Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3816081 A
Publication typeGrant
Publication dateJun 11, 1974
Filing dateJan 26, 1973
Priority dateJan 26, 1973
Also published asDE2402518A1, DE2402518C2
Publication numberUS 3816081 A, US 3816081A, US-A-3816081, US3816081 A, US3816081A
InventorsHale T
Original AssigneeGen Electric
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
US 3816081 A
The use of between 3 percent and 9 percent by weight of an alloy of iron, nickel and cobalt as the bonding agent for fine-particle (1 micron or less) tungsten carbide compact provides a material having enhanced abrasion resistance without incurring significant changes in transverse rupture strength.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

iinited States Patent Hale 1451 June 11, 1974 ABRASION RESISTANT CEMENTED TUNGS'IEN CARBIDE BONDED WITH Fe-C-Ni-Co [75] Inventor: Thomas Eugene Hale, Warren,

' Mich.

[73] Assignee: General Electric Company, Detroit,


221 Filed: Jan.'26, 1973 211 App]. No.2 327,071

[52] US. Cl 29/l82.7, 29/1828, 75/203, 75/204 51 mg. 01 ..c 2 1 1 1 5, 2 2 2 9 99 [58] FieldofS eareh 29/182.7,182.8; 75/203, 75/204 [56] References Cited I UNITED STATES PATENTS 2,731.71] l/l956 Lucas 29/1818 Primary Examiner-Benjamin R. Padgett Assistant Examiner-R. E. Schafer [57] ABSTRACT The use of between 3 percent and 9 percent by weight of an alloy of iron, nickel and cobalt as the bonding agent for fine-particle (1 micron or less) tungsten carbide compact provides a material having enhanced abrasion resistance without incurring significant changes in transverse rupture strength.

3 Claims, No Drawings ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co BACKGROUND OF THE INVENTION Cemented carbides are well known for their unique combination of hardness, strength and abrasion resistance and are, accordingly, extensively used for such industrial applications as cutting tools, drawing dies, wear parts, and other applications requiring these properties. They are produced by powder metallurgy techniques involving the liquid phase sintering of one or more refractory carbides of Groups IV, V and VI of the Periodic Table with one or more of the iron group metals. The iron group metal exists as a matrix or binder in the sintered alloy and acts to bond or cement the refractory carbide particles together.

For ferrous alloy metal-cutting applications either mixed carbides of WC-TiC-TaC( NbC) or pure TiC are used since the presence of TiC and TaC enhance wear and deformation resistance for this type of application. For most other applications either pure tungsten carbide or tungsten carbide with minor additions of TaC, NbC, or Cr is used since tungsten carbide imparts superior abrasion resistance and strength to cemented carbides.

When the carbide is based upon pure WC, with or without minor additions of TaC, NbC, or Cr, the matrix or binder metal is almost exclusively cobalt since the use of cobalt results in lower porosity and superior strength and hardness compared with results obtained 1 when nickel or iron is used, especially when the matrix metal content is relatively low, such as 10 volume percent or less. One notable exception is the use of an iron-nickel-carbon alloy as disclosed in Humenik et al., US. Pat. No. 3,384,465. When properly composed and treated in accordance with Humenik et al., an ironnickel-carbon alloy can produce a WC based cemented carbide with enhanced strength and toughness.

In applications where maximum abrasion resistance is desired, and imposed stresses are low to medium, such as grit blast nozzles or wear protection plates, WC-Co compositions having 5 to percent matrix content and a fine carbide grain size are used. Usually a small-amount (0.1 to 1.0 wt. percent) of one of several additions known to minimize grain growth during sintering (TaC, NbC, or Cr) is added. While it is known that an even finer WC grain structure would produce higher abrasion resistance, this is very difficult to achieve in practice since grain growth does occur and the rate of grain growth during sintering is higher for finer starting grain sizes.

It is a principal object of this invention to provide cemented carbide compositions having unusually high abrasion resistance. It is an additional object of this invention to provide cemented carbide compositions having unusual resistance to grain growth during sintering. It is an additional object of this invention to provide a process for producing such compositions.

SUMMARY OF THE INVENTION This invention is based upon the unexpected finding that grain growth of the WC phase during sintering is substantially less when the matrix phase is an ironbased alloy present in low concentration. In accordance with the invention a cemented carbide alloy composed of tungsten carbide with a minor addition (0.5-1.0 percent) of tantalum carbide and a matrix consisting of 3 to 9 percent by weight of the total of an alloy of 8 to percent nickel, 5 to 15 percent cobalt, 0.8 to 1.4 percent carbon and the balance iron is prepared. The starting' tungsten carbide powder should be very fine, with an average particle size of no more than one micron and preferably in the 0.5 to 0.8 micron range. The other ingredient powders shoud also be fairly fine, preferably in the l to 5 micron average particle size range. It is necessary to add carbon in an amount in sufficient excess of the desired final amount to allow for carbon losses sustained through subsequent processing, especially the sintering step. The finally desired carbon content can be best characterized as that amount which is just large enough to prevent formation of the eta phase, a compound of nominal composition W Fe C. Larger amounts of carbon are undesirable since this causes some grain growth to occur. The proper final carbon content for the preferred compositions of this invention lies in the range of 0.8 to 1.4 percent of the matrix portion of the-total composition. The amount of excess carbon necessary to obtain the desired final amount depends upon the particular processing techniques employed.

DESCRIPTION OF PREFERRED EMBODIMENTS Useful articles within the scope of this invention can be made without the addition of nickel and cobalt. However, these alloying elements are preferred because they provide enhanced abrasion resistance and strength over and above that obtained through the use of a straight iron-carbon matrix. To be useful, the nickel content should be sufficient to allow the matrix phase to partially or fully transform from its high temperature austenitic form to its low temperature martensitic form at moderately fast cooling rates (comparable to air cooling) rather than allowing the formation of Fe C to occur, since the formation of Fe C causes some reduction in strength. The useful range of nickel content is from about 8 to about 20 percent by weight of the matrix portion and the preferred range is from 10 to 14 percent of the matrix phase portion.

The presence of cobalt is important for its ability to aid the sintering of the cemented carbide alloy to a low porosity state with resulting beneficial effects upon abrasion resistance and strength. For this purpose, c0- balt additions of 5 to 15 wt. percent of the matrix portion are effective.

The properly composed starting powders are wet ball milled using a WC-Co lined mill and WC-Co balls and a fluid such as acetone for a period sufficient to grind the powder to a very fine size and produce an intimate mixture of the constituent powders. For these purposes a milling period of 2 to 4 days is necessary for the starting ingredients and milling conditions employed. The milled slurry is then dried in a hydrogen atmosphere oven and a pressing lubricant such as paraffin wax is added in an amount of about 1.5 percent of the weight of the powder. The powder is then pressed in molds to the desired shape using a pressure of about 30,000 psi and the paraffin is removed by firing the parts in a dry hydrogen or vacuum atmosphere at a temperature of 500 to 600C.

The pressed and dewaxed parts are then sintered in a hydrogen or, preferably, a vacuum furnace to a tem 1n the as-sintered state, the matrix phase usually contains large amounts of Fe C and, sometimes, graphite flakes. This is due to the slow cooling rate from sintering which occurs when large production scale furnaces are used, especially when the parts are vacuum sintered. To transform the matrix phase into the more desirable austenite or austenite plus martensite form, it is necessary to reheat the parts briefly to a temperature sufficiently high (l,200-l ,300C) to dissolve the Fe C and graphite and then cool at a fairly fast rate (1 to 5 minutes from l,000 to about 200C). In this solutiontreated condition, nearly maximum abrasion resistance and strength are obtained, as will be illustrated in one of the following examples. Slight additional gains can be obtained by low-temperature treating followed by a tempering treatment. The low-temperature treatment causes the formation of additional amounts of martensdisk submerged in a slurry of the grit and water. The periphery of the rotating disk was forced against a flat pad of the cemented carbide to be tested using a force of 40 pounds. The test duration consisted of 1,500 revolutions of the disk at a speed of 100 rpm. Fresh slurry was used for each test. The volume of material abraded away was then determined by measuring the weight loss of the pad. The results obtained are shown in Table l. The abrasion test results are reported as the reciprocal of the volume loss since the number so obtained is of convenient size and is directly proportional to the abrasion resistance of the material being tested. Included in Table l are test results for a 93.5% WC-0.5% TaC6% C cemented carbide composed of the same starting particle sizes used for the iron-based matrix composition and subjected to comparable processing conditions. 7

TABLE 1 Trans- Abrasion verse Processing Hardness Resistance Rupture Composition Stage R l/vol loss (cc) Strength 94% wC-l% TaC% (74% Fel5% Nil0% Co-lC%) As sintered 93.5 92 257,000

do. Above solution treated 93.5 11 1 187,000 do. Above liq.

N2 treated 93.7 100 190,000 do. Above 300F tempered 93.7 1 13 204,000 93.5% WC0.5% TaC-6% C0 As sintered 92.9 55 260,000

ite and the tempering treatment provides some stress 35 It can be observed that at any stage of processing the relief of the highly strained martensite phase. 7

The superior hardness and abrasion resistance that can be obtained through the use of iron-based alloybonded tungsten carbide will be demonstrated in the following examples:

EXAMPLE 1 A composition was prepared consisting of 4,000 grams total of a powder mixture containing 94% WC of about 1.0 micron average particle size, 1% TaC and 5 percent of a matrix portion composed of 75 percent carbonyl iron containing 0.8 percent carbon, 15 percent nickel and 10 percent cobalt. Nine grams of carbon were added to this mixture to establish the desired final carbon content. The powder mixture was then ball-milled 3 days in a 7-inch diameter mill lined with WC-Co and containing 12 kg. of A-inch diameter WC-Co balls and 2,000 cc. of acetone. The ball-mill charge was then dried, paraffinized, pressed into compacts, preheated at 500C in 1-1 to remove the paraffin and sintered minutes at l,400C in vacuum.

Subsequent to sintering, some of the parts were then solution-treated 5 minutes at 1,300C followed by fast cooling, then cooled to liquid nitrogen temperature, and then tempered by heating one hour at 300F in air. Tests of hardness, abrasion resistance, and transverse rupture strength were made at each stage of processing after sintering to determine the effect of the thermal treatments. The abrasion test apparatus consisted of a rotating 6 /2 inch diameter, /a-inch wide steel disk which contained on its periphery particles of aluminum oxide grit obtained by having the lower portion of the WC-iron alloy composition has higher hardness and abrasion resistance than does the comparable WC-Co material. It is also evident that a significant increase in abrasion resistance is obtained by solution-treating the WC-iron alloy material, although this is accompanied by a strength reduction. The additional thermal treatments provide slight additional benefit in the form of optimizing the combination of strength and abrasion resistance.

When the microstructures of the two compositions were viewed at 1,500 power it was observed that the WC-iron alloy material had a noticeably finer WC grain structure, apparently caused by the superior ability of the iron alloy to inhibit WC grain growth during sintermg.

EXAMPLE 2 A composition consisting of 94% WC 1 TaC-5% (74% Fe15% Nil0% Co1C) was prepared as in Example 1 above with the exception that the starting WC powder particle size was somewhat finer, averaging about 0.85 microns. Abrasion test pads and transverse rupture strength test bars were prepared and processed through the full thermal treatment sequence shown in Example 1 above. For comparison purposes a composition consisting of 93 WC1% TaC-6% Co was prepared using the same WC powder. It should be noted that the matrix phase contents of these two compositions are equal on a volume basis. They differ on a weight basis because of their differing densities. The resulting properties are shown in Table I1.

TABLE [I Abrasion Transverse Hardness Resistance Rupture Composmon R l/vol. loss (cc) Strength 94% WC-l% TaC-% (74% Fe-l5% Ni-l0% 94.] I91 185,000 Col(%) 93% wow new on 93.4 I 70 In this case the abrasion resistance of both compositions is higher than their counterparts in Table l, apparently due to the use of finer WC powder. The iron-alloy matrix composition, however, made much more effective use of the finer starting WC powder than did the cobalt matrix composition, resulting in a nearly doubled abrasion resistance compared with about a percent increase for the cobalt-matrix composition. This ance Fe ranging in matrix content from 3 to 9 weight percent were prepared and processed as in Example 1 above. The resulting hardness, strength and abrasion resistancewere then determined for each composition even more clearly demonstrates the superior ability of the iron-alloy matrix to inhibit grain growth during sintering.

EXAMPLE 3 A 4,000-gram batch of a composition consisting of 94% WC of about 0.85 micron average particle size and '5 percent iron containing 1 percent carbon was prepared and processed as in Example 1 above. The resulting hardness and abrasion resistancewere 93.3 and I18, respectively, and the transverse rupture strength was 160,000 psi. While not as good as the comparable composition containing nickel and cobalt in the matrix phase, the straight iron-carbon matrix alloy;composition has utility since its abrasion resistance is significantly higher than can be easily obtained using a cobalt matrix. v

EXAMPLE 4 For 4,000-gram batches of compositions consisting of WC of about 0.85 micron average particle size and varying amounts of matrix powders to compose a matrix composition 15%. Nil0% Co--l% C and the bal- It can be seen that as a function of the amount of matrix phase present, the abrasion resistance is optimized at about the 5 weight percent level and. that there is no advantage in increasing the matrix content to above 9 percent since the abrasion resistance drops to a level below that which can be obtained using a conventional cobalt matrix.

What I claim as new and desire to secure by letters balance iron.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2731711 *May 13, 1954Jan 24, 1956Gen ElectricSintered tungsten carbide composition
US3165822 *Aug 7, 1963Jan 19, 1965Metal Carbides CorpTungsten carbide tool manufacture
US3245763 *Jun 22, 1964Apr 12, 1966Sandvikens Jernverks AbSintered hard metal alloy for machining cast iron and steel
US3301645 *Apr 3, 1962Jan 31, 1967Exxon Production Research CoTungsten carbide compositions, method and cutting tool
US3384465 *Jun 22, 1967May 21, 1968Ford Motor CoIron bonded tungsten carbide
US3698878 *Dec 29, 1969Oct 17, 1972Gen ElectricSintered tungsten carbide-base alloys
GB429650A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3993446 *Nov 7, 1974Nov 23, 1976Dijet Industrial Co., Ltd.Cemented carbide material
US4145213 *May 17, 1976Mar 20, 1979Sandvik AktiebolgWear resistant alloy
US4339272 *Jun 25, 1980Jul 13, 1982National Research Development CorporationTungsten carbide-based hard metals
US4417906 *Oct 20, 1981Nov 29, 1983General Electric CompanyProcess for production of silicon carbide composite
US4448591 *Dec 16, 1981May 15, 1984General Electric CompanyCutting insert having unique cross section
US4453951 *Jan 22, 1981Jun 12, 1984General Electric Co.Process for the production of silicone carbide composite
US4460382 *Dec 16, 1981Jul 17, 1984General Electric CompanyBrazable layer for indexable cutting insert
US4483892 *Dec 16, 1981Nov 20, 1984General Electric CompanyWear resistant annular insert and process for making same
US4497639 *Dec 16, 1981Feb 5, 1985General Electric CompanySilicon carbide cutting insert with pre-pressed core center piece and sintered diamond envelope
US4497660 *May 14, 1980Feb 5, 1985Santrade LimitedCemented carbide
US4544517 *Dec 16, 1981Oct 1, 1985General Electric Co.Automatic composite press technique for producing cutting inserts
US4671685 *Feb 10, 1986Jun 9, 1987Gte Products CorporationPrinter wire
US4698070 *Dec 16, 1981Oct 6, 1987General Electric CompanyCutting insert for interrupted heavy machining
US4770701 *Apr 30, 1986Sep 13, 1988The Standard Oil CompanyMetal-ceramic composites and method of making
US4849300 *Nov 8, 1985Jul 18, 1989Santrade LimitedTool in the form of a compound body and method of producing the same
US4869974 *Aug 31, 1987Sep 26, 1989Sandvik AbProtecting plate of compound design and method of manufacturing the same
US4950328 *Jul 6, 1989Aug 21, 1990Mitsubishi Metal CorporationEnd mill formed of tungsten carbide-base sintered hard alloy
US5281260 *Feb 28, 1992Jan 25, 1994Baker Hughes IncorporatedHigh-strength tungsten carbide material for use in earth-boring bits
US5421852 *Aug 27, 1992Jun 6, 1995Sumitomo Electric Industries, Ltd.Hard alloy and its manufacturing method
US5427600 *Nov 30, 1993Jun 27, 1995Sumitomo Electric Industries, Ltd.Low alloy sintered steel and method of preparing the same
US5441693 *Apr 10, 1992Aug 15, 1995Sandvik AbMethod of making cemented carbide articles and the resulting articles
US5945167 *Jul 15, 1997Aug 31, 1999Honda Giken Kogyo Kabushiki KaishaMethod of manufacturing composite material
US5992546 *Aug 27, 1997Nov 30, 1999Kennametal Inc.Rotary earth strata penetrating tool with a cermet insert having a co-ni-fe-binder
US6010283 *Aug 27, 1997Jan 4, 2000Kennametal Inc.Cutting insert of a cermet having a Co-Ni-Fe-binder
US6022175 *Aug 27, 1997Feb 8, 2000Kennametal Inc.Elongate rotary tool comprising a cermet having a Co-Ni-Fe binder
US6024776 *Aug 27, 1997Feb 15, 2000Kennametal Inc.Cermet having a binder with improved plasticity
US6170917Aug 27, 1997Jan 9, 2001Kennametal Inc.Pick-style tool with a cermet insert having a Co-Ni-Fe-binder
US8323372 *Jan 31, 2000Dec 4, 2012Smith International, Inc.Low coefficient of thermal expansion cermet compositions
US8956438Dec 4, 2012Feb 17, 2015Smith International, Inc.Low coefficient of thermal expansion cermet compositions
US20100054871 *Apr 7, 2008Mar 4, 2010H.C. Starch GmbhTool
CN103938049A *Mar 18, 2014Jul 23, 2014界首市创力生产力促进中心有限公司High strength and high wear resistant ring used for stirrer
CN104998966A *May 18, 2015Oct 28, 2015株洲固纳特硬质合金有限公司Forming and manufacturing method for red stamping die type hard alloy die base body
CN104998966B *May 18, 2015Mar 22, 2017株洲固纳特硬质合金有限公司一种红冲模类硬质合金模具基体形成及制作方法
EP0023095A1 *Jun 27, 1980Jan 28, 1981National Research Development CorporationTungsten carbide-based hard metals
WO1993017142A1 *Feb 25, 1993Sep 2, 1993Baker Hughes IncorporatedHigh strength tungsten carbide material for use in earth boring bits
WO2004063408A3 *Dec 18, 2003Nov 11, 2004Ceratizit Horb GmbhHard metal moulded item
WO2008125525A1 *Apr 7, 2008Oct 23, 2008H.C. Starck GmbhTool
U.S. Classification75/237, 75/242, 419/17, 75/240, 419/15
International ClassificationC22C1/05, C22C29/08, C22C29/06, C22C38/00
Cooperative ClassificationC22C29/067
European ClassificationC22C29/06M
Legal Events
Oct 30, 1987ASAssignment
Owner name: CARBOLOY INC., A DE. CORP.
Effective date: 19870925