Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3819119 A
Publication typeGrant
Publication dateJun 25, 1974
Filing dateJun 21, 1973
Priority dateJan 26, 1972
Publication numberUS 3819119 A, US 3819119A, US-A-3819119, US3819119 A, US3819119A
InventorsC Coffey, M Catena
Original AssigneePaint Co H
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sprayer for decorating surfaces
US 3819119 A
Abstract
A glitter coating composition is applied from a manually-operated aerosol spray can by spraying a glitter coating composition comprising solid, highly reflectant, non-leafing polymer-coated metal flakes, a vehicle system therefor, and a propellant by the steps of (1) flowing the glitter coating composition through a passageway of substantially uniform cross-sectional area, (2) expanding the flowing glitter composition in an elongated expansion chamber, and (3) accelerating the expanded flowing glitter composition through a constricted orifice. The glitter coating issues from the orifice in the form of a finely-divided well-mixed spray.
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent r191 Coffey et a1.

[11] 3,819,119 1 June 25, 1974 SPRAYER FOR DECORATING SURFACES [75] Inventors: Charles A. Coffey; Michael J.

1 Catena, both of Tampa, Fla.

[73] Assignee: Harris Paint Company, Tampa, Fla.

[22] Filed: June 21, 1973 I 21 Appl. No.: 372,033

Related US. Application Data [60] Division of Ser. No. 221,033, Jan. 26, 1972, Pat. No. 3,764,067, which is a continuation-in-part of Ser. No. 44,590, June 8, 1970, abandoned.

[52] US. Cl. 239/337, 106/193 M, 117/27, 117/37 R, 117/105, 117/160 R, 222/394,

[51] Int. Cl B05b 7/32, B44d l/O8, B65d 83/14 {58] Field of Search..... 239/337, 1; 222/394, 402.1; 117/37 R, 93.4, 27, 104 R, 104 A, 105, 160 R, 16, 33; 252/305; 260/37 M; 106/193 M; 424/46 [56] References Cited UNITED STATES PATENTS 2,287,053 6/1942 Murphy 117/160 A 2,731,436 l/l956 Stetz et a1 252/305 2,746,796 5/1956 St. Germain... 239/337 X 2,908,446 10/1959 Strouse 222/402.1 2,934,512 4/1960 GOC1Shalk.... 117/160 X 3,111,497 1l/1963 Haas .[117/160X 3,121,642 2/1964 Biskup.... 117/15 3,148,127 9/1964 Marsh t 167/871 3,234,038 2/1966 Stephens et ll7/71 M 3,402,066 9/1968 Calfras [17/104 A 3,583,642 6/1971 Crowell et all 222/402.1 3,684,185 8/1972 Milcos 239/337 OTHER PUBLICATIONS Herzka, International Encyclopedia of Pressurized Packaging (1966) Pergamon Press, pp. 532, 545 and 546.

Felsher et al., Paint And Varnish Production, May, 1963, pp. 42-45.

Primary Examiner-Robert S. Ward, Jr. Attorney, Agent, or Firm-Edwin E. Greigg 57] ABSTRACT 6 Claims, No Drawings SPRAYER FOR DECORATING SURFACES This is a division of application Ser. No. 221,033, filed Jan. 26, 1972 and now US. Pat. No. 3,764,067 which is a continuation-in-part of application Ser. No. 44,590, filed June 8, 1970 and now abandoned, entitled Method for Decorating Surfaces.

SUMMARY OF THE INVENTION This invention relates to a method for depositing solid, highly reflectant, non-leafing, sparkling, colored, macro, polymer-coated metal flakes on any primed or unprimed substrate, e.g. styrofoam, metal, wood, plastic, paper, which can support a film.

Colored metal flakes in the macro" size range have heretofore been limited to application from conventional, heavy-duty spray equipment, or have had to be roller coated, screen printed, cast, flocked, or extruded.

It is an object of this invention to apply, solid, highly reflectant, non-leafing, colored, macro size metal flakes from a manually-operated aerosol spray can. By the practice of this invention, students, artists, home handymen, housewives, auto enthusiasts, and the like can apply dramatic glitter coatings to numerous substrates and can obtain esthetically pleasing effects previously unavailable except by using heavy-duty spray equipment.

Prior to this invention, it was known in the art to apply micro leafing metal particles from manuallyoperated spray cans. The formulations used by Felsher et al. (Paint and Varnish Products, May, 1963, at p. 45), by Herzka (International Encyclopedia of Pressurized Packaging, Pergamon Press, 1966, at pgs. 545, 546), and by Stetz et al. (US. Pat. No. 2,731,436) create a mirror-like surface by the use of leafing metal flakes, usually in the size range of 200-325 mesh (00029-00017 inch). Coatings made by aerosol application of these formulations feel smooth, show a decided tendency to crock, and become dull after a short time.

Stephens et al. (US. Pat. No. 3,234,038) teach the use of 100-200 mesh (00058-00029 inch) nonleafing aluminum flakes in a formulation applied from conventional heavy-duty spray equipment to a primed surface and then baked. A transparent lacquer overcoat is required. The compositions do not adhere satisfactorily to unprimed surfaces and are relatively dull grey in appearance.

Coatings made according to the present invention appear sparkling and glittery and feel rough to the touch. Good adhesion to unprimed surfaces, e.g. metal, wood, plastic, paper, is obtained by the simple process of spraying the glitter coating composition from a manually-operated aerosol can. No overcoat is required, since the glitter coatings show virtually no tendency to peel, crock, or rub off.

The effect produced by the solid, highly reflectant, non-leafing, polymer-coated metal flakes of this invention is thought to reside in propelling the flakes onto a substrate in a random, unoriented fashion. Rapid evaporation of volatile solvent from the vehicle results in the flakes being embedded randomly in the resin from the vehicle system. Each flake is thought to be coated with a thin layer of resin. Part of the brilliance and sparkle of the coatings of this invention is thought to be due to reflectance of light through the coating on each metal flake.

The size of the macro metal flakes used in the practice of this invention may be varied according to the effect desired. Use of a larger size flake gives a more dramatic appearance to the substrate sprayed than use of smaller flakes. The size of the metal flake may vary from about 0.004" X 0.002" X 0.00032" to about 0.008" X 0.008" X 0.001". Flakes in the range from 0.004" X 0.002" X 0.00045 to 0.008" X 0.008" X 0.00045" are preferred. Tolerances are within 1 5% in both surface dimensions and thickness.

Metal flakes particularly preferred for the purpose of this invention are precision-cut, regular shapes of highly polished aluminum foil coated with a variety of coatings, depending on the type of colored flake desired. The epoxy coated type are aluminum foil flakes coated with a pigmented, or unpigmented, baked epoxy resin. The vinyl coated type are aluminum foil flakes coated with a pigmented, or unpigmented, vinyl resin. The nitrocellulose coated type are aluminum foil flakes coated with a pigmented, or unpigmented, nitrocellulose type lacquer.

Colors of the flakes include the following, or mixtures thereof:

Bright Silver Purple Sand Prussian Blue Pale Gold Royal Blue Dark Gold Medium Blue Golden Fiesta Aqua Chartreuse Emerald Golden Orange Lavender Bright Orange Brilliant Copper Apricot Antique Brown Brilliant Red Black Fuchsia Vehicle systems which have successfully been used in this method include conventional acrylic resins, e.g. F-10 [a poly(methyl methacrylate) (Rohm and Hass Co. )1; alkyd resins, e.g. vinyltoluene soya alkyd; methyl cellulose; and the like. The polymer used in the vehicle system may be any polymer which is not reactive with the coating on the metal flakes. The vehicle composition is limited only by the strength of the solvents used. Solvents used in the aerosol formulations should be of low solvent strength. However, this does not preclude the use of minor percentages of strong solvents. Very strong solvents are to be avoided, as they could possibly solubilize and extract colorants from the coated aluminum flakes.

Propellants used include both halogenated types and hydrocarbon types of conventional aerosol propellants.

In the examples infra there will be shown a base consisting of the metal flakes and vehicle therefor. This base is delivered to an open aerosol can, suitable agitators are added (spherical marbles or rivets are adequate); the spray valve is crimped onto the aerosol can, and the propellant is injected into the can. While low temperature filling is possible, the injection method is more suited to the practice of this invention.

Conventional, cylindrical aerosol cans of any size can be used for the practice of this invention; four ounce to 16 ounce cans are preferred.

The velocity at which the glitter coating composition is exhausted from the spray can is a critical aspect of successful application of compositions containing macro flakes from a spray container. Conventional sprayheads apparently confine the mixing and atomization of spray compositions to a localized region adjacent to the nozzle outlet. An unsatisfactory spray pattern often results, particularly with liquid products containing dispersed solid particles or flakes, e. g. speciality paints containing flakes of metallic, plastic, or glass glitter. The particles in these products apparently serve as nuclei for agglomeration of liquid in relatively large droplets which collect in the area between the sprayhead and the valve mounting cap. As exhaustion of the aerosol from the can is continued, the bulk of collected fluid is carried by entrainment as a blotch, spatter, or unsightly non-uniform area on the substrate being sprayed. These poor results become even more poor as the size of the suspended flakes or particles increases.

A sprayhead suitable for propulsion of macro particles of this invention requires the incorporation of an elongated expansion chamber upstream of the nozzle orifice. The diameter of the expansion chamber should ideally be significantly larger than that of the passageway leading to the valve from a dip tube or other means for conveying glitter coating composition to the passageway of the sprayhead.

The length of the expansion chamber should preferably be several times its diameter. For example, a sprayhead incorporating an expansion chamber at least five times as long as its diameter not only gives a spray pattern of greatly improved uniformity, but also gives increased product flow rate for a given nozzle orifice diameter and propellant pressure.

Thus, in the operation of this invention, the glitter coating composition and propellant mixture undergoes the steps of 1) flow through a passageway of substantially uniform cross-sectional area, (2) expansion within an elongated expansion chamber, and (3) acceleration through a constricted orifice. The glitter coating issues from the orifice in the form of a finelydivided well-mixed spray.

In a particularly useful sprayhead, the expansion chamber is placed angularly with respect to the passageway of the sprayhead. Glitter coating composition first passes through the passageway of substantially uniform cross-sectional area. The abrupt change of direction which the composition undergoes as it enters the expansion chamber induces a swirling flow which promotes intimate mixing of flakes, vehicle, and vaporizing propellant as the composition passes through the expansion chamber prior to issuing from the constricted orifice as a very fine spray.

Dimensions of a typical sprayhead which gives results useful for the purpose of this invention are:

Inlet slot 0.060" X 0125" Chamber 0.112" diameter X 0.625 long Orifice 0.032" diameter While the invention is not limited to specific sprayhead slots and orifices, the following sprayheads, manufactured by Newman-Green, Inc., have been found to be suitable:

Valves useful in the practice of this invention include B and R type valves manufactured by Newman-Green, Inc. of Addison, Illinois. Valves denoted Rl0l28 and B-l4-l0-l28 are especially useful, although other valves of these series are operative.

When larger sized metal flakes are used, the use of a vapor tap valve assembly is preferred, as this assembly substantially eliminates the possibility of the valve dip tube becoming clogged with metal flakes. The vapor tap feature is available on both B and R type valves, supra.

To further ensure elimination of clogging the valve dip tube with macro flakes, the dip tube should terminate slightly above the level normally occupied by a compacted sludge of metal flakes of the coating composition which forms between successive usages of the aerosol spray can. Negligible loss of material results from this arrangement of the dip tube.

Before spraying the product of this invention, the coating composition is agitated thoroughly by shaking the aerosol can. The spherical marbles or rivets charged to the can operate as agitating means. Label directions on the can should indicate the need for frequent shaking to assure that equal aliquots of macro flakes and vehicle are discharged throughout the use of a given spray can.

In the practice of the invention, aerosol formulations are charged into the aerosol can, the sprayhead is affixed, the aerosol can is shaken to ensure distribution of the contents, the sprayhead is pressed, and the valve assembly is actuated to deliver the product onto the desired substrata.

The following are examples of formulations that may be used:

EXAMPLE 1 Base 2.0 g F- l 0 Rohm and Haas Acrylic Solution 4.0 g Pale Gold Epoxy 0.008" X 0.006" X 0.00045" Flake 39.0 g Textile Spirits Amsco Propellent -SS.O g Freon l2/Vinyl Chloride Blend 65%/35% Du Pont EXAMPLE 2 Base 2.5 g F-l0 3.0 g Pale Gold Epoxy 0.008" X 0.006" X 0.00045" 67.5 g Cyclohexane Am. Min. Sp. Propellant 30.0 'g A- Hydrocarbon Propellant Aeropres, Inc.

EXAMPLE 3 Base 20.0 g F-lO 2.0 g Pale Gold Epoxy 0.008" X 0.008" X 50.0 g Process Naphtha Humble Oil 0.1 g DC-200 Silicone Dow Corning 0.9 g Toluol Propellant 30.0 g A-70 Hydrocarbon Propellant EXAMPLE 4 Base-250g F-10 25.0 g Process Naphtha 2.0 g Pale Gold Epoxy 0.008" X 0.004 X Propellant 50.0 g Freon l2/Vinyl Chloride EXAMPLE 5 Base-300g F-lO 20.0 g Process Naphtha 0.1 g DC-200 Silicone 0.9 g Toluol 2.0 g Pale Gold Epoxy 0.008" X 0.008" X Propellant 50.0 g Freon 12/Vinyl Chloride EXAMPLE 6 Base 5.0 g Pale Gold Epoxy 0.008 X 0.008" X 0.00045" 0.5 g Malori Maroon Tint Paste 15.0 g Vinyl Toluene Soya Alkyd Solution 60% N 30.0 g Process Naphtha Propellant 50.0 g Freon l2/Vinyl Chloride 65%/35% EXAMPLE 7 Base 5.0 g Pale Gold Epoxy 0.008" X 0.008" X 0.00045" 0.25 g Phthalo Green Tint Paste 15.0 g Vinyl Toluene Soya Alkyd Solution 60% V 25.0 g Process Naphtha Propellant 55.0 g Freon l2/Vinyl Chloride 65%/ 35% EXAMPLE 8 Base 4.0 g Pale Gold Epoxy 0.008" X 0.008" X 0.00045" 20.0 g Vinyl Toluene Soya Alkyd Solution 60% V N M 36.0 g Process Naphtha 10.0 g lsopropyl Alcohol Propellant 30.0 g A-70 Propellant EXAMPLE 9 EXAMPLE 10 Base 25.0 g F-l 25.0 g Process Naphtha 2.0 g Silver Vinyl Coated Flake 0.008" X 0.004

X0.00l Propellant 50.0 g A- Hydrocarbon Propellant EXAMPLE 1 1 Base 4.0 g Medium Blue Nitrocellulose Coated Aluminum Flakes 41.0 g Water 5.0 g 3% Methocel CPS 4000 in water 30.0 g lsopropyl Alcohol 0.4 g Emcol 14 Propellant 20.0 g A-70 Hydrocarbon Propellant It will be apparent from the foregoing examples that color can be imparted to the vehicle by inclusion therein of a dye or transparent pigment. By the use of transparent colored and colorless vehicles and by the use of metal flakes coated with unpigmented and pigmented resins, a myriad variety of glitter effects can be obtained.

That which is claimed is:

1. A manually-operated aerosol can of glitter coating composition comprising a fluid-tight can provided with a dispensing means for a glitter coating composition, wherein the glitter coating composition comprises from about 0.5% to about 10% of solid, highly reflectant, non-leafing, polymer-coated metal flakes, from about 40 to about 83% of a vehicle system for the metal flakes, and from about 15 to about 55% of an aerosol propellant, and wherein the dispensing means comprises a sprayhead in which an elongated expansion chamber is incorporated between a constricted orifice and an elongated passage of substantially uniform cross-sectional area through which said glitter coating composition flows into the sprayhead.

2. The manually-operated aerosol can of claim 1, wherein said sprayhead is provided with a vapor tap.

3. The manuallyoperated aerosol can of claim 1, wherein said sprayhead is provided with a vapor tap and wherein a means through which said glitter coating composition flows into the elongated passage of substantially uniform cross-sectional area terminates slightly above a level normally occupied by a compacted sludge of said metal flakes between successive usages of said aerosol can.

4. The manually-operated aerosol can of claim 1, wherein the elongated expansion chamber is placed angularly with respect to the elongated passage.

5. The manually-operated aerosol can of claim 1,

wherein the elongated expansion chamber is placed anof said aerosol can.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2287053 *Oct 11, 1938Jun 23, 1942Chadeloid Chemical CoAluminum bronze containing compositions
US2731436 *Feb 25, 1950Jan 17, 1956Engine Parts Mfg CompanyMetallic paint
US2746796 *Aug 5, 1953May 22, 1956Pharma Craft CorpMetering valve aerosol bottle
US2908446 *May 18, 1956Oct 13, 1959Strouse IncSpray tube
US2934512 *Sep 20, 1954Apr 26, 1960Du PontCoating composition of methyl methacrylate polymer, copper bronze pigment, and transparent colored pigment and article coated therewith
US3111497 *Aug 12, 1960Nov 19, 1963Kenner Products CompanyAqueous polyvinyl alcohol coating composition containing aluminum glitter pigment
US3121642 *Sep 29, 1961Feb 18, 1964Congoleum Nairn IncProcess for producing decorative surface covering
US3148127 *May 16, 1960Sep 8, 1964American Home ProdAqueous pvp solution in two phase aerosol hair spray
US3234038 *Feb 14, 1962Feb 8, 1966Pittsburgh Plate Glass CoResinous compositions employing nonleafing aluminum flake
US3402066 *Jun 30, 1965Sep 17, 1968William E. CaffrayMethods of making decorative articles
US3583642 *Dec 10, 1969Jun 8, 1971Johnson & Son Inc S CSpray head for an aerosol dispenser
US3684185 *Nov 13, 1970Aug 15, 1972Avon Prod IncValve actuator
Non-Patent Citations
Reference
1 *Felsher et al., Paint And Varnish Production, May, 1963, pp. 42 45.
2 *Herzka, International Encyclopedia of Pressurized Packaging (1966) Pergamon Press, pp. 532, 545 and 546.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4501825 *Jun 28, 1984Feb 26, 1985Pennzoil CompanyTire sealer and inflator
US5188263 *Jul 22, 1991Feb 23, 1993John R. WoodsSpray-on wall surface texture dispenser
US5655691 *May 26, 1995Aug 12, 1997Homax Products, Inc.Spray texturing device
US5934518 *Jun 5, 1997Aug 10, 1999Homax Products, Inc.Aerosol texture assembly and method
US5957341 *Mar 17, 1997Sep 28, 1999Peter Kwasny GmbhSpray can
US6048422 *Sep 16, 1998Apr 11, 2000Kim, Ii; JohnMethod of applying glitter and the like to non-planar surfaces and three-dimensional articles
US7207497Feb 22, 2003Apr 24, 2007Clark Rikk ADry flake sprayer and method
US8017187Dec 8, 2005Sep 13, 2011Aerochrome LimitedFlake pigment mixture and multilayer coating method
US8251255Mar 16, 2010Aug 28, 2012Homax Products, Inc.Aerosol spray texture apparatus for a particulate containing material
US8313011Dec 12, 2011Nov 20, 2012Homax Products, Inc.Systems and methods for applying texture material to ceiling surfaces
US8317065Oct 4, 2011Nov 27, 2012Homax Products, Inc.Actuator systems and methods for aerosol wall texturing
US8336742Oct 25, 2011Dec 25, 2012Homax Products, Inc.Aerosol systems and methods for dispensing texture material
US8342421Oct 18, 2011Jan 1, 2013Homax Products IncTexture material for covering a repaired portion of a textured surface
US8353465Oct 11, 2011Jan 15, 2013Homax Products, IncDispensers for aerosol systems
US8505786Nov 26, 2012Aug 13, 2013Homax Products, Inc.Actuator systems and methods for aerosol wall texturing
US8551572Sep 11, 2012Oct 8, 2013Homax Products, Inc.Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8561840Aug 28, 2012Oct 22, 2013Homax Products, Inc.Aerosol spray texture apparatus for a particulate containing material
US8573451Jul 19, 2012Nov 5, 2013Homax Products, Inc.Actuator systems and methods for aerosol wall texturing
US8580349Dec 6, 2011Nov 12, 2013Homax Products, Inc.Pigmented spray texture material compositions, systems, and methods
US8584898Nov 20, 2012Nov 19, 2013Homax Products, Inc.Systems and methods for applying texture material to ceiling surfaces
US8622255May 8, 2012Jan 7, 2014Homax Products, Inc.Aerosol systems and methods for dispensing texture material
US8701944Aug 9, 2013Apr 22, 2014Homax Products, Inc.Actuator systems and methods for aerosol wall texturing
US8784942Oct 7, 2013Jul 22, 2014Homax Products, Inc.Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8820656Jan 15, 2013Sep 2, 2014Homax Products, Inc.Dispenser for aerosol systems
US8844765Feb 13, 2013Sep 30, 2014Homax Products, Inc.Aerosol spray texture apparatus for a particulate containing material
US8883902Dec 31, 2012Nov 11, 2014Homax Products, Inc.Aerosol dispensing systems and methods and compositions for repairing interior structure surfaces
US8887953Nov 19, 2013Nov 18, 2014Homax Products, Inc.Systems and methods for applying texture material to ceiling surfaces
US8916181 *Oct 6, 2011Dec 23, 2014The Sherwin-Williams CompanyGlitter aerosol coating composition
US8985392Dec 31, 2013Mar 24, 2015Homax Products, Inc.Systems and methods for applying texture material to ceiling surfaces
US9004316Oct 21, 2013Apr 14, 2015Homax Products, Inc.Aerosol spray texture apparatus for a particulate containing material
US9004323Jan 3, 2014Apr 14, 2015Homax Products, Inc.Aerosol systems and methods for dispensing texture material
US9079703Nov 4, 2013Jul 14, 2015Homax Products, Inc.Actuator systems and methods for aerosol wall texturing
US9132953Aug 29, 2014Sep 15, 2015Homax Products, Inc.Dispenser for aerosol systems
US9156042Jul 27, 2012Oct 13, 2015Homax Products, Inc.Systems and methods for dispensing texture material using dual flow adjustment
US9156602May 17, 2013Oct 13, 2015Homax Products, Inc.Actuators for dispensers for texture material
US9181020Apr 22, 2014Nov 10, 2015Homax Products, Inc.Actuator systems and methods for aerosol wall texturing
US9187236Aug 10, 2011Nov 17, 2015Homax Products, Inc.Aerosol system for repairing a patched portion of a surface
US9248457Jul 27, 2012Feb 2, 2016Homax Products, Inc.Systems and methods for dispensing texture material using dual flow adjustment
US9248951Dec 31, 2012Feb 2, 2016Homax Products, Inc.Texture material for covering a repaired portion of a textured surface
US9382060Aug 5, 2014Jul 5, 2016Homax Products, Inc.Spray texture material compositions, systems, and methods with accelerated dry times
US9415927Jul 22, 2014Aug 16, 2016Homax Products, Inc.Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US9435120Mar 13, 2013Sep 6, 2016Homax Products, Inc.Acoustic ceiling popcorn texture materials, systems, and methods
US9580233Aug 15, 2016Feb 28, 2017Ppg Architectural Finishes, Inc.Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US9592527Jun 10, 2016Mar 14, 2017Ppg Architectural Finishes, Inc.Spray texture material compositions, systems, and methods with accelerated dry times
US20040195367 *Feb 22, 2003Oct 7, 2004Clark Rikk A.Dry flake sprayer and method
US20080075851 *Dec 8, 2005Mar 27, 2008Adam Robertson-YoungFlake Pigment Mixture And Multilayer Coating Method
WO2006061635A1 *Dec 8, 2005Jun 15, 2006Aerochrome LimitedFlake pigment mixture and multilayer coating method
Classifications
U.S. Classification239/337, 524/903, 222/192, 222/402.1, 222/394, 523/205
International ClassificationB65D83/14, B05D1/02, B05D5/06, B44F1/04
Cooperative ClassificationC09D5/004, B65D83/752, B05D2601/02, B05D1/02, B44F1/04, B05D5/067, Y10S524/903
European ClassificationB65D83/752, C09D5/00C, B44F1/04, B05D1/02, B05D5/06T