US3816081A - ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co - Google Patents

ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co Download PDF

Info

Publication number
US3816081A
US3816081A US00327071A US32707173A US3816081A US 3816081 A US3816081 A US 3816081A US 00327071 A US00327071 A US 00327071A US 32707173 A US32707173 A US 32707173A US 3816081 A US3816081 A US 3816081A
Authority
US
United States
Prior art keywords
percent
matrix
tungsten carbide
abrasion resistance
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00327071A
Inventor
T Hale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carboloy Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US00327071A priority Critical patent/US3816081A/en
Priority to AU64351/74A priority patent/AU481060B2/en
Priority to ZA740169A priority patent/ZA74169B/en
Priority to GB131674A priority patent/GB1450654A/en
Priority to NL7400704A priority patent/NL7400704A/xx
Priority to DE2402518A priority patent/DE2402518C2/en
Priority to JP939774A priority patent/JPS5519973B2/ja
Priority to LU69234A priority patent/LU69234A1/xx
Priority to IT19762/74A priority patent/IT1007065B/en
Priority to BE140187A priority patent/BE810171A/en
Priority to FR7402481A priority patent/FR2215482B1/fr
Priority to AT64374A priority patent/AT345003B/en
Application granted granted Critical
Publication of US3816081A publication Critical patent/US3816081A/en
Assigned to CARBOLOY INC., A DE. CORP. reassignment CARBOLOY INC., A DE. CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GENERAL ELECTRIC COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder

Definitions

  • the matrix or binder metal is almost exclusively cobalt since the use of cobalt results in lower porosity and superior strength and hardness compared with results obtained 1 when nickel or iron is used, especially when the matrix metal content is relatively low, such as 10 volume percent or less.
  • an iron-nickel-carbon alloy as disclosed in Humenik et al., US. Pat. No. 3,384,465.
  • an ironnickel-carbon alloy can produce a WC based cemented carbide with enhanced strength and toughness.
  • WC-Co compositions having 5 to percent matrix content and a fine carbide grain size are used.
  • a small-amount 0.1 to 1.0 wt. percent
  • TiC, NbC, or Cr grain growth during sintering
  • cemented carbide compositions having unusually high abrasion resistance It is an additional object of this invention to provide cemented carbide compositions having unusual resistance to grain growth during sintering. It is an additional object of this invention to provide a process for producing such compositions.
  • This invention is based upon the unexpected finding that grain growth of the WC phase during sintering is substantially less when the matrix phase is an ironbased alloy present in low concentration.
  • a cemented carbide alloy composed of tungsten carbide with a minor addition (0.5-1.0 percent) of tantalum carbide and a matrix consisting of 3 to 9 percent by weight of the total of an alloy of 8 to percent nickel, 5 to 15 percent cobalt, 0.8 to 1.4 percent carbon and the balance iron is prepared.
  • the starting' tungsten carbide powder should be very fine, with an average particle size of no more than one micron and preferably in the 0.5 to 0.8 micron range.
  • the other ingredient powders shoud also be fairly fine, preferably in the l to 5 micron average particle size range. It is necessary to add carbon in an amount in sufficient excess of the desired final amount to allow for carbon losses sustained through subsequent processing, especially the sintering step.
  • the finally desired carbon content can be best characterized as that amount which is just large enough to prevent formation of the eta phase, a compound of nominal composition W Fe C. Larger amounts of carbon are undesirable since this causes some grain growth to occur.
  • the proper final carbon content for the preferred compositions of this invention lies in the range of 0.8 to 1.4 percent of the matrix portion of the-total composition. The amount of excess carbon necessary to obtain the desired final amount depends upon the particular processing techniques employed.
  • nickel and cobalt are preferred because they provide enhanced abrasion resistance and strength over and above that obtained through the use of a straight iron-carbon matrix.
  • the nickel content should be sufficient to allow the matrix phase to partially or fully transform from its high temperature austenitic form to its low temperature martensitic form at moderately fast cooling rates (comparable to air cooling) rather than allowing the formation of Fe C to occur, since the formation of Fe C causes some reduction in strength.
  • the useful range of nickel content is from about 8 to about 20 percent by weight of the matrix portion and the preferred range is from 10 to 14 percent of the matrix phase portion.
  • cobalt is important for its ability to aid the sintering of the cemented carbide alloy to a low porosity state with resulting beneficial effects upon abrasion resistance and strength.
  • c0- balt additions of 5 to 15 wt. percent of the matrix portion are effective.
  • the properly composed starting powders are wet ball milled using a WC-Co lined mill and WC-Co balls and a fluid such as acetone for a period sufficient to grind the powder to a very fine size and produce an intimate mixture of the constituent powders. For these purposes a milling period of 2 to 4 days is necessary for the starting ingredients and milling conditions employed.
  • the milled slurry is then dried in a hydrogen atmosphere oven and a pressing lubricant such as paraffin wax is added in an amount of about 1.5 percent of the weight of the powder.
  • the powder is then pressed in molds to the desired shape using a pressure of about 30,000 psi and the paraffin is removed by firing the parts in a dry hydrogen or vacuum atmosphere at a temperature of 500 to 600C.
  • the matrix phase usually contains large amounts of Fe C and, sometimes, graphite flakes. This is due to the slow cooling rate from sintering which occurs when large production scale furnaces are used, especially when the parts are vacuum sintered.
  • a temperature sufficiently high (l,200-l ,300C) it is necessary to reheat the parts briefly to a temperature sufficiently high (l,200-l ,300C) to dissolve the Fe C and graphite and then cool at a fairly fast rate (1 to 5 minutes from l,000 to about 200C).
  • the abrasion test results are reported as the reciprocal of the volume loss since the number so obtained is of convenient size and is directly proportional to the abrasion resistance of the material being tested. Included in Table l are test results for a 93.5% WC-0.5% TaC6% C cemented carbide composed of the same starting particle sizes used for the iron-based matrix composition and subjected to comparable processing conditions. 7
  • EXAMPLE 1 A composition was prepared consisting of 4,000 grams total of a powder mixture containing 94% WC of about 1.0 micron average particle size, 1% TaC and 5 percent of a matrix portion composed of 75 percent carbonyl iron containing 0.8 percent carbon, 15 percent nickel and 10 percent cobalt. Nine grams of carbon were added to this mixture to establish the desired final carbon content. The powder mixture was then ball-milled 3 days in a 7-inch diameter mill lined with WC-Co and containing 12 kg. of A-inch diameter WC-Co balls and 2,000 cc. of acetone. The ball-mill charge was then dried, paraffinized, pressed into compacts, preheated at 500C in 1-1 to remove the paraffin and sintered minutes at l,400C in vacuum.
  • the abrasion test apparatus consisted of a rotating 6 /2 inch diameter, /a-inch wide steel disk which contained on its periphery particles of aluminum oxide grit obtained by having the lower portion of the WC-iron alloy composition has higher hardness and abrasion resistance than does the comparable WC-Co material.
  • EXAMPLE 2 A composition consisting of 94% WC 1 TaC-5% (74% Fe15% Nil0% Co1C) was prepared as in Example 1 above with the exception that the starting WC powder particle size was somewhat finer, averaging about 0.85 microns. Abrasion test pads and transverse rupture strength test bars were prepared and processed through the full thermal treatment sequence shown in Example 1 above. For comparison purposes a composition consisting of 93 WC1% TaC-6% Co was prepared using the same WC powder. It should be noted that the matrix phase contents of these two compositions are equal on a volume basis. They differ on a weight basis because of their differing densities. The resulting properties are shown in Table I1.
  • This ance Fe ranging in matrix content from 3 to 9 weight percent were prepared and processed as in Example 1 above.
  • the resulting hardness, strength and abrasion resistance were then determined for each composition even more clearly demonstrates the superior ability of the iron-alloy matrix to inhibit grain growth during sintering.
  • EXAMPLE 3 A 4,000-gram batch of a composition consisting of 94% WC of about 0.85 micron average particle size and '5 percent iron containing 1 percent carbon was prepared and processed as in Example 1 above. The resulting hardness and abrasion resistancewere 93.3 and I18, respectively, and the transverse rupture strength was 160,000 psi. While not as good as the comparable composition containing nickel and cobalt in the matrix phase, the straight iron-carbon matrix alloy;composition has utility since its abrasion resistance is significantly higher than can be easily obtained using a cobalt matrix. v
  • EXAMPLE 4 For 4,000-gram batches of compositions consisting of WC of about 0.85 micron average particle size and varying amounts of matrix powders to compose a matrix composition 15%. Nil0% Co--l% C and the bal- It can be seen that as a function of the amount of matrix phase present, the abrasion resistance is optimized at about the 5 weight percent level and. that there is no advantage in increasing the matrix content to above 9 percent since the abrasion resistance drops to a level below that which can be obtained using a conventional cobalt matrix.

Abstract

The use of between 3 percent and 9 percent by weight of an alloy of iron, nickel and cobalt as the bonding agent for fine-particle (1 micron or less) tungsten carbide compact provides a material having enhanced abrasion resistance without incurring significant changes in transverse rupture strength.

Description

iinited States Patent Hale 1451 June 11, 1974 ABRASION RESISTANT CEMENTED TUNGS'IEN CARBIDE BONDED WITH Fe-C-Ni-Co [75] Inventor: Thomas Eugene Hale, Warren,
' Mich.
[73] Assignee: General Electric Company, Detroit,
Mich.
221 Filed: Jan.'26, 1973 211 App]. No.2 327,071
[52] US. Cl 29/l82.7, 29/1828, 75/203, 75/204 51 mg. 01 ..c 2 1 1 1 5, 2 2 2 9 99 [58] FieldofS eareh 29/182.7,182.8; 75/203, 75/204 [56] References Cited I UNITED STATES PATENTS 2,731.71] l/l956 Lucas 29/1818 Primary Examiner-Benjamin R. Padgett Assistant Examiner-R. E. Schafer [57] ABSTRACT The use of between 3 percent and 9 percent by weight of an alloy of iron, nickel and cobalt as the bonding agent for fine-particle (1 micron or less) tungsten carbide compact provides a material having enhanced abrasion resistance without incurring significant changes in transverse rupture strength.
3 Claims, No Drawings ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co BACKGROUND OF THE INVENTION Cemented carbides are well known for their unique combination of hardness, strength and abrasion resistance and are, accordingly, extensively used for such industrial applications as cutting tools, drawing dies, wear parts, and other applications requiring these properties. They are produced by powder metallurgy techniques involving the liquid phase sintering of one or more refractory carbides of Groups IV, V and VI of the Periodic Table with one or more of the iron group metals. The iron group metal exists as a matrix or binder in the sintered alloy and acts to bond or cement the refractory carbide particles together.
For ferrous alloy metal-cutting applications either mixed carbides of WC-TiC-TaC( NbC) or pure TiC are used since the presence of TiC and TaC enhance wear and deformation resistance for this type of application. For most other applications either pure tungsten carbide or tungsten carbide with minor additions of TaC, NbC, or Cr is used since tungsten carbide imparts superior abrasion resistance and strength to cemented carbides.
When the carbide is based upon pure WC, with or without minor additions of TaC, NbC, or Cr, the matrix or binder metal is almost exclusively cobalt since the use of cobalt results in lower porosity and superior strength and hardness compared with results obtained 1 when nickel or iron is used, especially when the matrix metal content is relatively low, such as 10 volume percent or less. One notable exception is the use of an iron-nickel-carbon alloy as disclosed in Humenik et al., US. Pat. No. 3,384,465. When properly composed and treated in accordance with Humenik et al., an ironnickel-carbon alloy can produce a WC based cemented carbide with enhanced strength and toughness.
In applications where maximum abrasion resistance is desired, and imposed stresses are low to medium, such as grit blast nozzles or wear protection plates, WC-Co compositions having 5 to percent matrix content and a fine carbide grain size are used. Usually a small-amount (0.1 to 1.0 wt. percent) of one of several additions known to minimize grain growth during sintering (TaC, NbC, or Cr) is added. While it is known that an even finer WC grain structure would produce higher abrasion resistance, this is very difficult to achieve in practice since grain growth does occur and the rate of grain growth during sintering is higher for finer starting grain sizes.
It is a principal object of this invention to provide cemented carbide compositions having unusually high abrasion resistance. It is an additional object of this invention to provide cemented carbide compositions having unusual resistance to grain growth during sintering. It is an additional object of this invention to provide a process for producing such compositions.
SUMMARY OF THE INVENTION This invention is based upon the unexpected finding that grain growth of the WC phase during sintering is substantially less when the matrix phase is an ironbased alloy present in low concentration. In accordance with the invention a cemented carbide alloy composed of tungsten carbide with a minor addition (0.5-1.0 percent) of tantalum carbide and a matrix consisting of 3 to 9 percent by weight of the total of an alloy of 8 to percent nickel, 5 to 15 percent cobalt, 0.8 to 1.4 percent carbon and the balance iron is prepared. The starting' tungsten carbide powder should be very fine, with an average particle size of no more than one micron and preferably in the 0.5 to 0.8 micron range. The other ingredient powders shoud also be fairly fine, preferably in the l to 5 micron average particle size range. It is necessary to add carbon in an amount in sufficient excess of the desired final amount to allow for carbon losses sustained through subsequent processing, especially the sintering step. The finally desired carbon content can be best characterized as that amount which is just large enough to prevent formation of the eta phase, a compound of nominal composition W Fe C. Larger amounts of carbon are undesirable since this causes some grain growth to occur. The proper final carbon content for the preferred compositions of this invention lies in the range of 0.8 to 1.4 percent of the matrix portion of the-total composition. The amount of excess carbon necessary to obtain the desired final amount depends upon the particular processing techniques employed.
DESCRIPTION OF PREFERRED EMBODIMENTS Useful articles within the scope of this invention can be made without the addition of nickel and cobalt. However, these alloying elements are preferred because they provide enhanced abrasion resistance and strength over and above that obtained through the use of a straight iron-carbon matrix. To be useful, the nickel content should be sufficient to allow the matrix phase to partially or fully transform from its high temperature austenitic form to its low temperature martensitic form at moderately fast cooling rates (comparable to air cooling) rather than allowing the formation of Fe C to occur, since the formation of Fe C causes some reduction in strength. The useful range of nickel content is from about 8 to about 20 percent by weight of the matrix portion and the preferred range is from 10 to 14 percent of the matrix phase portion.
The presence of cobalt is important for its ability to aid the sintering of the cemented carbide alloy to a low porosity state with resulting beneficial effects upon abrasion resistance and strength. For this purpose, c0- balt additions of 5 to 15 wt. percent of the matrix portion are effective.
The properly composed starting powders are wet ball milled using a WC-Co lined mill and WC-Co balls and a fluid such as acetone for a period sufficient to grind the powder to a very fine size and produce an intimate mixture of the constituent powders. For these purposes a milling period of 2 to 4 days is necessary for the starting ingredients and milling conditions employed. The milled slurry is then dried in a hydrogen atmosphere oven and a pressing lubricant such as paraffin wax is added in an amount of about 1.5 percent of the weight of the powder. The powder is then pressed in molds to the desired shape using a pressure of about 30,000 psi and the paraffin is removed by firing the parts in a dry hydrogen or vacuum atmosphere at a temperature of 500 to 600C.
The pressed and dewaxed parts are then sintered in a hydrogen or, preferably, a vacuum furnace to a tem 1n the as-sintered state, the matrix phase usually contains large amounts of Fe C and, sometimes, graphite flakes. This is due to the slow cooling rate from sintering which occurs when large production scale furnaces are used, especially when the parts are vacuum sintered. To transform the matrix phase into the more desirable austenite or austenite plus martensite form, it is necessary to reheat the parts briefly to a temperature sufficiently high (l,200-l ,300C) to dissolve the Fe C and graphite and then cool at a fairly fast rate (1 to 5 minutes from l,000 to about 200C). In this solutiontreated condition, nearly maximum abrasion resistance and strength are obtained, as will be illustrated in one of the following examples. Slight additional gains can be obtained by low-temperature treating followed by a tempering treatment. The low-temperature treatment causes the formation of additional amounts of martensdisk submerged in a slurry of the grit and water. The periphery of the rotating disk was forced against a flat pad of the cemented carbide to be tested using a force of 40 pounds. The test duration consisted of 1,500 revolutions of the disk at a speed of 100 rpm. Fresh slurry was used for each test. The volume of material abraded away was then determined by measuring the weight loss of the pad. The results obtained are shown in Table l. The abrasion test results are reported as the reciprocal of the volume loss since the number so obtained is of convenient size and is directly proportional to the abrasion resistance of the material being tested. Included in Table l are test results for a 93.5% WC-0.5% TaC6% C cemented carbide composed of the same starting particle sizes used for the iron-based matrix composition and subjected to comparable processing conditions. 7
TABLE 1 Trans- Abrasion verse Processing Hardness Resistance Rupture Composition Stage R l/vol loss (cc) Strength 94% wC-l% TaC% (74% Fel5% Nil0% Co-lC%) As sintered 93.5 92 257,000
do. Above solution treated 93.5 11 1 187,000 do. Above liq.
N2 treated 93.7 100 190,000 do. Above 300F tempered 93.7 1 13 204,000 93.5% WC0.5% TaC-6% C0 As sintered 92.9 55 260,000
ite and the tempering treatment provides some stress 35 It can be observed that at any stage of processing the relief of the highly strained martensite phase. 7
The superior hardness and abrasion resistance that can be obtained through the use of iron-based alloybonded tungsten carbide will be demonstrated in the following examples:
EXAMPLE 1 A composition was prepared consisting of 4,000 grams total of a powder mixture containing 94% WC of about 1.0 micron average particle size, 1% TaC and 5 percent of a matrix portion composed of 75 percent carbonyl iron containing 0.8 percent carbon, 15 percent nickel and 10 percent cobalt. Nine grams of carbon were added to this mixture to establish the desired final carbon content. The powder mixture was then ball-milled 3 days in a 7-inch diameter mill lined with WC-Co and containing 12 kg. of A-inch diameter WC-Co balls and 2,000 cc. of acetone. The ball-mill charge was then dried, paraffinized, pressed into compacts, preheated at 500C in 1-1 to remove the paraffin and sintered minutes at l,400C in vacuum.
Subsequent to sintering, some of the parts were then solution-treated 5 minutes at 1,300C followed by fast cooling, then cooled to liquid nitrogen temperature, and then tempered by heating one hour at 300F in air. Tests of hardness, abrasion resistance, and transverse rupture strength were made at each stage of processing after sintering to determine the effect of the thermal treatments. The abrasion test apparatus consisted of a rotating 6 /2 inch diameter, /a-inch wide steel disk which contained on its periphery particles of aluminum oxide grit obtained by having the lower portion of the WC-iron alloy composition has higher hardness and abrasion resistance than does the comparable WC-Co material. It is also evident that a significant increase in abrasion resistance is obtained by solution-treating the WC-iron alloy material, although this is accompanied by a strength reduction. The additional thermal treatments provide slight additional benefit in the form of optimizing the combination of strength and abrasion resistance.
When the microstructures of the two compositions were viewed at 1,500 power it was observed that the WC-iron alloy material had a noticeably finer WC grain structure, apparently caused by the superior ability of the iron alloy to inhibit WC grain growth during sintermg.
EXAMPLE 2 A composition consisting of 94% WC 1 TaC-5% (74% Fe15% Nil0% Co1C) was prepared as in Example 1 above with the exception that the starting WC powder particle size was somewhat finer, averaging about 0.85 microns. Abrasion test pads and transverse rupture strength test bars were prepared and processed through the full thermal treatment sequence shown in Example 1 above. For comparison purposes a composition consisting of 93 WC1% TaC-6% Co was prepared using the same WC powder. It should be noted that the matrix phase contents of these two compositions are equal on a volume basis. They differ on a weight basis because of their differing densities. The resulting properties are shown in Table I1.
TABLE [I Abrasion Transverse Hardness Resistance Rupture Composmon R l/vol. loss (cc) Strength 94% WC-l% TaC-% (74% Fe-l5% Ni-l0% 94.] I91 185,000 Col(%) 93% wow new on 93.4 I 70 In this case the abrasion resistance of both compositions is higher than their counterparts in Table l, apparently due to the use of finer WC powder. The iron-alloy matrix composition, however, made much more effective use of the finer starting WC powder than did the cobalt matrix composition, resulting in a nearly doubled abrasion resistance compared with about a percent increase for the cobalt-matrix composition. This ance Fe ranging in matrix content from 3 to 9 weight percent were prepared and processed as in Example 1 above. The resulting hardness, strength and abrasion resistancewere then determined for each composition even more clearly demonstrates the superior ability of the iron-alloy matrix to inhibit grain growth during sintering.
EXAMPLE 3 A 4,000-gram batch of a composition consisting of 94% WC of about 0.85 micron average particle size and '5 percent iron containing 1 percent carbon was prepared and processed as in Example 1 above. The resulting hardness and abrasion resistancewere 93.3 and I18, respectively, and the transverse rupture strength was 160,000 psi. While not as good as the comparable composition containing nickel and cobalt in the matrix phase, the straight iron-carbon matrix alloy;composition has utility since its abrasion resistance is significantly higher than can be easily obtained using a cobalt matrix. v
EXAMPLE 4 For 4,000-gram batches of compositions consisting of WC of about 0.85 micron average particle size and varying amounts of matrix powders to compose a matrix composition 15%. Nil0% Co--l% C and the bal- It can be seen that as a function of the amount of matrix phase present, the abrasion resistance is optimized at about the 5 weight percent level and. that there is no advantage in increasing the matrix content to above 9 percent since the abrasion resistance drops to a level below that which can be obtained using a conventional cobalt matrix.
What I claim as new and desire to secure by letters balance iron.

Claims (2)

  1. 2. A hard, sintered compact as claimed in claim 1 wherein the carbide contains between 0.5 and 1.0 percent by weight of tantalum carbide.
  2. 3. A hard, sintered compact as claimed in claim 1 wherein the bonding alloy consists of about 15 percent by weight of nickel, about 10 percent by weight of cobalt, and about 0.8 percent by weight of carbon.
US00327071A 1973-01-26 1973-01-26 ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co Expired - Lifetime US3816081A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US00327071A US3816081A (en) 1973-01-26 1973-01-26 ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co
AU64351/74A AU481060B2 (en) 1973-01-26 1974-01-09 Abrasion resistant cemented carbide
ZA740169A ZA74169B (en) 1973-01-26 1974-01-09 Abrasion resistant cemented carbide
GB131674A GB1450654A (en) 1973-01-26 1974-01-11 Abrasion resistant cemented carbide
NL7400704A NL7400704A (en) 1973-01-26 1974-01-18
DE2402518A DE2402518C2 (en) 1973-01-26 1974-01-19 Hard carbide carbide body
JP939774A JPS5519973B2 (en) 1973-01-26 1974-01-23
LU69234A LU69234A1 (en) 1973-01-26 1974-01-24
IT19762/74A IT1007065B (en) 1973-01-26 1974-01-24 CEMENTED CARBIDE RESISTANT TO ABRASION
BE140187A BE810171A (en) 1973-01-26 1974-01-25 CEMENTED CARBIDE RESISTANT TO ABRASION
FR7402481A FR2215482B1 (en) 1973-01-26 1974-01-25
AT64374A AT345003B (en) 1973-01-26 1974-01-25 Dense sintered hard metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00327071A US3816081A (en) 1973-01-26 1973-01-26 ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co

Publications (1)

Publication Number Publication Date
US3816081A true US3816081A (en) 1974-06-11

Family

ID=23275017

Family Applications (1)

Application Number Title Priority Date Filing Date
US00327071A Expired - Lifetime US3816081A (en) 1973-01-26 1973-01-26 ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co

Country Status (11)

Country Link
US (1) US3816081A (en)
JP (1) JPS5519973B2 (en)
AT (1) AT345003B (en)
BE (1) BE810171A (en)
DE (1) DE2402518C2 (en)
FR (1) FR2215482B1 (en)
GB (1) GB1450654A (en)
IT (1) IT1007065B (en)
LU (1) LU69234A1 (en)
NL (1) NL7400704A (en)
ZA (1) ZA74169B (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993446A (en) * 1973-11-09 1976-11-23 Dijet Industrial Co., Ltd. Cemented carbide material
US4145213A (en) * 1975-05-16 1979-03-20 Sandvik Aktiebolg Wear resistant alloy
EP0023095A1 (en) * 1979-06-29 1981-01-28 National Research Development Corporation Tungsten carbide-based hard metals
US4417906A (en) * 1980-07-09 1983-11-29 General Electric Company Process for production of silicon carbide composite
US4448591A (en) * 1981-01-21 1984-05-15 General Electric Company Cutting insert having unique cross section
US4453951A (en) * 1980-07-09 1984-06-12 General Electric Co. Process for the production of silicone carbide composite
US4460382A (en) * 1981-12-16 1984-07-17 General Electric Company Brazable layer for indexable cutting insert
US4483892A (en) * 1981-12-16 1984-11-20 General Electric Company Wear resistant annular insert and process for making same
US4497660A (en) * 1979-05-17 1985-02-05 Santrade Limited Cemented carbide
US4497639A (en) * 1981-12-16 1985-02-05 General Electric Company Silicon carbide cutting insert with pre-pressed core center piece and sintered diamond envelope
US4544517A (en) * 1981-12-16 1985-10-01 General Electric Co. Automatic composite press technique for producing cutting inserts
US4671685A (en) * 1985-07-24 1987-06-09 Gte Products Corporation Printer wire
US4698070A (en) * 1981-12-16 1987-10-06 General Electric Company Cutting insert for interrupted heavy machining
US4770701A (en) * 1986-04-30 1988-09-13 The Standard Oil Company Metal-ceramic composites and method of making
US4849300A (en) * 1984-11-09 1989-07-18 Santrade Limited Tool in the form of a compound body and method of producing the same
US4869974A (en) * 1986-09-01 1989-09-26 Sandvik Ab Protecting plate of compound design and method of manufacturing the same
US4950328A (en) * 1988-07-12 1990-08-21 Mitsubishi Metal Corporation End mill formed of tungsten carbide-base sintered hard alloy
WO1993017142A1 (en) * 1992-02-28 1993-09-02 Baker Hughes Incorporated High strength tungsten carbide material for use in earth boring bits
US5421852A (en) * 1991-09-02 1995-06-06 Sumitomo Electric Industries, Ltd. Hard alloy and its manufacturing method
US5427600A (en) * 1992-11-30 1995-06-27 Sumitomo Electric Industries, Ltd. Low alloy sintered steel and method of preparing the same
US5441693A (en) * 1991-04-10 1995-08-15 Sandvik Ab Method of making cemented carbide articles and the resulting articles
US5945167A (en) * 1994-10-27 1999-08-31 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing composite material
US5992546A (en) * 1997-08-27 1999-11-30 Kennametal Inc. Rotary earth strata penetrating tool with a cermet insert having a co-ni-fe-binder
US6010283A (en) * 1997-08-27 2000-01-04 Kennametal Inc. Cutting insert of a cermet having a Co-Ni-Fe-binder
US6022175A (en) * 1997-08-27 2000-02-08 Kennametal Inc. Elongate rotary tool comprising a cermet having a Co-Ni-Fe binder
US6024776A (en) * 1997-08-27 2000-02-15 Kennametal Inc. Cermet having a binder with improved plasticity
US6170917B1 (en) 1997-08-27 2001-01-09 Kennametal Inc. Pick-style tool with a cermet insert having a Co-Ni-Fe-binder
WO2004063408A3 (en) * 2003-01-09 2004-11-11 Ceratizit Horb Gmbh Hard metal moulded item
WO2008125525A1 (en) * 2007-04-11 2008-10-23 H.C. Starck Gmbh Tool
US8323372B1 (en) * 2000-01-31 2012-12-04 Smith International, Inc. Low coefficient of thermal expansion cermet compositions
CN103938049A (en) * 2014-03-18 2014-07-23 界首市创力生产力促进中心有限公司 High strength and high wear resistant ring used for stirrer
CN104998966A (en) * 2015-05-18 2015-10-28 株洲固纳特硬质合金有限公司 Forming and manufacturing method for red stamping die type hard alloy die base body
WO2020131596A1 (en) 2018-12-20 2020-06-25 Exxonmobil Chemical Patents Inc. Erosion resistant alloy for thermal cracking reactors
WO2023091830A1 (en) * 2021-11-20 2023-05-25 Hyperion Materials & Technologies, Inc. Improved cemented carbides

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE415199B (en) * 1977-09-28 1980-09-15 Sandvik Ab WITH DRILLED SURFACE PROVIDED SINTRAD HARD METAL BODY
ZA818744B (en) * 1982-02-01 1982-12-30 Gec Cemented carbide compositions
US4743512A (en) * 1987-06-30 1988-05-10 Carpenter Technology Corporation Method of manufacturing flat forms from metal powder and product formed therefrom
GB2273301B (en) * 1992-11-20 1996-10-30 Smith International Improved cage protection for rock bits
US5653299A (en) * 1995-11-17 1997-08-05 Camco International Inc. Hardmetal facing for rolling cutter drill bit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB429650A (en) * 1932-08-29 1935-05-29 Fansteel Prod Co Inc Improvements in hard metal alloys
US2731711A (en) * 1954-05-13 1956-01-24 Gen Electric Sintered tungsten carbide composition
US3165822A (en) * 1963-08-07 1965-01-19 Metal Carbides Corp Tungsten carbide tool manufacture
US3245763A (en) * 1963-07-01 1966-04-12 Sandvikens Jernverks Ab Sintered hard metal alloy for machining cast iron and steel
US3301645A (en) * 1962-04-03 1967-01-31 Exxon Production Research Co Tungsten carbide compositions, method and cutting tool
US3384465A (en) * 1967-06-22 1968-05-21 Ford Motor Co Iron bonded tungsten carbide
US3698878A (en) * 1969-12-29 1972-10-17 Gen Electric Sintered tungsten carbide-base alloys

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713789A (en) * 1970-04-02 1973-01-30 Nordstjernan Rederi Ab Cemented carbide compositions and process for producing the same
DE2225135B2 (en) * 1971-05-26 1980-07-03 General Electric Co., Schenectady, N.Y. (V.St.A.) Cutting insert

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB429650A (en) * 1932-08-29 1935-05-29 Fansteel Prod Co Inc Improvements in hard metal alloys
US2731711A (en) * 1954-05-13 1956-01-24 Gen Electric Sintered tungsten carbide composition
US3301645A (en) * 1962-04-03 1967-01-31 Exxon Production Research Co Tungsten carbide compositions, method and cutting tool
US3245763A (en) * 1963-07-01 1966-04-12 Sandvikens Jernverks Ab Sintered hard metal alloy for machining cast iron and steel
US3165822A (en) * 1963-08-07 1965-01-19 Metal Carbides Corp Tungsten carbide tool manufacture
US3384465A (en) * 1967-06-22 1968-05-21 Ford Motor Co Iron bonded tungsten carbide
US3698878A (en) * 1969-12-29 1972-10-17 Gen Electric Sintered tungsten carbide-base alloys

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993446A (en) * 1973-11-09 1976-11-23 Dijet Industrial Co., Ltd. Cemented carbide material
US4145213A (en) * 1975-05-16 1979-03-20 Sandvik Aktiebolg Wear resistant alloy
US4497660A (en) * 1979-05-17 1985-02-05 Santrade Limited Cemented carbide
EP0023095A1 (en) * 1979-06-29 1981-01-28 National Research Development Corporation Tungsten carbide-based hard metals
US4339272A (en) * 1979-06-29 1982-07-13 National Research Development Corporation Tungsten carbide-based hard metals
US4417906A (en) * 1980-07-09 1983-11-29 General Electric Company Process for production of silicon carbide composite
US4453951A (en) * 1980-07-09 1984-06-12 General Electric Co. Process for the production of silicone carbide composite
US4448591A (en) * 1981-01-21 1984-05-15 General Electric Company Cutting insert having unique cross section
US4497639A (en) * 1981-12-16 1985-02-05 General Electric Company Silicon carbide cutting insert with pre-pressed core center piece and sintered diamond envelope
US4483892A (en) * 1981-12-16 1984-11-20 General Electric Company Wear resistant annular insert and process for making same
US4544517A (en) * 1981-12-16 1985-10-01 General Electric Co. Automatic composite press technique for producing cutting inserts
US4698070A (en) * 1981-12-16 1987-10-06 General Electric Company Cutting insert for interrupted heavy machining
US4460382A (en) * 1981-12-16 1984-07-17 General Electric Company Brazable layer for indexable cutting insert
US4849300A (en) * 1984-11-09 1989-07-18 Santrade Limited Tool in the form of a compound body and method of producing the same
US4671685A (en) * 1985-07-24 1987-06-09 Gte Products Corporation Printer wire
US4770701A (en) * 1986-04-30 1988-09-13 The Standard Oil Company Metal-ceramic composites and method of making
US4869974A (en) * 1986-09-01 1989-09-26 Sandvik Ab Protecting plate of compound design and method of manufacturing the same
US4950328A (en) * 1988-07-12 1990-08-21 Mitsubishi Metal Corporation End mill formed of tungsten carbide-base sintered hard alloy
US5441693A (en) * 1991-04-10 1995-08-15 Sandvik Ab Method of making cemented carbide articles and the resulting articles
US5421852A (en) * 1991-09-02 1995-06-06 Sumitomo Electric Industries, Ltd. Hard alloy and its manufacturing method
WO1993017142A1 (en) * 1992-02-28 1993-09-02 Baker Hughes Incorporated High strength tungsten carbide material for use in earth boring bits
US5281260A (en) * 1992-02-28 1994-01-25 Baker Hughes Incorporated High-strength tungsten carbide material for use in earth-boring bits
US5427600A (en) * 1992-11-30 1995-06-27 Sumitomo Electric Industries, Ltd. Low alloy sintered steel and method of preparing the same
US5945167A (en) * 1994-10-27 1999-08-31 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing composite material
US5992546A (en) * 1997-08-27 1999-11-30 Kennametal Inc. Rotary earth strata penetrating tool with a cermet insert having a co-ni-fe-binder
US6010283A (en) * 1997-08-27 2000-01-04 Kennametal Inc. Cutting insert of a cermet having a Co-Ni-Fe-binder
US6022175A (en) * 1997-08-27 2000-02-08 Kennametal Inc. Elongate rotary tool comprising a cermet having a Co-Ni-Fe binder
US6024776A (en) * 1997-08-27 2000-02-15 Kennametal Inc. Cermet having a binder with improved plasticity
US6170917B1 (en) 1997-08-27 2001-01-09 Kennametal Inc. Pick-style tool with a cermet insert having a Co-Ni-Fe-binder
US8323372B1 (en) * 2000-01-31 2012-12-04 Smith International, Inc. Low coefficient of thermal expansion cermet compositions
US8956438B2 (en) 2000-01-31 2015-02-17 Smith International, Inc. Low coefficient of thermal expansion cermet compositions
WO2004063408A3 (en) * 2003-01-09 2004-11-11 Ceratizit Horb Gmbh Hard metal moulded item
US20100054871A1 (en) * 2007-04-11 2010-03-04 H.C. Starch Gmbh Tool
WO2008125525A1 (en) * 2007-04-11 2008-10-23 H.C. Starck Gmbh Tool
CN103938049A (en) * 2014-03-18 2014-07-23 界首市创力生产力促进中心有限公司 High strength and high wear resistant ring used for stirrer
CN104998966A (en) * 2015-05-18 2015-10-28 株洲固纳特硬质合金有限公司 Forming and manufacturing method for red stamping die type hard alloy die base body
CN104998966B (en) * 2015-05-18 2017-03-22 株洲固纳特硬质合金有限公司 Forming and manufacturing method for red stamping die type hard alloy die base body
WO2020131596A1 (en) 2018-12-20 2020-06-25 Exxonmobil Chemical Patents Inc. Erosion resistant alloy for thermal cracking reactors
WO2023091830A1 (en) * 2021-11-20 2023-05-25 Hyperion Materials & Technologies, Inc. Improved cemented carbides

Also Published As

Publication number Publication date
JPS5519973B2 (en) 1980-05-30
FR2215482B1 (en) 1981-08-07
IT1007065B (en) 1976-10-30
GB1450654A (en) 1976-09-22
FR2215482A1 (en) 1974-08-23
NL7400704A (en) 1974-07-30
AU6435174A (en) 1975-07-10
LU69234A1 (en) 1974-04-10
DE2402518A1 (en) 1974-08-01
ZA74169B (en) 1974-11-27
BE810171A (en) 1974-05-16
AT345003B (en) 1978-08-25
JPS49104811A (en) 1974-10-03
DE2402518C2 (en) 1983-12-08
ATA64374A (en) 1977-12-15

Similar Documents

Publication Publication Date Title
US3816081A (en) ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co
US3623849A (en) Sintered refractory articles of manufacture
US3811961A (en) Boridized steel-bonded carbides
JP3351970B2 (en) Corrosion resistant high vanadium powder metallurgy tool steel body with improved metal-metal wear resistance and method of making same
US3865586A (en) Method of producing refractory compound containing metal articles by high energy milling the individual powders together and consolidating them
US4217141A (en) Process for producing hard, wear-resistant boron-containing metal bodies
US3369891A (en) Heat-treatable nickel-containing refractory carbide tool steel
US4194910A (en) Sintered P/M products containing pre-alloyed titanium carbide additives
US3480410A (en) Wc-crc-co sintered composite
JPH036982B2 (en)
JPH01116002A (en) Production of composite metal powder from base iron powder and alloying component and composite metal powder
CN113512687A (en) Preparation method of composite rare earth reinforced powder metallurgy high-speed steel
US3809541A (en) Vanadium-containing tool steel article
JPH07508312A (en) Extremely fine-grained sintered titanium-based carbonitride alloy with improved toughness and/or wear resistance
US3658604A (en) Method of making a high-speed tool steel
US4880600A (en) Method of making and using a titanium diboride comprising body
US4755222A (en) Sinter alloys based on high-speed steel
US2881511A (en) Highly wear-resistant sintered powdered metal
US4859124A (en) Method of cutting using a titanium diboride body
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
US4212670A (en) Titanium oxycarbonitride based hard alloy
US2806800A (en) Boron and carbon containing hard cemented materials and their production
CN106591674A (en) Preparation method for high-strength high-toughness heat-resistant TiN steel-bonded hard alloy
US3502447A (en) Compositions of wear resistant materials bonded with electrically conducting nitrides and metals
US2884687A (en) Wear-resistant sintered powdered metal

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARBOLOY INC., A DE. CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:004811/0365

Effective date: 19870925