Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3818666 A
Publication typeGrant
Publication dateJun 25, 1974
Filing dateMar 17, 1972
Priority dateMar 17, 1972
Publication numberUS 3818666 A, US 3818666A, US-A-3818666, US3818666 A, US3818666A
InventorsR Winans
Original AssigneeMetalume Mfg Co Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thermal barrier for frame structures
US 3818666 A
Abstract
A thermal barrier joint between two metal extrusion strips comprising a vinyl or other plastic extrusion strip that forms a channel between the two metal strips and also locates the two metal strips with respect to each other, the channel then being filled with a thermal barrier material which rigidly fastens the two metal strips together; the plastic extrusion can either be left on or stripped off after the thermal barrier material has set.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

D United States Patent 1191 1111 3,818,666 Winans June 25, 1974 THERMAL BARRIER FOR FRAME 3,283,455 11/1966 Riegelman 52/204 STRUCTURES 3,320,706 5/1967 13111611 et a1. 52/465 x 3,363,383 l/l968 LaBarge 52/403 [75] Inventor: Roy J. Winans, Lakewood, NJ. 3,381,436 5/1968 Elll0lt et al. 52/309 [73] Assignee: Metalume Manufacturing Company, "jg g g Lakewood 334411995 5/1969 Revel] e1 61:ii 11111111111111. 29/l55 R [22] Fil Man 17 1972 3,574,985 4/1971 Pierce 52/468 X [21] App]. 235 49 FOREIGN PATENTS OR APPLICATIONS 1,245,567 7/1967 Germany 49/DlG. 1 411,290 11 1966 S l d ..52 403 52 11.s.c1 52/403, 52/204, 52/309 [51] Int. Cl E04b l/64, E06b 1/32 P E d [58] Field 61 Search 52/204, 212,403, 731, gggfg, gfjjgyjg, gg {,i gjgjg 52/309; 49/DIG' 417; 264/261 Attorney, Agent, or FirmEric P. Schellin; Martin P. [56] References Cited UNITED STATES PATENTS [57] ABSTRACT 1,723,307 8/1929 Sipe 52/282 1 1,874,790 8/1932 M6nens6n.... A l F lietweenhtwo F extruslon 2,052,739 9/1936 Bailey str ps compnsmg a v1ny or 01 er pastlc extrus1on 2,226,679 12/1940 Walters 52/416X StrlP that forms a Channel between the two metal 2,268,311 12/1941 Sheehan 52/339 Strips and also locates the two metal Strips with 3,037,589 6/1962 Cole spect to each other, the channel then being filled with 3,110,066 11/1963 Ward et al.... a thermal barrier material which rigidly fastens the ,179 12/1963 Briggs two metal strips together; the plastic extrusion can eif ther be left on or stripped off after the thermal barrier 4 4 l SE11 3,213,583 10/1965 Winski mammal has 3,256,662 6/1966 Powers 52/309 2 Claims, 4 Drawing Figures PATENTEDJUNZSIBM mmuumh,

l7 II/:WIL/

THERMAL BARRIER FOR FRAME STRUCTURES BACKGROUND OF THE INVENTION Aluminum window frames for permanent windows, as distinguished from storm windows, are becoming increasingly popular. The reasons for this increasing popularity are freedom from maintenance, pleasing appearance, and durability, among others. However, aluminum window frames suffer from one inherent drawback that does not exist with wooden frames. This drawback, a heat and cold conduction path from the inside of the room to the outside through the frame itself, stems from the fact that aluminum is a good conductor of heat and cold whereas wood is a poor conductor. Admittedly, this path is physically narrow and does not conduct much heat compared to the heat loss across the window itself. But in the interest of economy in heating a house or other building, all heat conduction paths must be eliminated or reduced as much as possible. The problem, then, is to produce an aluminum extrusion that will extend from the inside to the outside surfaces of an exterior wall without conducting heat from one side of the wall to the other.

The simple solution to this problem is to provide a break in the metal path from the inside to the outside of the wall. By inserting a material of lower thermal conductivity, or even just an air gap, somewhere in the metal frame, the heat conduction path is interrupted at that point and heat losses through the metal are markedly reduced.

The prior art has recognized this problem, notably in the U.S. Pat. No. to Revell et al, 3,441,995 and Nilsen, 3,204,324. While producing an acceptable thermal barrier, the methods disclosed in these patents require that machining steps be performed on the metal extrusions. In Revell et al., the extrusion must be slit and bent in two places along its entire length; in Nilsen a part of the original extrusion must be milled out after the thermal barrier material has set, again for the length of the extrusion. In both of these patents a large extrusion is cut along its length to give the appearance of a unit that is composed of two smaller extrusions that are held together by the thermal barrier material. Since the cost of an extrusion is a direct function of its crosssectional area, it is cheaper to join two smaller extrusions with thermal barrier material than to start witha wide extrusion that is later cut in half.

SUMMARY Briefly, the present invention comprises two aluminum extrusions that are placed side by side and then are joined together by means of a third extrusion, preferably of vinyl. The third extrusion joins the other two in such a manner as to create a U-shaped channel with no metal to metal contact between the two aluminum extrusions. This U-shaped channel is then filled with the thermal barrier material, creating a rigid assembly. This method requires no costly machining, since all extrusions are used as they are produced with no modifications. In addition, the present invention can be used for extremely small production runs (minimum of 1), since all operations can be performed by hand. For larger production, the method obviously can be mechanized to a large extent.

Accordingly, it is an object of the present invention to provide a thermal barrier in an aluminum window frame.

It is a further object to provide a thermal barrier in an aluminum window frame composed of two distinct extrusions held together by the thermal barrier material.

It is a further object to provide a method of constructing a thermal barrier that does not require any machining steps.

It is a further object to provide a method of constructing a thermal barrier that can be economically used for very small production runs.

It is a further object to provide a thermal barrier in an aluminum window frame wherein the thermal barrier material is polyester resin.

Other objects and inventions of the present invention will be apparent from the following specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a window whose frame incorporates a thermal barrier according to the present invention.

FIG. 2 is taken on line 2-2 of FIG. 1.

FIG. 3 is an enlargement of the circled area of FIG. 2.

FIG. 4 is a cross section of a thermal barrier joint between extrusions having different shapes from those shown in FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. I, there is shown a window in a house, office, etc. This can be of single or double pane construction, but will be described and shown as a single pane window.

FIG. 2 shows the window pane 10 held in a first frame assembly 11 which in turn is surrounded by second frame assembly 12. Second frame assembly 12 extends from the inside to the outside of the building and provides two heat conduction paths. Each path has a thermal barrier 13 in it, one such barrier being shown enlarged in FIG. 3.

Referring to FIG. 3, the aluminum extrusions are designated 14, 14', the vinyl extrusion is designated 15. Vinyl extrusion 15 is comprised of a horizontal member 16, vertical end members 17, and intermediate vertical members 18. Intermediate and end vertical members 17 and 18 fonn between them a pair of channels which receive the ends of downwardly extending members 20 of aluminum extrusions 14. The innermost ends of intermediate vertical members 18 have projections 19 thereon forming an enlarged cavity; the purpose of this cavity is to securely hold the vinyl extrusion to the thermal barrier material 32. Vertical end members 17 are cut away as at 21 to allow for the insertion therein of outstanding projections 22 on downwardly extending members 20 of extrusions 14. When vinyl extrusion 15 is put on metal extrusions I4, 14, the rounded ends 23 on members 17 ride outwardly on projections 22 and then snap over them, thereby being locked in place.

Downwardly extending members 20 can be seen to have dovetail slots 24 formed therein; when cavity 25 is filled with thermal barrier material a dovetail joint will be formed between this material and extrusions 14.

The method of assembling the extrusions of FIG. 1 is as follows: metal extrusions 14, 14 are placed in a jig which holds them in the proper spaced relationship. Vinyl extrusion 15 is then placed over downwardly extending members 20 until ends 23 are felt and heard to snap into place over projections 22. When this occurs the three pieces are held together as a unit and could be removed from the jig and used; however, it is preferred that cavity 25 be filled with a material such as polyester resin for added mechanical strength.

The configuration shown in FIG. 4 differs from that in FIG. 3 primarily in the shape of the aluminum extrusions. As can be seen, aluminum extrusions 26 and 27 are held together by vinyl extrusion 28. Aluminum extrusion 26 is held in vinyl extrusion 28 in the same manner as in the configuration of FIG. 3; extrusion 27 is held by the interlocking of projections 29 and 30 and by the wedging of leg 31 of vinyl extrusion 28 between projections 30 and 32' of aluminum extrusion 27.

The final step is to fill cavity 25 with thermal barrier material 32; the depth of filling is not critical, it is only necessary that the material fill all of dovetail slots 24. The preferred material to be used to form the thermal barrier is polyester resin; however, any material that can be poured, which bonds to metal, is reasonably rigid, and has a low coefficient of thermal conductivity, can be used. Likewise, the preferred material for extrusion is vinyl, although any other material that is extrudable, flexible, and has a low coefficient of thermal conductivity can be used.

The vinyl or other plastic extrusion 15 can be stripped off and then reused if desired, since its contribution to the strength of the joint is minimal compared to the thermal barrier material. However, since its cost is quite low, it is preferably left on.

As stated earlier, this method can be used to make any number of thermal barrier assemblies; since there are no machining steps required, it can be used for very small production runs. lf mass production is contemplated, several extrusion assemblies can be assembled in one master jig and then the filling of the cavity can be done by machine.

What is claimed is:

l. A composite stmcture which extends, transversely of its length, from a cold region to a warm region and has an integral heat conduction barrier therein; comprising two elongated structural members each extending from one temperature region to a point between said regions, each of said members having at said point an upstanding leg having two surfaces and extending in the same direction and spaced from each other whereby one surface of each leg faces the other, said surface of each of said leg facing each other having a dovetailed slot extending in the same plane as said structural member, said surface of each leg opposite to each of the facing surfaces having an elongated projection extending in the same plane as said structural member near substantially the junction of said structural member and said leg, a U-shaped member having two upstanding portions and a relatively flat apex portion, said upstanding portions adapted and constructed to embrace said surfaces of said legs opposite to each of the said facing surfaces, each of said upstanding portions having extending inwardly an elongated projection adapted and constructed to be positioned between the said projections of each of said legs and said structural members, said base portion of said U-shaped member adapted and constructed to connect the ends of said extending legs, said base portion having two inwardly extending upstanding spaced elongated elements substantially parallel with respect to said extending legs, said elements adapted and constructed to define a dovetailed slot therebetween, said facing surfaces of said legs and a portion of said base portion defining a U-shaped channel, said U-shaped channel being filled with a thermal barrier material.

2. The composite structural member as in claim 1 wherein said thermal barrier material is polyester resin.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1723307 *Mar 7, 1928Aug 6, 1929Sipe Harry ECoupling strip
US1874790 *Mar 8, 1930Aug 30, 1932Mortenson Engineering CoBuilding material and retaining means therefor
US2052739 *Jan 25, 1934Sep 1, 1936Alonzo W BaileyBuilding construction
US2226679 *Oct 23, 1939Dec 31, 1940Chicago Vitreous Enamel ProducWall panel attaching and anchoring device
US2268311 *Jul 7, 1939Dec 30, 1941Sheehan Walter FConcrete floor construction
US3037589 *Mar 14, 1960Jun 5, 1962Cole JohnFrame construction for wall openings
US3110066 *Jun 27, 1960Nov 12, 1963Ward Jack FSelf-locking moulding and buffer strips
US3114179 *Dec 1, 1960Dec 17, 1963Window Products IncHeat-insulated metal-framed closure
US3203053 *Sep 4, 1962Aug 31, 1965Frank B Miller Mfg Co IncMultiple window construction
US3204324 *Dec 10, 1962Sep 7, 1965Soule Steel CompanyMethod for making an insulated frame construction
US3213583 *Apr 26, 1962Oct 26, 1965Dyson StsLock seam sheet metal panel
US3256662 *Sep 19, 1963Jun 21, 1966Powers John APrefabricated laminated beam structures
US3283455 *Jul 6, 1964Nov 8, 1966Ador CorpFrame construction for multiple panels
US3320706 *Mar 15, 1965May 23, 1967Barton Elliott NormanPanel joint with sealing strips
US3363383 *Mar 8, 1965Jan 16, 1968Aluminum Co Of AmericaJoint structures
US3381436 *Mar 15, 1965May 7, 1968Barton Elliott NormanBuilding structure with a waterproof seal
US3393487 *Oct 6, 1966Jul 23, 1968Reynolds Metals CoThermally insulating joint construction
US3403490 *Jul 18, 1966Oct 1, 1968Roy H. LuedtkeMetal window construction
US3441995 *Oct 6, 1966May 6, 1969Reynolds Metals CoMethod and apparatus for making a thermally insulating joint construction
US3574985 *Feb 28, 1969Apr 13, 1971Joseph A GarciaPanel and beam roof assembly for building structure
CH411290A * Title not available
DE1245567B *Dec 21, 1963Jul 27, 1967Hueck Fa EVerfahren zum Herstellen eines Rahmens aus Metall fuer Fenster, Tueren od. dgl.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3925953 *Mar 24, 1975Dec 16, 1975Ethyl CorpMethod of making a thermal break construction element
US4067163 *Mar 11, 1977Jan 10, 1978Hetman Frank WThermally insulated and connected window frame members and the method of making the same
US4118266 *May 9, 1977Oct 3, 1978Kerr Jack BMethod for forming an improved insulated metal frame
US4257202 *Mar 10, 1976Mar 24, 1981Armcor Industries, Inc.Aluminum frame window with improved thermal insulation and method of making same
US4409769 *Aug 25, 1980Oct 18, 1983Kawneer Company, Inc.Heat insulated entrance
US4554123 *May 10, 1984Nov 19, 1985Norandex Inc.Process and apparatus for direct extrusion of thermal barrier profiles
US5375376 *Jan 21, 1993Dec 27, 1994Crane Plastics Company Limited PartnershipPolymeric sealing/spring strip and extrusion method of producing same
US7640709Jul 15, 2005Jan 5, 2010Architectural & Metal Systems, LimitedInsulated frame member
US7694472Feb 3, 2003Apr 13, 2010Architectural & Metal Systems LimitedManufacture of thermally insulated frame members
US8001743 *Aug 27, 2007Aug 23, 2011Gsg International S.P.A.Accessory for profiles for sliding windows or doors
EP0125048A1 *Apr 11, 1984Nov 14, 1984British Alcan Aluminium LimitedManufacture of thermally insulated frame members
EP1621716A2 *Jun 18, 2005Feb 1, 2006Architectural & Metal Systems LimitedInsulated frame member
WO2003069105A1Feb 3, 2003Aug 21, 2003Architectural & Metal SystemsManufacture of thermally insulated frame members
Classifications
U.S. Classification52/204.591, 52/309.3, 52/204.1, 52/656.6, 49/DIG.100
International ClassificationE06B3/263, E06B3/267
Cooperative ClassificationY10S49/01, E06B2003/26312, E06B3/2675
European ClassificationE06B3/267B