return conduit. Hydrostatic head of the drilling fluid within the return conduit is controlled in response to the signal, as by injecting gas into the conduit near its lower end, to regulate the hydrostatic head of the fluid in the borehole.

2 Claims, 3 Drawing Figures \PATENTEDJUN 1 1 mm DEPTH FROM WATER SURFACE IOOO FEET SHEET 10F 3 FIG.|

METHOD AND APPARATUS FOR CONTROLLING HYDROSTATIC PRESSURE GRADIENT IN OFFSHORE DRILLING OPERATIONS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an improved system for drilling from a floating vessel which involves monitoring and controlling the hydrostatic head of the drilling fluid returns to control bottom hole pressure.

2. Description of the Prior Art In recent years the search for offshore deposits of crude oil and natural gas has been extended into ever deeper waters overlying the continental shelves. With increased water depths the conduct of drilling operations from floating vessels has become more prevalent since economic considerations militate against the use of bottom-founded drilling platforms commonly used in shallow water. In these operations the drill rig and associated equipment are positioned aboard a floating vessel which is stationed over the wellsite. The drill string extends from the vessel to a wellhead situated on the floor of the body of water and a separate return conduit, normally a riser pipe, is provided to permit circulation of drilling fluid.

Control of the influx of fluid from pressurized subsurfaceformations is an important aspect of any drilling operation. If uncontrolled, fluid influx can lead to a blowout and fire, frequently with catastrophic results in terms of loss of life, damage to property, and pollution of the seaway. Conventionally, well control is established by maintaining the density of the drilling fluid and thus the hydrostatic pressure exerted on the subsurface formations at a level sufficient to overcome formation pressures. At the same time, caution is necessary to assure that the density and hence pressure gradient of the column of fluid does not exceed the natural fracture gradient of the formation, i.e., the pressure gradient necessary to initiate and propagate a fracture in the formation.

In deep water, the natural fracture gradient of shallow formations is particularly critical factor. It isdirectly related to the bulk density of the sediments resting on top of the pressurized formation and thus at the floor of the body of water is for all practical purposes the pressure gradient of water. For a formation situated 500 feet below the floor of a body of water having a depth of 2,000 feet, the natural fracture gradient will be greatly influenced by thegradient of the overlying body of water. Because of the higher bulk density of rock, however, the fracture gradient rapidly increases with the depth of penetration into the sea floor and will not represent a serious problem after the first few thousand feet of hole are drilled.

During the drilling of the surface hole (the first few thousand feet) the hydrostatic head of the drilling fluid should not greatly exceed that of a column of salt water to minimize the possibility of formation fracture. On the other hand normally pressured formations have a pressure similar to that exerted by a column of salt water corresponding to formation depth. It will therefore be apparent that in deep water, achieving a hydrostatic head high enough to control the well and yet low enough to prevent fracturing subsurface formations will require careful control of the pressure gradient of the drilling fluid.

In offshore operations controlling the density of the fluid as it is pumped into the well is not an entirely satisfactory approach since at normal drilling rates the drill cuttings suspended in the returning drilling fluid may sufficiently increase its density to yield a gradient exceeding normal fracture gradient. Heretofore, the only available system to assure a balanced condition in these circumstances was to greatly increase drilling fluid circulation rate or to reduce the rate of penetration; both practices are economically unattractive. A need therefore exists for a system for controlling the hydrostatic head of the drilling fluid within close limits without either increasing drilling fluid circulation rate or reducing the penetration rate.

SUMMARY OF THE INVENTION The present invention permits close control over the pressure gradient of the drilling fluid at no sacrifice of penetration rate and with no increase in circulation rate and thus alleviates the difflculties encountered in deep water drilling which are outlined above. In accordance with the present invention the hydrostatic pressure exerted by the drilling fluid within the drilling riser or other return conduit is monitored and its density is regulated to control the hydrostatic head of the mud column and thereby assuresufficient hydrostatic pressure to counterbalance formation pressures without exceeding their fracture gradients.

The system of the present invention is particularly applicable to drilling operations wherein a floating vessel is situated at the surface of a body of water above a wellhead positioned on the floor thereof. Drilling fluid is introduced into a drill string that extends between the vessel and wellhead and is returned through a separate conduit. The apparatus of the invention includes a means mounted on the conduit for generating a signal proportional to the pressure therein and detectable at said vessel. The method involves monitoring the hydrostatic head of the fluid flowing within the conduit and regulating its density to control the hydrostatic head of the column of drilling fluid acting on subsurface formations. The pressure gradient of the fluid within the return conduit can be reduced by injecting gas into the conduit. The rate of gas injection is controlled in response to the pressure within the riser to maintain the hydrostatic head at a substantially constant level, thereby assuring the proper hydrostatic head will be maintained on formations exposed to the borehole.

It will theerefore be apparent that the present invention will permit the hydrostatic pressures exerted by drilling fluids and entrained .cuttings to be closely controlled without any substantial reduction in drilling rate or-increase in circulation rate. The present invention thus permits control of pressurized formations during normaldrilling operations while reducing the danger of exceeding their fracture gradients and offers significant advantages over systems existing heretofore.

BRIEF DESCRIPTION or THE DRAWINGS FIG. 1 depicts typical curves relating fracture gradient to formation depths beneath the water surface. I

FIG. 2 is an elevation view, partially in'section, of a floating drilling vessel provided with apparatus necessary to carry out the method of the invention.

FIG. 3 is a schematic flow diagram of a system for monitoring and regulating the hydrostatic head of the drilling fluid within the return conduit in accordance with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plot of formation depth in thousands of feet versus the natural fracture gradient expressed both in psi/ft and as an equivalent mud density in lbs/gal (ppg). The curves shown are for a particular geographic area but illustrate the general relationship between water depth and formation fracture gradient. It will be apparent from an inspection of FIG. 1 that for any particular depth from the water surface, the fracture gradient decreases markedly as water depth increases.

Curve A relates the fracture gradients of formations encountered onshore to depth. These range from 0.60 psi/ft at 1,000 ft up to about 0.69 psi/ft at 3,000 ft. Curve B is for similar strata at a water depth of 750 ft. The fracture gradient is thus that of sea water, about 0.44 psi/ft, for depths to 750 ft. A formation buried under 1,000 ft of sediments is 1,750 ft below the water surface and will be noted to have a fracture gradient-on the order of 0.54 psi/ft. The gradient at 3,000 ft beneath the sea floor (3,750 ft below the water surface) is 0.64 psi/ft. Curve C represents identical sediments under l,500 ft of water. The natural fracture gradient for a formation under 1,000 ft of sediments corresponds to a depth of 2,500 ft and will be noted to be 0.51 psi/ft, corresponding to a mud weight just under ppg. At 3 ,000 ft of penetration, the fracture gradient is 0.61 psi/ft. It will therefore be apparent that for any particular depthof penetration into the substrata, the fracture gradient decreases as water depth increases.

The importance of the decrease in fracture gradient with water depth can be demonstrated by an example comparison of the hydrostatic pressure required to maintain well control to that which will fracture the formation. A normally pressured subsurface formation can be anticipated to have a formation pressure equivalent to the pressure exerted by a column of salt water having'a height equal to formation depth. A gas formation 1,000 ft beneath the floor of a 1,500 ft body of water could therefore be expected to have a pressure equal to the product of the salt water gradient and the depth of the formation beneath the water surface or about 1,1 10 psi and a drilling fluid having a salt water gradient (0.445 psi/ft, or about 8.5 ppg) could be expected to balance the formation pressure. It is normally desirable to drill with a fluid having a degree of overbalance, i.e., exerting a hydrostatic head greater than formation pressure. On the other hand, the fracture gradient at this depth is 0.51 psi/ft, which corresponds to a bottom hole pressure of 1,275 psi. Thus the pressure exerted by the mud must be kept between 1,110

- could of course be overcome by drillingat reduced rates and simultaneously increasing the rate of circulation, thereby assuring that the drilling fluid density remains within the critical range. This approach is however economically very unattractive in view of the daily expense of maintaining drilling equipment at the wellsite.

An alternative approach is to drill at a rapid penetration rate and at the same time reduce the bottom hole pressure of the drilling fluid by injecting gas orother low density material into the riser to lighten the mud. At the same time, however, a gas injection program undertaken in deep water requires careful control to assure that the hydrostatic head of the drilling fluid remains between that necessary to control the well and that which would result in a fracturing of the formation.

It is therefore an important aspect of the present inven-.

tion to monitor the'pressure exerted by the drilling fluid within the return conduit and to adjust the density of r the fluid therein to control bottom hole pressure. Control of fluid density is preferably accomplished by injecting gas into the riser near the lower end at a rate regulated in response to the pressure therewithin to' maintain the total hydrostatic head of the drilling fluid acting on a subsurface formation within the range necessary to assure control of the well without fracturing the formation.

FIG. 2 shows a drilling vessel 11 floating on a body of water 13 and equipped to carry out the method of the present invention. A wellhead 15 is positioned on the floor 17 of the body of water. A drill string 19 is susand 1,275 psi. This in turn dictates a mud density bepended from derrick 21 mounted on the vessel and extends between it and the wellhead. Drilling fluid is pumped down the string of drill pipe through the bit and into the borehole and returns to the vessel via a return condit shown as drilling riser 23. A high pressure gas source 25 is situated aboard the vessel. Injection conduit 31 extends from the control valve down the length of the riser to a level near the wellhead. One or preferably a plurality of gas lift valves 33 are positioned between the injection line and the drilling riser. The lift valves are normally preset to open at a given differenf tial pressure. A pressure sensor 35 is shown positioned near the lower end of the drilling riser and arranged to sense riser internal pressure. It may for example be a pressure transducer which generates an electrical signal proportional to pressure within the return'conduit.

The signal is conducted to the surface by means of elec trical .conductor 37 extending between the pressure transducer and the drilling vessel.. It may be directed to controller 39 which controls the position of routing valve 29 in response to the amplitude of the pressure signal to regulate the rate at which gas is introduced into the lower portion of the drilling riser. By properly adjusting the response characteristics of the valve controller, the pressure gradient of the fluid within the drilling riser can be closely controlled.

FIG. 3 is an exemplary flow diagram of apparatus which can be used to implement the method of the invention. An inert gas source is designated by numeral 41 and is preferably engine exhaust gas or the product from an inert gas generator. Exhaust gas is routed through conduit 43 to gas treater 45. Nitrogen oxide and water are separated from the source gas and the residue, which consists primarily of nitrogen, carbon dioxide and water, is piped through conduit 47 to compressor 49. The gas is then compressed through stages, as required, to sufficiently increase its pressure. For depths of l,000-2,000 ft, 1,500 psi will normally suffice. The high pressure gas is conveyed to cooler 53 which condenses any residual water and cools the compressed gas to about 100F. Normally, the dry, high pressure gas passes from treating unit 53 via line 27 to routing valve 29. In the event of excess pressure, however, release valve 55 opens and discharges the gas through exhaust line 57, returning the inert gas to the atmosphere. Under normal pressure conditions, the release valve remains closed and routing valve 29 diverts part of the gas down injection line 31 to lighten the drilling fluid and recycles the remainder through conduit 59 leading back to the compressor. The percentage of gas diverted into the riser is controlled by valve controller 39 in response to a surface detectable signal proportional to pressure within the riser which is generated from pressure sensor 35 situated near the base of the riser and may, for example, be conducted to the vessel by means of electrical conductor 37 leading to the valve controller. The signal could alternatively be transmitted acoustically, pneumatically or by other means as well.

High pressure gas routed into injection conduit 31 travels downwardly and into the riser through differential-pressure actuated gas lift valves 33. These valves are preferably vertically spaced to assist in unloading the riser whenever drilling operations have been interrupted for a period of time. Gas is injected into the interior of the conductor pipe in the annulus surrounding the drill pipe and the lift gas and drilling fluid flow upwardly to rotating drilling head 61 which diverts the gas-mud mixture away from the drill floor. Both gas and mud are diverted through conduit 63 to separator 65 wherein the inert gas is separated from the mud as by means of gravity segregation. The gas is exhausted to the atmosphere via exhaust conduit 57 while the mud is returned through line 67 to the mud pits for recirculation.

What is claimed is:

1. In a method of drilling wherein a floating vessel is situated at the surface of a body of water and drilling fluid is introduced into a drill string extending from the vessel into a borehole in the floor of the body of water and returned to the vessel through a separate conduit which conduit is provided with means for injecting a gas thereinto near its lower end, the improvement comprising measuring the hydrostatic pressure of the drilling fluid within said return conduit beneath the gas injection point and adjusting the pressure gradient of the fluid contained within the return conduit to maintain the hydrostatic pressure of the drilling fluid within the borehole at a level sufficient to counterbalance formation pressure without exceeding its fracture gradient.

2. The method of claim 1 wherein said gas is an inert gas.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2726063 *May 10, 1952Dec 6, 1955Exxon Research Engineering CoMethod of drilling wells
US2808230 *Jan 17, 1955Oct 1, 1957Continental Oil CoOff-shore drilling
US2923531 *Apr 26, 1956Feb 2, 1960Continental Oil CoDrilling
US3434550 *Jun 6, 1966Mar 25, 1969Mobil Oil CorpMethod and apparatus for lightening the load on a subsea conductor pipe
US3459259 *Sep 9, 1966Aug 5, 1969Mobil Oil CorpMudline suspension system
US3595075 *Nov 10, 1969Jul 27, 1971Warren Automatic Tool CoMethod and apparatus for sensing downhole well conditions in a wellbore
US3603409 *Mar 27, 1969Sep 7, 1971Regan Forge & Eng CoMethod and apparatus for balancing subsea internal and external well pressures
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3976148 *Sep 12, 1975Aug 24, 1976The Offshore CompanyMethod and apparatus for determining onboard a heaving vessel the flow rate of drilling fluid flowing out of a wellhole and into a telescoping marine riser connecting between the wellhouse and the vessel
US4046191 *Jul 7, 1975Sep 6, 1977Exxon Production Research CompanySubsea hydraulic choke
US4091881 *Apr 11, 1977May 30, 1978Exxon Production Research CompanyArtificial lift system for marine drilling riser
US4099583 *Apr 11, 1977Jul 11, 1978Exxon Production Research CompanyGas lift system for marine drilling riser
US4135841 *Feb 6, 1978Jan 23, 1979Regan Offshore International, Inc.Mud flow heave compensator
US4210208 *Dec 4, 1978Jul 1, 1980Sedco, Inc.Subsea choke and riser pressure equalization system
US4282939 *Jun 20, 1979Aug 11, 1981Exxon Production Research CompanyMethod and apparatus for compensating well control instrumentation for the effects of vessel heave
US4291772 *Mar 25, 1980Sep 29, 1981Standard Oil Company (Indiana)Drilling fluid bypass for marine riser
US4440239 *Sep 28, 1981Apr 3, 1984Exxon Production Research Co.Method and apparatus for controlling the flow of drilling fluid in a wellbore
US5875848 *Apr 10, 1997Mar 2, 1999Reading & Bates Development Co.Weight management system and method for marine drilling riser
US6102673 *Mar 25, 1999Aug 15, 2000Hydril CompanySubsea mud pump with reduced pulsation
US6105689 *May 26, 1998Aug 22, 2000Mcguire Fishing & Rental Tools, Inc.Mud separator monitoring system
US6216799 *Sep 24, 1998Apr 17, 2001Shell Offshore Inc.Subsea pumping system and method for deepwater drilling
US6230824Mar 25, 1999May 15, 2001Hydril CompanyRotating subsea diverter
US6263981 *Sep 24, 1998Jul 24, 2001Shell Offshore Inc.Deepwater drill string shut-off valve system and method for controlling mud circulation
US6276455 *Sep 24, 1998Aug 21, 2001Shell Offshore Inc.Subsea gas separation system and method for offshore drilling
US6325159Mar 25, 1999Dec 4, 2001Hydril CompanyOffshore drilling system
US6328107Jul 27, 2000Dec 11, 2001Exxonmobil Upstream Research CompanyMethod for installing a well casing into a subsea well being drilled with a dual density drilling system
US6378628 *Jun 16, 2000Apr 30, 2002Mcguire Louis L.Monitoring system for drilling operations
US6401823 *Feb 8, 2001Jun 11, 2002Shell Oil CompanyDeepwater drill string shut-off
US6408948Jul 14, 1999Jun 25, 2002Deep Vision LlcTubing handling for subsea oilfield tubing operations
US6415877Jul 14, 1999Jul 9, 2002Deep Vision LlcSubsea wellbore drilling system for reducing bottom hole pressure
US6505691Aug 6, 2001Jan 14, 2003Hydril CompanySubsea mud pump and control system
US6530437Jun 5, 2001Mar 11, 2003Maurer Technology IncorporatedMulti-gradient drilling method and system
US6571873Feb 20, 2002Jun 3, 2003Exxonmobil Upstream Research CompanyMethod for controlling bottom-hole pressure during dual-gradient drilling
US6578637Jul 27, 2000Jun 17, 2003Exxonmobil Upstream Research CompanyMethod and system for storing gas for use in offshore drilling and production operations
US6648081Mar 8, 2002Nov 18, 2003Deep Vision LlpSubsea wellbore drilling system for reducing bottom hole pressure
US6662885 *Oct 24, 2001Dec 16, 2003Precision Drilling Technology Services Group, Inc.Method and apparatus for providing a stream of pressurized substantially inert gas
US6668943May 31, 2000Dec 30, 2003Exxonmobil Upstream Research CompanyMethod and apparatus for controlling pressure and detecting well control problems during drilling of an offshore well using a gas-lifted riser
US6745857 *Sep 19, 2002Jun 8, 2004National Oilwell Norway AsMethod of drilling sub-sea oil and gas production wells
US6802379Feb 21, 2002Oct 12, 2004Exxonmobil Upstream Research CompanyLiquid lift method for drilling risers
US6854532Nov 17, 2003Feb 15, 2005Deep Vision LlcSubsea wellbore drilling system for reducing bottom hole pressure
US6957698Jun 23, 2003Oct 25, 2005Baker Hughes IncorporatedDownhole activatable annular seal assembly
US6981561Sep 2, 2003Jan 3, 2006Baker Hughes IncorporatedDownhole cutting mill
US7096975Mar 25, 2004Aug 29, 2006Baker Hughes IncorporatedModular design for downhole ECD-management devices and related methods
US7114581Feb 20, 2004Oct 3, 2006Deep Vision LlcActive controlled bottomhole pressure system & method
US7174975Sep 9, 2004Feb 13, 2007Baker Hughes IncorporatedControl systems and methods for active controlled bottomhole pressure systems
US7185705 *Mar 18, 2003Mar 6, 2007Baker Hughes IncorporatedSystem and method for recovering return fluid from subsea wellbores
US7261164Jan 18, 2005Aug 28, 2007Baker Hughes IncorporatedFloatable drill cuttings bag and method and system for use in cuttings disposal
US7270185Jul 9, 2002Sep 18, 2007Baker Hughes IncorporatedDrilling system and method for controlling equivalent circulating density during drilling of wellbores
US7353887Sep 8, 2005Apr 8, 2008Baker Hughes IncorporatedControl systems and methods for active controlled bottomhole pressure systems
US7513310 *Mar 12, 2004Apr 7, 2009Ocean Riser Systems AsMethod and arrangement for performing drilling operations
US7677329 *Nov 24, 2004Mar 16, 2010Agr Subsea AsMethod and device for controlling drilling fluid pressure
US7806203Jun 16, 2006Oct 5, 2010Baker Hughes IncorporatedActive controlled bottomhole pressure system and method with continuous circulation system
US7938190 *Nov 2, 2007May 10, 2011Agr Subsea, Inc.Anchored riserless mud return systems
US7950463Apr 7, 2009May 31, 2011Ocean Riser Systems AsMethod and arrangement for removing soils, particles or fluids from the seabed or from great sea depths
US7972555Oct 16, 2008Jul 5, 2011Exxonmobil Upstream Research CompanyMethod for fabricating compressible objects for a variable density drilling mud
US8011450Jul 21, 2006Sep 6, 2011Baker Hughes IncorporatedActive bottomhole pressure control with liner drilling and completion systems
US8076269Oct 16, 2008Dec 13, 2011Exxonmobil Upstream Research CompanyCompressible objects combined with a drilling fluid to form a variable density drilling mud
US8088716Oct 16, 2008Jan 3, 2012Exxonmobil Upstream Research CompanyCompressible objects having a predetermined internal pressure combined with a drilling fluid to form a variable density drilling mud
US8088717Oct 16, 2008Jan 3, 2012Exxonmobil Upstream Research CompanyCompressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud
US8322439 *Nov 29, 2011Dec 4, 2012Ocean Riser Systems AsArrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
US8347982 *Apr 16, 2010Jan 8, 2013Weatherford/Lamb, Inc.System and method for managing heave pressure from a floating rig
US8403059 *May 12, 2010Mar 26, 2013Sunstone Technologies, LlcExternal jet pump for dual gradient drilling
US8590629Feb 16, 2009Nov 26, 2013Pilot Drilling Control LimitedFlow stop valve and method
US8752630Oct 18, 2012Jun 17, 2014Pilot Drilling Control LimitedFlow stop valve
US8776887Apr 8, 2013Jul 15, 2014Pilot Drilling Control LimitedFlow stop valve
US8776894Jul 6, 2012Jul 15, 2014Halliburton Energy Services, Inc.Offshore universal riser system
US20110168399 *May 4, 2009Jul 14, 2011Jean Francois Saint-MarcouxMid water gas lift
US20110253445 *Apr 16, 2010Oct 20, 2011Weatherford/Lamb, Inc.System and Method for Managing Heave Pressure from a Floating Rig
US20110278014 *May 12, 2010Nov 17, 2011William James HughesExternal Jet Pump for Dual Gradient Drilling
US20120067590 *Nov 29, 2011Mar 22, 2012Ocean Riser Systems AsArrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
US20120234550 *Mar 17, 2011Sep 20, 2012Hydril Usa Manufacturing LlcMudline Managed Pressure Drilling and Enhanced Influx Detection
US20120292107 *Jul 6, 2012Nov 22, 2012Halliburton Energy Services, Inc.Offshore universal riser system
US20130118806 *Jan 7, 2013May 16, 2013Weatherford/Lamb, Inc.System and Method for Managing Heave Pressure from a Floating Rig
USRE43199 *Sep 10, 2002Feb 21, 2012Ocean Rider Systems ASArrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
WO2000004269A2 *Jul 15, 1999Jan 27, 2000Deep Vision LlcSubsea wellbore drilling system for reducing bottom hole pressure
WO2000075477A1Jun 1, 2000Dec 14, 2000Exxonmobil Upstream Res CoControlling pressure and detecting control problems in gas-lift riser during offshore well drilling
WO2001020120A1 *Sep 6, 2000Mar 22, 2001Exxonmobil Upstream Res CoMethod and system for storing gas for use in offshore drilling and production operations
WO2001094740A1 *Jun 8, 2001Dec 13, 2001Maurer Technology IncMulti-gradient drilling method and system
WO2002068787A2 *Feb 20, 2002Sep 6, 2002Exxonmobil Upstream Res CoMethod and apparatus for controlling bottom-hole pressure during dual-gradient drilling
WO2006118920A2 *Apr 27, 2006Nov 9, 2006Shell Oil CoSystems and methods for managing downhole pressure
Classifications
U.S. Classification166/359, 175/7, 175/72, 175/25
International ClassificationE21B21/08, E21B7/12, E21B7/128, E21B21/00
Cooperative ClassificationE21B7/128, E21B21/001, E21B21/08
European ClassificationE21B7/128, E21B21/00A, E21B21/08