Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3817389 A
Publication typeGrant
Publication dateJun 18, 1974
Filing dateJan 15, 1973
Priority dateJan 15, 1973
Also published asCA1032878A1
Publication numberUS 3817389 A, US 3817389A, US-A-3817389, US3817389 A, US3817389A
InventorsT Weichselbaum
Original AssigneeSherwood Medical Ind Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Filter device in tubular fitting for medical injection equipment and the like
US 3817389 A
Abstract
A cylindrical, cup-shaped, porous, sintered powdered metal filter is sealed in a tubular thermoplastic fitting (e.g., the needle-retaining hub of a hypodermic needle or an adaptor or a connector in the line of an intravenous infusion set) by force-fitting the open end of the filter within an annular bead on the interior wall of the tubular fitting and induction heating the filter so that the thermoplastic bead will flow into the pores of the filter to form a continuous ring seal between the filter and the interior wall of the fitting.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 [1 1] 3317,39 Weichselbaum [45] June 13 197 [5 FILTER DEVICE IN TUBULAR FITTING 3,121,685 2/1964 Hazel] 210/496 x FOR MED INJECTION EQUIPMENT 3,722,697 3/1973 Burke et al.. AND THE LIKE 3,753,500 8/1973 Voegeli 210/496 x Inventor: Theodore E. Weichselbaum,

Normandy, Mo.

Sherwood Medical Industries, Inc., St. Louis, Mo.

Filed: Jan. 15, 1973 Appl. No.: 323,726

Assignee:

US. Cl 210/448, 128/214 C, 210/452, 210/457, 210/496 Int. Cl 801d 35/00 Field of Search..... 128/214 B, 214 C; 210/446, 210/448, 451, 452, 457, 496

References Cited UNITED STATES PATENTS l2/1959 .laffe 210/451 X Primary ExaminerSamih N. Zahama Assistant ExaminerRjchard W. Burks Attorney, Agent, or Firm--Kendrick & Subkow [571 ABSTRACT 7 Claims, 5 Drawing Figures FILTER DEVICE IN TUBULAR FITTING FOR MEDICAL INJECTION EQUIPMENT AND THE LIKE The present invention relates generally to medical equipment and, more specifically, to filter devices for use in medical injection equipment such as hypodermic needles and intravenous infusion sets.

In recent years medical researchers have been expressing increasing concern about the presence of particulate contamination in parenteral solutions intravascularly infused or injected into patients, and about the possible harm such contamination may cause. The term parenteral solutions as used throughout this patent is intended to refer to any solution intravenously or intramuscularly fed to a patient, including medication injected by a hypodermic syringe and various solutions (e.g., glucose, blood, medication, et cetera) fed intravenously through an intravenous infusion set.

It is estimated that the average hospital patient currently receives approximately 2.5 liters of parenteral solutions during his illness, and the critically ill patient may receive as much as 100 liters or more. Recent studies have shown that the parenteral solutions are often contaminated by particulate matter from the infusion equipment, e. g., the glass or plastic container for the solution, the tubing set, the stopper or bung and other accessories of the equipment. Obviously such contamination may be harmful to the patient, depending on the type, size, quantity, etc., of the contaminating particles. Harmful effects have been demonstrated by medical researchers by means of human autopsies and studies on various animals.

Particulate contamination is also present in the parenteral solutions injected into patients by means of hypodermic syringes. Sources of such contamination in clude the syringe barrels, plungers (which typically have rubber tips) and the covers (typically rubber) and interior (typically glass) of multi-dose vials from which solutions to be injected are withdrawn.

It is thus apparent that there is a need in the medical field for some means to prevent or minimize particulate matter contamination in parenteral solutions.

It has been suggested that filters be employed in injection equipment to filter particulate contamination from parenteral fluids fed to patients. However, no filters or filter devices heretofore designed have met with any appreciable acceptance or use in the medical field because none of these prior filter devices have satisfied various requirements that any filter employed in conjunction with medical injection equipment must meet. One such requirement is that the filter element must be effectively sealed or bonded in the fluid flow line of the injection or infusion equipment to insure that the filter performs its intended function effectively and efficiently.

A second requirement is that the filter device and means of incorporation into the injection or infusion equipment not add appreciably to the cost of the equipment, particularly in view of the fact that most of the injection and infusion equipment in use today is disposable (i.e., designed to be discarded after a single use).

A third important requirement is that the filter must be compatible with the shape, size and operation of existing injection and infusion eqiupment.

The filter device of the present invention, .and the method of making the device satisfy the efficiency, cost and compatibility requirements discussed above, and provide other advantages which will become apparent from a review of the filter device and method of the present invention as shown in the drawings and described in the following specification and claims.

In the drawings:

FIG. I is an exploded perspective view of a hypodermic needle into which a filter device of the present invention may be incorporated.

FIG. 2 is a sectional elevation view of the hub or tubular fitting of the apparatus shown in FIG. l with a filter element of the present invention being inserted therein.

FIG. 3 is a sectional elevation view similar to FIG. 2 showing the filter in place in the fitting.

FIG. 4 is a sectional elevation view similar to FIGS. 2 and 3 showing the filter being induction heated to seal it in the fitting.

FIG. 5 is a partial sectional elevation view showing in greater detail the seal between the filter and the fitting.

FIG. 1 illustrates a hypodermic needle 10 into which the filter device of the present invention may be incor porated. The needle 10 includes a needle cannula 12 (preferably stainless steel) connected to the forward or distal end of a thermoplastic tubular hub or fitting 16 having a porous, sintered, powdered metal filter element 18 therein. The hypodermic needle 10 of FIG. 1 is only an exemplary showing of a medical injection device into which the filter device of the present invention may be incorporated. It iscontemplated that the filter device of the present invention may be incorporated in various types of medical equipment and the like, including intravenous infusion sets, hypodermic syringes and double luer adapters. The tubular thermoplastic fitting or connector 16 is exemplary of only one of numerous types of connectors, fittings, adaptors and hubs into which a filter may be incorporated and sealed to form the filter device of the present invention.

The structure of the filter device of the present invention and the method by which the porous metal filter 18 is sealed into the tubular thermoplastic connector 16 to form a filter device of the present invention may best be understood by referring to FIGS. 2 to 5.

The thermoplastic connector 16 is of generally tubular shape and has internal peripheral wall 19 defining a longitudinal passage 20 extending therethrough. The outer or proximal end 22 of the passage 20 is tapered outwardly (commonly referred to in the medical field as a female luer taper) to facilitate sealing reception of the tip of a syringe (or other tubular member) to which the proximal end of the fitting 16 is to be connected. The forward or distal end of the passage through the stem 24 may be cylindrical or tapered to receive the butt end of the needle cannula 12, which may, for example, be epoxy bonded therein.

The intermediate portion of the peripheral wall 19 of passage 20 is provided with a shoulder 30 which functions as a seat for the end of the filter 18. An inwardlyprojecting annular ring or bead 32 is provided on the interior wall 19 of the fitting 16 just above the shoulder or seat 30. The internal diameter of the bead 32 is slightly less than the outer diameter of the filter 18 so that the end of the filter 18 can be force-fit into the bead 32 in a manner and for a purpose described more fully below.

The term thermoplastic, as used herein, is intended to refer to any plastic material that will soften when heated and re-solidify or harden when cooled. The thermoplastic fitting or connector 16 is preferably constructed of a relatively rigid thermoplastic such as polypropylene, polycarbonate or polyethylene terephthalate.

The filter 18 is preferably cylindrical cup-shaped in form, having a closed rear end 36 and an open forward end 38 defined by a forward peripheral wall 39.

The filter 18 is preferably formed of a porous, sintered, powdered stainless steel. The particular formation and interrelationship of the particles of the filter 18 are important, but do not constitute a part of the invention of this patent. The composition of the filter 18 may be of the type described in copending application Ser. No. 354,309, filed Apr. 25, 1973.

The filter element 18 is positioned and sealed or bonded in the tubular fitting 16 in the following manner.

The filter element 18 is inserted, open end first, into the passage 20 of the fitting 16 by means of a suitable tool, such as the insertion tip 40 of a suitable vacuum tool, as shown in FIG. 2. The filter element 18 is held on the tool 40 by suction, and is pressed downwardly through the plastic annular ring or bead 32 until the forward peripheral wall 39 of the open forward end 38 rests or seats on the annular shoulder 30. As noted above, the outer diameter of the filter element 18 is slightly larger than the internal diameter of the annular bead 32 so that the forward end of the filter 18 is forcefit in the annular bead 32 to compress and deform the bead (see FIG. 3).

With the filter element 18 in place (i.e., with the forward end wall 39 of the filter abutting the shoulder 30 in the fitting l6 and the forward end portion of the peripheral wall of the filter l8 force-fit in the annular bead 32), the filter element 18 is heated to a temperature and for such a time to heat the thermoplastic bead 32, which melts or softens and flows into the pores in a continuous ring around the forward end portion of the outer peripheral wall of the filter element 18. As shown in FIG. 4, it is contemplated that the filter element 18 may be heated by the electromagnetic field generated by induction heating coils 44. It is contemplated, however, that other means of heating the filter element 18 may be employed so long as such heating means does not interfere with the compressive force exerted by the filter element on the annular bead 32.

FIG. is an enlarged sectional view illustrating the intrusion of the plastic bead 32 into the pores around the outer peripheral wall of the forward end portion of the filter element 18 after the bead has cooled and resolidified.

It is to be noted that the seal or bond formed between the bead 32 and the forward end portion of the outer surface of filter element 18 is a relatively thin continuous ring which does not significantly reduce the effective surface area of the filter which is exposed to the solution to be filtered. Thus, the seal will not inhibit the flow rate of the solution which must pass through the 6 LII element 18 at a maximum to insure that the flow rate of the solution passed through the filter may be maintained at the desired level. It will also be noted that the cylindrical cup shape of the filter element 18 maximizes the effective surface area of the filter which is exposed to the solution to be passed therethrough, consistant with the over-all size limitations imposed by the fitting into which it is inserted, to maximize the permissible flow rate of the solution.

From the foregoing, it will be appreciated that the method of the present invention provides a filter device for medical injection equipment and the like which is relatively inexpensive, efficient and readily adaptable for use with existing injection and infusion equipment (e.g., plastic fittings, such as injection needle hubs). The ring seal or bond formed between the tubular fitting and the peripheral wall of the filter provides an effective continuous seal which does not interfere with the critical, permissible flow rate of solution through the filter, yet insures a fluid tight seal to prevent fluid from passing around, rather than through, the filter element. Thus, the method and resulting filter device of the present invention satisfies the existing need in the industry for a device which will effectively eliminate or minimize particulate contamination in parenteral fluids to be injected into patients.

It is contemplated, of course, that numerous changes and modifications may be made to the particular embodiments of the method and filter device described above and shown in the drawings without departing from the scope of the present invention. For example, while a cylindrical cup-shaped filter has been shown and described as a preferable embodiment, it is contemplated that method and filter devices of the present invention may employ filter elements of other shapes, such as disk shapes, plate shapes and rounded cup shapes.

Accordingly, it is intended that the scope of the present invention be limited only by the scope of the appended claims.

I claim:

1. A filter device for medical infusion and injection equipment and the like, comprising:

a generally cylindrical, cup-shaped, porous, sintered powdered metal filter element having an open distal end and a closed proximal end;

a tubular, thermoplastic fitting having a longitudinal passage extending axially therethrough; a radiallyinwardly projecting annulus on the internal peripheral wall of said longitudinal passage; means defining a radially inwardly projecting seat on the internal peripheral wall of said longitudinal passage;

said filter element having a peripheral edge at said open distal end thereof; said peripheral edge of said filter element being disposed on and in contact with said seat of said fitting; said radially inwardly projecting annulus on the internal peripheral wall on said longitudinal passage having been softened and forced into pores of said filter element along a continuous peripheral ring adjacent to said peripheral edge of said open distal end of said filter element.

2. A filter device for medical infusion and injection equipment and the like, comprising: a tubular member formed of relatively rigid thermoplastic, said tubular member having an internal annular projection therein; a sintered, porous, powdered metal filter having an end 3. The filter device of claim 2 wherein said filter is made from stainless steel particles. 4. The filter device article of claim 2 wherein said thermoplastic is a polycarbonate.

5. The filter device of claim 2 wherein said thermoplastic is a polyethylene terephthalate.

6. The filter device of claim 2 wherein said thermoplastic is a polypropylene.

7. A filter device for use as a part of an apparatus for the infusion or injection of parenteral fluid comprising:

a fitting formed of relatively rigid thermoplastic having an interior peripheral wall defining a passage therethrough; an annular projection on said interior wall; and a shoulder on said interior wall; said shoulder being spaced from said projection;

a sintered, porous, powdered stainless steel tubular filter having a closed end and a continuous peripheral wall extending from said end and adapted for a force fit into said annular projection and to abut said shoulder in said fitting;

said annular projection and said peripheral wall of said filter being in leakproof relation as a result of said filter and said annular projection having been heated to a temperature such that a portion of said projection flowed into pores of said peripheral wall and the subsequent cooling of said filter and said projection.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2915187 *Feb 6, 1956Dec 1, 1959Jaffe Myron IPorous metal filter
US3121685 *Dec 12, 1960Feb 18, 1964Sperry Gyroscope Co LtdFilter
US3722697 *Apr 29, 1970Mar 27, 1973Burron Medical Prod IncIntravenous injection apparatus drip chamber having filter means
US3753500 *Mar 20, 1970Aug 21, 1973Minnesota Mining & MfgIntegral in-line filter
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3933652 *Apr 25, 1973Jan 20, 1976Sherwood Medical Industries Inc.Process of manufacturing a porous, stainless steel filter element and sealing it in a tubular fitting, and resulting filter
US3970084 *Dec 11, 1973Jul 20, 1976Burron Medical Products, Inc.Intravenous injection apparatus and needle adapter with filter and method of making same
US4014797 *May 20, 1975Mar 29, 1977Burron Medical Products, Inc.Intravenous injection apparatus and needle adapter with filter and method of making same
US4076027 *May 7, 1976Feb 28, 1978Sherwood Medical Industries Inc.Fluid transfer device
US4127131 *Jun 20, 1977Nov 28, 1978Johnson & JohnsonHub assembly for use in the filtration of fluids and method of making the same
US4227527 *Oct 23, 1978Oct 14, 1980Baxter Travenol Laboratories, Inc.Sterile air vent
US4259187 *Jun 7, 1979Mar 31, 1981Baxter Travenol Laboratories, Inc.Intravenous fluid filter
US4265760 *Feb 26, 1979May 5, 1981Becton Dickinson & CompanyDisposable
US4273656 *Apr 26, 1979Jun 16, 1981Aisan Industry Co., Ltd.Filter for fluid passage
US4574173 *May 4, 1984Mar 4, 1986Warner-Lambert CompanyDevice for RF welding an IV tube to a catheter lumen
US4838881 *Sep 29, 1988Jun 13, 1989Deseret Medical, Inc.Multilumen catheter and associated IV tubing
US5797869 *Jun 7, 1995Aug 25, 1998Vas-Cath IncorporatedMultiple lumen catheter
US5873499 *Aug 14, 1996Feb 23, 1999Scientific Resources, Inc.Pressure breakaway dispensing gun
US6206849Aug 25, 1998Mar 27, 2001Vas-Cath IncorporatedMultiple lumen catheter
US6517813Aug 1, 1997Feb 11, 2003Schering AgContrast medium useful for angiography or lymphography comprising filtering, with a magnetic filter, a suspension of coated magnetic particles whose ratio of relaxivities r2/r1 is greater than 3.2
US6524302Apr 26, 2001Feb 25, 2003Scimed Life Systems, Inc.Multi-lumen catheter
US6685665 *Sep 7, 2001Feb 3, 2004Pall CorporationCannula assembly
US7182754 *Jun 19, 2002Feb 27, 2007N.M. Beale CompanyContainerless tissue sample collection trap
US7229429Mar 27, 2001Jun 12, 2007Vas-Cath Inc.Multiple lumen catheter
US7306740May 11, 2004Dec 11, 2007Lipose CorporationWithdrawing, centrifuging and dispensing fat tissue; autologous fat tissue transplantation
US7488427Apr 23, 2007Feb 10, 2009Lipose CorporationUsing syringe apparatus for collecting and preparing fat for autologous fat tissue transplantation
US20110299170 *May 3, 2011Dec 8, 2011Magna Mirrors Of America, Inc.Electro-optic rearview mirror element with fill port filter and method of manufacturing electro-optic rearview mirror element
EP0765727A2 *Sep 25, 1996Apr 2, 1997Arbor Technologies, Inc.Improved filter assembly and method of making same
WO1997000970A1 *Jun 20, 1996Jan 9, 1997Bio MerieuxMethod for adsorbing antimicrobial agents contained in a biological fluid, and apparatus therefor
WO1998005430A1 *Jul 29, 1997Feb 12, 1998Bernard BetterProcess and device for separating magnetic materials from pharmaceutical compositions, their starting or intermediate products and agents produced by means of this device
Classifications
U.S. Classification210/448, 210/457, 210/496, 210/452, 604/190
International ClassificationB01D35/00, A61M5/32, B01D35/28, A61M5/31, B29C65/46, A61M5/165
Cooperative ClassificationB01D35/00, B29C66/534, A61M2005/1652, A61M5/3145, B29L2031/7544, A61M5/165, B29C65/46
European ClassificationB29C66/534, B01D35/00, B29C65/46, A61M5/165, A61M5/31F
Legal Events
DateCodeEventDescription
Apr 18, 1983ASAssignment
Owner name: SHERWOOD MEDICAL COMPANY
Free format text: MERGER;ASSIGNOR:SHERWOOD MEDICAL INDUSTRIES INC. (INTO);REEL/FRAME:004123/0634
Effective date: 19820412