Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3819468 A
Publication typeGrant
Publication dateJun 25, 1974
Filing dateJun 28, 1971
Priority dateJun 28, 1971
Also published asCA964058A1, CA1039947B, DE2231658A1, DE2231658B2, DE7224179U
Publication numberUS 3819468 A, US 3819468A, US-A-3819468, US3819468 A, US3819468A
InventorsJ Mase, R Sauder, G Kendrick
Original AssigneeSander Ind Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High temperature insulation module
US 3819468 A
Abstract
A ceramic fiber mat attached to the interior wall or surface of a high temperature chamber or furnace or adapted to overlie an intermediate insulating member positioned between the mat and a furnace wall, the fibers in the mat lying in planes generally perpendicular to the wall, the mat constituting an improved insulation for the wall where the interior of the chamber or furnace will be operating at temperatures in excess of 1600 DEG F.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Sauder et al.

1111 3,819,468 [4 June 25, 1974 HIGH TEMPERATURE INSULATION MODULE Inventors: Robert A. Sauder; Gary R.

Kendrick; John R. Mase, all of Emporia, Kans.

[73] Assignee: Sander Industries, Inc., Emporia,

Kans.

Filed: June 28, 1971 Appl. No.: 157,433

US. Cl 161/152, 52/270, 52/699, 156/71, 156/92, 161/156, 336/186 Int. Cl C04b 43/02 Field of Search l6l/l51, 48, 50, 60, 69, 161/102, 152,156, 157, 170; 156/71, 92; 336/186; 52/270, 699

References Cited UNITED STATES PATENTS 1591; 12/1961 Slayter 156/622 3,118,807 l/1964 Holcomb 161/196 Primary Examiner-Marion E. McCamish Attorney, Agent, or Firm-Amold, White & Durkee [5 7] ABSTRACT A ceramic fiber mat attached to the interior wall or surface of a high temperature chamber or furnace or adapted to overlie an intermediate insulating member positioned between the mat and a furnace wall, the fibers in the mat lying in planes generally perpendicular to the wall, the mat constituting an improved insulation for the wall where the interior of the chamber or furnace will be operating at temperatures in excess of 1600 F.

20 Claims, 15 Drawing Figures INVENTORS ATTORNEY PATENTEB sum 1 or 2 Fig.1.? Fig.14 Fig. 15

1 HIGH TEMPERATURE INSULATION MODULE CROSS-REFERENCE TO RELATED APPLICATIONS FIELD OF THE INVENTION The present invention relates to a method and apparatus for insulating the interior of a high temperature furnace and more particularly to a ceramic fiber mat constituting the hot face of the insulation and wherein substantially all of the fibers in the fiber mat lie in planes which are generally perpendicular to the various walls of the furnace.

TI-IE PRIOR ART The problems involved in insulating the interior of a high temperature furnace or, stated differently, the walls and ceiling of such a furnace are well known. Historically, the interiors of high temperature furnaces have been lined with various types of bricks capable of withstanding these high temperatures. When the brick lining wears out, however, it is an arduous and timeconsuming task to replace the old brick with a new brick lining. On the other hand, efforts have been made to insulate the interior of a furnace where the interior or hot face of the insulation includes or consists of ceramic fiber material. Ceramic fiber material, as referred to herein, is generally available in the form of a ceramic fiber blanket which is customarily manufactured in a manner similar to the conventional papermaking process. As such, the fibers which constitute the blanket, (as is also the case in connection with paper) are oriented in planes which are generally parallel to the longitudinal direction of formation of the blanket or sheet. When, as proposed in the past, lengths of ceramic fiber blanket are placed against a furnace wall or overlying an intermediate insulating member which, in turn, would be attached to the furnace wall, the fibers will then be lying in planes generally parallel to the furnace wall. Also, it is believed that a majority of these fibers will be lying in a direction which would tend to be colinear with the direction of formation of the blanket itself, although a considerable number of fibers are still in a more or less random disposition in these planes, Nevertheless, where the fibers are disposed in planes which are parallel to the furnace wall, there is a tendency for the fiber blanket material to produce cracks which result from heat shrinkage.

With certain types of insulation it is recognized that high temperature problems sometimes involve melting, oxidation and other types of deterioration of the insulating medium. As far as ceramic fiber insulation is concerned, the high temperature problems are generally cracking, delamination (peeling off of the surface layers), and devitrification, all of which are believed to be interrelated. At the lower temperatures of the recommended range of the present invention, namely, 1600 to 2800 F, devitrification will take place relatively slowly, whereas at the higher end of the range, devitrification will take place quite rapidly, followed, in short order, by cracking and/or delamination.

In retrospect, the prior art broadly discloses the feature of re-orienting fiber insulation, but only in connection with low temperature insulation. For example, Di Maio et al. U.S. Pat. No. 2,949,593 and Slayter U.S. Pat. No. 3,012,923 both show the cutting of strips of fibrous material from a sheet or mat of the same, ar-

ranging the strips in a side-by-side relation to provide an end fiber exposure, compressing the strips and, while still compressed, applying an adhesive backing sheet of paper or cloth to one side edge only of the resulting compressed block; thereafter when the forces of compression are removed the resulting block will tend to curl around the adhesive sheet so as to form a suitable insulating body for pipe or the like. However, the resulting insulation is necessarily low temperature insulation because the pipe is in direct contact with the heating or cooling medium which it carries; the insulation is used on the external surface of the body or pipe to be insulated; the sole purpose in arranging the strips in an end or edgewise exposure of the fibers is to permit compression of the strips so that, after one side edge is secured in place by means of the backing strip, advantage can be taken of the relatively greater expansibility along the unsecured edge.

SUMMARY OF THE INVENTION The present invention involves the use of a ceramic fiber mat which can be applied either directly to the interior of a high-temperature furnace or to an intermediate insulating member which, in turn, is attached to one of the furnace walls. The term wall should be construed as covering any side wall or ceiling, removable or fixed, the area surrounding any access opening and any other surface on the interior of the hightemperature chamber where insulation is required or desired. The term furnace should be construed as covering any high-temperature chamber, oven, heater, kiln or duct with the understanding that the insulation is always internal and always high-temperature, namely capable of operating at temperatures in excess of l600 F.

The ceramic fiber mat is preferably made up of strips which are cut transversely from a length of ceramic fiber blanketing which is commercially available. The strips are cut from the fiber blanket in widths that represent the linear distance from the cold face to the hot face of the insulating fiber mat. The strips which are cut from the blanket are placed on edge and laid lengthwise adjacent each other with a sufficient number of strips being employed to provide a mat of the desired width. Naturally, the thickness of the fiber blanket from which the strips are cut will determine the number of strips required to construct the mat. The strips can be fastened together by wires, or by ceramic cement or mortar which is preferably employed in the region of the cold face of the mat. The mat can be applied to the furnace wall or to an intermediate member by means of a stud welding method or by ceramic cement, mortar, or the like.

As disclosed herein, the present invention has partic-, ular application for the internal insulation of furnace walls of high temperature furnaces. For the purposes of the present invention, high temperature" will mean temperatures in excess of 1600 F and, preferably, in the range of l600 F to 2800 F. The ceramic fiber strips referred to herein are cut from a ceramic fiber blanket which is commercially available from several different manufacturers; these blankets are manufactured under the trademarks or tradenames Kaowool (Babcock & Wilcox), Fiber-Frax (Carborundum Co.), Lo-Con (Carborundum C0,), and Cero-Felt (Johns Manville Corp.). Most of these ceramic fiber blankets have an indicated maximum operating temperature of about 2300 F. The end or edge fiber exposure provided by the present invention not only provides an improved insulation up to the maximum indicated operatingtemperatures suggested by the manufacturers, but because devitrification and its deleterious effects are largely eliminated, also permits operation up to about 2800 F.

By arranging the fibers in an end or edgewise exposure; that is, where the fibers are oriented in planes generally perpendicular to the wall of the furnace, devitrification is not necessarily avoided but its undesirable side effects are minimized or eliminated because devitrification takes place at the ends of the fibers rather than along the lengths thereof; thus cracking and delamination are essentially avoided by the present invention even up to a temperature of 2800 F which is above the recommended maximum temperature specifications imposed upon the fiber blankets by the manufacturers.

The present invention also provides an insulation which will maintain the outside (cold face) of the furnace within an acceptable range. It is recognized that the minimum external temperature will be dependent upon a number of different factors including, but not limited to, the type, thickness and strength of the outside furnace wall; ambient temperature conditions outside the furnace wall. The use of the present invention, however, will provide an outside temperature varying between 200 and 350 F which is considered to be an acceptable range, the temperature being measured in still air at 83 F.

Another advantage which accrues from the use of the fiber blanket (or strips thereof) in the end or edge exposure of the fibers is that the resulting mat has a certain resiliency in a direction parallel to the insulated face. Thus, where metallic fasteners are employed to attach the mat or composite block to the interior wall of the furnace or oven by burying" or imbedding the fastener in the insulating member, this natural resiliency of the material will tend to keep the ends of the fastening elements completely covered at all times; this is true even if a tool is inserted in or through the fiber material to engage the metallic fastener for turning or welding purposes; after the tool has been withdrawn the natural resiliency of the fibrous material, as presently oriented, will cause the material to spring back and completely cover the outer end of the metallic fastening member.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a fragmentary plan view of an insulating mat made from strips of a ceramic fiber blanket;

FIG. 2 is a fragmentary side elevation of the ceramic fiber mat shown in FIG. 1;

FIG. 3 is an end elevation of the ceramic fiber mat shown in FIG. 1; I

FIG. 4 is a plan view of another embodiment of a ceramic fiber mat made in accordance with the present invention;

FIG. 5 is a side elevation of the ceramic fiber mat shown in FIG. 4 with certain internal connecting members shown in dotted lines and further showing the association of the resulting insulating member with a furnace wall;

FIG. 6 is an end elevation of the ceramic fiber mat shown in FIG. 5;

FIG. 7 is a view similar to FIG. 6 showing a method of stud welding of the resulting insulating member to a furnace wall;

FIG. 8 is an enlarged and fragmentary detail view, with certain parts in cross-section, of the stud, nut and associated structure involved;

FIG. 9 is a view similar to'the lower portion of FIG. 8 showing the relationship of the various parts following the welding operation;

FIG. 10 is an enlargement, on a slightly larger scale, of the retaining ring shown in FIG. 8;

FIG. 11 shows a parquet-type arrangement of insulating members on a furnace wall;

FIG. 12 shows an enlargement of insulating members on a furnace wall with spaces between adjacent members being filled with separateinsulating elements;

FIG. 13 shows one embodiment of a separate insulating element to be inserted between adjacent insulating members; I

' FIG. 14 is another embodiment of a separate insulating element to be inserted between adjacent insulating members; and

FIG. 15 is still another embodiment of a separate insulating element to be inserted between adjacent insulating members.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings in detail, FIG. 1 shows a portion of the outer surface (hot face) of an insulating mat, generally designated by the reference character 20, composed of a plurality of strips 22 which are cut transversely from a ceramic fiber blanket (not shown). As indicated heretofore, these ceramic fiber blankets are generally provided in widths of several feet, of thicknesses generally ranging from one-sixteenth of an inch to three inches and of almost any desiredlength; the manufacturer generally rolls up the blankets lengthwise so that, when supplied, these blankets are in the form of rolls whose diameters are dependent upon the length of material in the roll. When the strips 22 are cut from the fiber blanket they are cut in a direction of the thickness perpendicular to the width and length so that the lowermost strip 22 shown in FIG. 1 has a dimension T which represents the thickness of the fiber blanket from which the strips 22 are cut.

The strips 22, after they are cut from the fiber blan ket, are placed on edge adjacent each other until the desired width of mat is obtained as shown in FIG. 1. Obviously, the number of strips required will depend upon the thickness T of the fiber blanket from which the strips are cut. If a fiber blanket could be provided of thickness twice that of T, then only one half of the number of strips shown in FIG. 1 would be required. Furthermore, if it were possible to provide a fiber blanket having a thickness equal to the width of the resulting block or mat therefor, then only one such strip would be employed in connection with each insulating block.

The strips 22 are held together by any convenient means; as best shown in FIGS. 1 to 3, the strips 22 are held together by means of a plurality of stainless steel wires 24 which run transverse to the strips approximately one-half inch from and parallel to the cold face 26 of the mat. The ends of the wires 24 are bent at right angles as shown so as to be retained in.position. Various methods and means can be used in conjunction with these wires 24 to attach the mat to a sheet or block of backing type insulation 28 (see FIGS. 5 and 6); for example, a plurality of hairpin-type devices can be placed over the wires 24 at various positions along their length so as to project down below the cold face 26 of the mat 20. Actually, these pins 30 will be driven into the block of backing type insulation 28 and, preferably, these hairpin devices 30 will be of the selfclenching type when they are urged against a hard surface as will appear hereinafter.

Although the mat shown in FIGS. 1 and 2 (and the resulting insulation member comprised thereof) is represented as having a width of approximately one foot and a length of possibly several feet, the preferred shape is shown in FIGS. 4 to 7. The resulting insulating member shown in these figures would have a nominal twelve inch by twelve inch face size and a 2300 F temperature rating. The actual face size will be 12%"Xl 2%", the additional 1" insuring fullness in the installed insulation while providing a net twelve inch by twelve inch coverage. Intermediate strips 22 and the outer strips 34 (later to be described) are cut to their respective sizes from one inch thick ceramic fiber blanket. The block of insulation 28 is mineral block insulation which, in this case, is cut to a size two inches thick, ten inches wide and twelve inches long. Since the outer strips 34 overlie the longitudinal side edges of the block 28, these strips would be two inches longer (in the vertical direction as they appear in FIG. 7) than the intermediate strips 22'. It might also be mentioned that a hole 36 is drilled in the center of the block 28 so as to receive a stud (later to be described).

Parts 34 and 22 are now laid side by side to form the hot face and are secured together by means of the stainless steel wires 24 which are bent ninety degrees at the ends to hold them in place. As shown in FIGS. 4 and 5, two such wires 24 are provided for the insulating member shown in these figures, although additional number of wires could be provided if desired.

The next step in the assembly of the insulating member involves the installation of the stud which will now be described. The stud comprises a central shank 38 having nut 40 threadedly mounted at the upper end thereof. A washer 42 is provided on the shank 38 immediately below the nut 40. When installed, the washer 42 will rest against the upper surface of the block 28. The lower end of the shank 38 is provided with a stud tip 44 of relatively smaller cross sectional area. Also mounted on the lower end of the shank 38 are a ring retainer 46 received in the groove 48 and a ring-shaped ceramic arc shield 50 which is secured to the ring 46 by cement or in any other suitable manner. The purposes of the foregoing elements will be described hereinafter in greater detail.

At any event, after the stud (with associated elements attached) is inserted into the hole 36 in the manner described above, the prior assembly of parts 22', 34 and 24 are placed over the block 28 with the lower parts of the side strips 34 overlying the two longitudinal side edges of the block 28. Four hairpin-type stainless steel fasteners 30 (two for each wire 24) are now inserted into the seams between the strips 22 so as to engage the wires 24. These fasteners 30 are driven through and clenched against the back surface of the block 28. By providing a hard surface, preferably steel, below the block 28 when the fasteners 30 are inserted, the lower ends of these fasteners will clench towards each other as shown in FIG. 5. When the tool (not shown) for inserting the fasteners 30 is withdrawn from the seams, the strips 22' will return to their original position with out leaving any gap or aperture because of the inherent resiliency of these strips.

The resulting insulation member, now complete, is ready for installation against a furnace wall 32 by means of a stud welding process which is more fully described and claimed in the patent entitled Method and Apparatus for Stud Welding referred to above. The method and apparatus for stud welding (as described in the aforementioned copending application) forms no part of the present invention but is described briefly hereinafter merely to show one manner of attachment of the insulating member 20' to a furnace wall. A stud welding gun 52 is inserted into the central seam between the rniddle strips 22' until the lower end of the gun engages the nut 40 of the stud. The stud gun is triggered and current flows into the shank 38 and into the tip 44. The tip 44, because of its relatively small cross sectional area burns away and thus starts an arc. The stud shank 38 does not itself move at first because it is supported by the self-locking ring retainer 46 which is retained in the groove 48 as indicated heretofore. As best shown in FIG. 10, the ring retainer 46 is provided with a plurality of radial fingers 54 which project into the recess 48 to hold the ring 46 in position. As the welding operation continues, the intense heat of the arc burns away the fingers 54, thus allowing the stud shank 38 to plunge into the molten metal formed by the arc. At this point, the weld is completed and the gun can be withdrawn. It should be mentioned, however, that the ring retainer 46 and the fingers 54 thereon are carefully sized so that the fingers will burn away, melt, or soften in approximately two tenths of a second, or within whatever period of time is deemed appropriate, all as set forth more fully in the aforementioned copending application.

Now, it may be desirable to tighten the nut 40 on the shank 38. This can be done by merely rotating the gun about the vertical axis of the shank. It might be mentioned that the lower end of the gun (or extension thereof, if desired) is provided with a hexagonal opening corresponding to the size of the nut 40 and of sufficient depth to accommodate for the upper end of the shank 38 after the nut is tightened thereon. Thus the gun 52 serves a secondary function as a wrench for the nut. When the stud gun is withdrawn, the resiliency of the ceramic fiber strips will cause the strips to return to their original position thus concealing and protecting the studs from the severe heat in the furnace.

Returning now to further consideration of FIGS. 4 and 5, it should be noted that the end strips 34 of the insulating member 20' are preferably provided with a plurality of one inch deep cuts 56 spaced approximately one inch apart from each other so as to relieve possible shrinkage stresses on parts 34 only.

As shown in FIG. 11, it may be desirable to arrange the blocks 20' of FIGS. 4 through 6 in such a manner that the strips of adjacent members are at right angles to each other to give a resulting criss-cross appearance similar to that of parquet flooring. As indicated heretofore, the arrangement of the fibers is such that they are oriented essentially in planes which are perpendicular to the furnace wall. This tends to eliminate or minimize the occurance of cracks which result from heat shrinkage of ceramic fibers. The arrangement shown in FIG. 11 tends to minimize or offset lineal shrinkage of the strips themselves.

The method and apparatus for insulating a furnace wall must be adaptable to walls which do not correspond, dimensionally, to the usage of nominal twelve inch by twelve inch insulating members. Also, it is recognized that the method and apparatus for insulating a furnace should be adaptable to furnaces which have irregularly shaped burner blocks and flue openings. As shown in FIG. 12, it is possible to arrange and attach a plurality of insulating members to the surface 32' of a furnace not readily adaptable for the close end-toend, side-to-side, arrangement shown in FIG. 11. In the case of FIG. 12, spaces 58 are provided between adjacent insulating members 20 in longitudinal or transverse or both, directions, depending upon the dimensional limitations of the furnace. The resulting spaces 58 can now be filled with specially folded ceramic fiber blankets such as shown in FIGS. l3, l4 and 15. The three fillers shown in the latter three figures are constructed in substantially the same way as the strips 22; that is, they are cut from a one inch thickness of four pound density ceramic fiber blanket and folded over.

In FIG. 15, there would be a single sheet 60 which is folded once so that its upper edges 62 provide the same type of end or edge fiber exposure referred to herein. If the resulting space is larger than two inches wide, then it is possible to go to the configuration shown in FIG. 13 which is comprised of two strips 64 and 66, which are cut in the same manner described above. The central strip 66 is relatively narrow in a vertical direction and the outer strip 64 is sufficiently wide that it can be folded around the central strip 66 as shown, the upper surfaces of strips 64 and 66 both providing the end or edge fiber arrangement referred to above.

Again, if the resulting space between adjacent insulating members 20 are between an insulating member 20 and a duct, etc. is greater than three inches, then it might be desirable to use the configuration shown in FIG. 14 where an additional central strip 68 is provided. This strip 68 will lie adjacent the strip 66 and an outer strip 70, slightly greater in width than the strip 64 will be folded over the central strips 66 and 68 to provide the arrangement shown.

The different embodiments shown in FIGS. l3, l4 and 15 can be held in place by ceramic cement, stainless steel wire or by the frictionbetween the fibers alone.

FURTHER EMBODIMENTS AND MODIFICATIONS Whereas the method of assembling the mat as described in relation to FIGS. 1 to 3 has been set forth in terms of wires 24, fasteners 30, etc. it should be understood that other methods could be employed to hold the strips together and to attach them to the backing insulation block. For example, the ceramic fiber strips could be attached to each other by means of suitable ceramic cements or mortar materials which are preferably utilized in the area adjacent the cold face of the fiber mat. Also, although the mats have been shown as being connected to a backing insulation block prior to application to a furnace wall, the mats could be applied directly to the furnace wall.

As far as the manner of fastening is concerned, the foregoing disclosure indicates that the mat of FIG. 1 or the composite block of FIG. 4 can be attached to a furnace wall by means of mortar, ceramic cement or various metallic fasteners. Since the ceramic cement or mortar will generally be located adjacent the cold face of the insulating member, there should be no particular high temperature problem as far as the cement or mortar is concerned; however, where metallic fasteners are concerned, it is generally recognized that alloy pins,

bolts, washers and screws which could be used as fasteners have a maximum temperature limit in the range of 2000 to 2100 F. By burying or imbedding the fastener in the insulating member at a position spaced from the hot face thereof, as disclosed in the present invention, it is possible to use alloy pins, bolts, etc. without, at the same time, exposing these metallic fasteners to such high temperatures as would interfere with their effectiveness.

Although it is indicated that the mat of FIG. 1 could be applied directly to a furnace wall by means of ceramic cement or mortar, it is possible to precondition the cold face of the mat to permit the use of the stud welding method of attachment disclosed herein. For example, if a layer of cement or mortar is embedded in the mat along the cold face thereof and allowed to harden, it is obvious that the welding technique and fasteners described in connection with FIGS. 7 to 10 could be employed, although a shorter shank 38 obviously would be necessary. The making of such a cement or mortar layer at the cold face of the mat could also be done in connection with the use of a high temperature cloth or stainless steel wire mesh which would be applied to or imbedded in the mortar layer at the cold face of the mat to improve the fastening capabilities thereof.

Referring now to FIGS. 4 through 7, a suitable insulating block 20' designed for operation at 1800 F is one where the backing block or mineral block 28 is about two inches in thickness and the strips 22' are approximately one inch in width giving a total width of the block, from the cold face to the hot face thereof, of about three inches. A suitable insulating block 20' designed for operation at 2600 F is one where the mineral block 28 is also two inches in thickness but where the strips 22 are four inches in thickness giving an overall dimension of six inches from the cold face to the hot face. By using strips 22 varying in width from one inch to five inches or more, depending upon the requirements of the particular furnace, it should be apparent that insulating blocks and/or mats could be employed to cover the recommended range of 1600 F to 2800 F.

Although the block 28 has been referred to as a mineral block whose composition and properties are well recognized in the art, it is also possible to use asbestos block or calcium silicate block, these blocks being relatively rigid, especially as compared to the fiber mat or strips, so as to provide relatively rigid backing material for the mat. The strips 22 or 22' of the ceramic fiber mat 20 or 20', respectively, are preferably cut from a ceramic fiber blanket having a density of four pounds per cubic foot. It is understood that the manufacturers provide ceramic fiber blankets which are available in densities ranging generally from three to fourteen pounds per cubic foot. In the specific examples referred to herein, the ceramic fiber material has a density of four pounds per cubic foot. However, it should be understood that there might be portions of the furnace where the lining would be subject to gas currents which would give rise to erosion problems and, also, that the furnace might have various access openings which would require a lining of greater physical strength or density upon or surrounding the openings; in either of the latter two cases it might be desirable to use a ceramic fiber material of a higher density in the available range referred to above.

Naturally, it is desirable to insulate a furnace wall in such a manner that the outside (cold face) of the furnace is at a minimum temperature. However, it is recognized that this minimum temperature will be dependent upon a number of different factors including, but not limited to, the type, thickness and strength of the outside furnace wall; and prevailing air currents outside of the furnace wall. The use of the present invention will'provide an outside temperature varying between 200 F and 350 P which is considered to be an acceptable range.

The preferred embodiment of the present invention, as disclosed above, describes the high-temperature insulating fibers which constitute the mat as ceramic fibers. However, this invention should not be tied down to any precise definition of ceramic; any high temperature insulating fiber which possesses properties similar to the ceramic fibers indicated herein and capable of operating above l600 F could be used in conjunction with the present invention and should be considered as falling within the scope thereof.

Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein may be made within the spirit and scope of this invention.

What is claimed is:

1. An insulation module for lining the interior walls of a furnace, comprising a rigid block of refractory material having two opposed flat sides, one side being the cold face for attachment to the furnace wall and the other side being the hot face for exposure to the furnace heat, a resilient fiber insulation mat forming at least the hot face and being held flat within the rigid block prior to installation on the furnace wall, the fibers in the insulation mat being generally randomly oriented in planes, such planes being substantially perpendicular to the hot face.

2. An insulation module according to claim 1 further comprising a hard surface self-contained within the rigid block prior to installation on the furnace wall and being hidden beneath the hot face and against which a fastener can bear to secure the insulation module to the furnace wall.

3. An insulation module according to claim 1 further comprising an internal fastener self-contained within the rigid block prior to installation on the furnace wall and being hidden beneath the hot face, whereby the cold face of the insulation module may be fastened to the furnace wall without direct exposure of the fastener to the heat at the hot face.

4. An insulation module according to claim 1 further comprising a rigid base forming the cold face of the rigid block, the fiber insulation mat being affixed to the rigid base.

5. An insulation module according to claim 4 wherein the fiber insulation mat is secured to the rigid base with an adhesive bond.

6. An insulation module according to claim 1 wherein the fiber insulation mat includes a number of strips of fiber insulation cut from a fiber blanket and arranged in side-by-side relation.

7. An insulation module according to claim 6 further including strips of fiber insulation attached to the side edges of the rigid block.

8. An insulation module according to claim 6 wherein the strips of fiber insulation are connected to each other by a number of wires extending transversely through the strips.

9. An insulation module for lining the walls of a high temperature furnace comprising a rigid block of refractory material pre-assembled prior to installation on the furnace wall, the block having two opposed fiat sides, one side being the cold face for attachment to the furnace wall and the other side being the hot face for exposure to furnace heat, a rigid base member forming the cold face within the rigid block, a resilient fiber insulation mat being affixed flat to the base member and forming the hot face, the fibers in the insulation mat being generally randomly oriented in planes, such planes being substantially perpendicular to the hot face.

10. An insulation module according to claim 9 wherein the base member comprises a substantially rectangular mineral block.

11. An insulation module according to claim 9 further comprising an internal metallic fastener selfcontained within the rigid block prior to installation on the furnace wall and hidden beneath the hot face, whereby the cold face of the insulation module may be fastened to the furnace wall without direct exposure of the fastener to the high temperature heat at the hot face.

12. An insulation module according to claim 9 wherein the fiber insulation mat includes a number of strips of fiber insulation cut from a fiber blanket and arranged in side by side relation.

13. An insulation module according to claim 12 including strips of fiber insulation attached to the side edges of the rigid block.

14. An insulation module according to claim 12 wherein the strips of fiber insulation are connected to each other by a number of wires extended transversely through the strips.

15. An insulation module according to claim 14 further including staples surrounding the wires extending through the strips of fiber insulation and extending into the base member for attaching the fiber insulation mat thereto.

16. An insulation module according to claim 9 including a washer centrally located against the face of the base member at the interface between the base member and the fiber insulation mat, the washer being provided with a central hole, the base member being provided with a hole in alignment with the hole in the washer and extending through the base member to the hot face, a bolt extended through the holes in the washer and the base member, and a threaded nut threadedly engaging the end of the bolt lying adjacent the washer.

17. An insulation module for lining the walls of a high temperature furnace comprising a rigid block of refractory material being preassembled prior to installation on the furnace wall, the block having two opposed major faces, one major face being the cold face for attachment to the furnace wall and the other major face being the hot face for exposure to furnace heat, a rigid base member forming the cold face within the rigid block, a plurality of strips of resilient fiber insulation being arranged in side by side relation and being affixed upon the base member on the side opposite the cold face to form the hot face of the rigid block, the strips being cut from a fiber blanket and being arranged in such a manner that the fibers in such strips are generally randomly oriented in planes, the planes being substantially perpendicular to the cold face.

18. An insulation module according to claim 17 further comprising additional strips of such fiber insulation affixed around the side edges of the base member adjacent the hot face and being flush with the hot face.

19. An insulation module for lining the walls of a high temperature furnace and being preassembled prior to installation, comprising:

a relatively rigid block of refractory material having a flat side for attachment to the furnace wall as the cold face, said block having substantially centrally located opening extending at right angles to the cold face;

a washer disposed on the surface of said block remote from said hot face and having a hole therein aligned with the opening in said block;

a metallic stud extending through said hole in said washer and through said opening in said block;

a threaded nut threadedly engaging the other end of said stud and overlying said washer;

a plurality of strips of ceramic fiber blanket disposed in parallel side-by-side arrangement over the surface of said block remote from said cold face and forming a ceramic fiber mat completely covering the face of said block, the fibers in said mat being generally randomly oriented in planes, the planes being generally perpendicular to the cold face of said block, said mat also including strips of ceramic fiber at the side edges thereof extending downwardly to said cold face to cover the edges of said block.

20. An insulation-module for lining the walls of a high temperature furnace and being pre-assembled prior to installation, comprising:

a substantially rectangular mineral block having a cold face for attachment to the furnace wall, said mineral block having a substantially centrally located opening extending through the thickness of said block;

a washer disposed on the surface of said mineral block opposite the cold face and having a hole therein aligned with the opening in said mineral block;

a metallic stud having a shank portion extending through said hole in said washer and through said opening to the cold face of said mineral block, the end of said stud adjacent said opposite surface of said mineral block terminating in a stud tip of relatively smaller cross-sectional area than said shank portion, said shank portion leaving a groove therein adjacent said stud tip, a ring retainer surrounding said shank portion and having radially inwardly projecting fingers received in said groove;

a ring-shaped arc shield surrounding said stud tip and being attached to said ring retainer, a threaded nut threadedly engaging the other end of said stud and overlying said washer;

a plurality of strips of ceramic fiber blanket disposed in parallel side-by-side arrangement over the surface of said mineral block remote from said cold face and forming a ceramic fiber mat completely covering said mineral block, the fibers in said mat generally being randomly oriented in planes, the planes being substantially perpendicular to the cold face of said block, said mat also including strips of ceramic fiber at the side edges thereof extending downwardly towards said opposite surface of said mineral block to cover the edges of said mineral block;

a plurality of wire fasteners extending transversely through said fiber strips and being bent at the opposite ends thereof to hold said strips together, said wire fasteners being substantially parallel to each other and to said one surface and being located in said fiber mat adjacent the interface between said mat and said mineral block; and

a plurality of hairpin-type fastening means surrounding each wire fastener and extending into said mineral block to secure said mat to said mineral block.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3012923 *Sep 30, 1957Dec 12, 1961Owens Corning Fiberglass CorpFibrous products and method and apparatus for producing same
US3118807 *Feb 25, 1960Jan 21, 1964Johns ManvilleBonded fibrous insulation
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3928097 *Mar 1, 1974Dec 23, 1975Sauder IndustriesProcess and machine for manufacturing insulation modules
US3930916 *Jun 18, 1974Jan 6, 1976Zirconal Processes LimitedHeat resistant panels
US3968281 *Jul 15, 1974Jul 6, 1976Sybron CorporationFilter molded heating and/or insulating member
US3990203 *Mar 29, 1976Nov 9, 1976Greaves James RInsulated ceramic fiber panels for portable high temperature chambers
US4001996 *Aug 11, 1975Jan 11, 1977J. T. Thorpe CompanyPrefabricated insulating blocks for furnace lining
US4012877 *Apr 2, 1976Mar 22, 1977J. T. Thorpe CompanyPrefabricated insulating structure for insulating a corner in a furnace
US4086737 *Jan 7, 1977May 2, 1978Johns-Manville CorporationRefractory fiber blanket module with heat shrinkage compensation
US4123886 *Jan 7, 1977Nov 7, 1978Johns-Manville CorporationRefractory fiber blanket module with increased insulation
US4128678 *Jul 7, 1977Dec 5, 1978Fiberglas Canada LimitedHeat insulating material and method of and apparatus for the manufacture thereof
US4166878 *Mar 2, 1978Sep 4, 1979Caterpillar Tractor Co.Heat resistance
US4177036 *Sep 6, 1977Dec 4, 1979Sauder Industries, Inc.High temperature industrial furnace
US4194036 *Jun 6, 1977Mar 18, 1980Zirconal Processes LimitedInsulation
US4202148 *Jun 26, 1978May 13, 1980Industrial Insulations, Inc.Method of making thick-walled refractory fiber modules and the product formed thereby
US4223064 *May 10, 1979Sep 16, 1980The United States Of America As Represented By The United States Department Of EnergyAlkali metal protective garment and composite material
US4238257 *Sep 18, 1978Dec 9, 1980Societe Europenne Des Produits RefractairesInsulating slab of refractory fibres
US4248023 *Jul 26, 1979Feb 3, 1981A. P. Green Refractories Co.Insulated ceramic fiber refractory module
US4272638 *Mar 16, 1979Jun 9, 1981Johns-Manville CorporationHeater element supports for use with fibrous block insulations
US4324602 *Dec 15, 1980Apr 13, 1982Zirconal Processes LimitedInsulating under pressure
US4336086 *Sep 18, 1980Jun 22, 1982Rast James PMethod of lining a furnace with roll-type insulation
US4339902 *Jun 30, 1980Jul 20, 1982Manville Service CorporationMultiple layer thermal insulation device
US4348441 *Sep 16, 1980Sep 7, 1982Isolite Babcock Refractories Co., Ltd.Stacked, adhered ceramic fiber blankets for furnace walls
US4363199 *May 5, 1980Dec 14, 1982Kennecott CorporationFire resistant sealing system for holes in fire resistant building partitions
US4379382 *Jun 2, 1980Apr 12, 1983Sauder Industries, Inc.Method and apparatus for insulating a furnace having a corrosive atmosphere
US4381634 *Mar 20, 1981May 3, 1983Manville Service CorporationFiber blanket insulation module
US4401613 *Aug 3, 1981Aug 30, 1983Refractory Products Co.From refractory fiber mat, fgr electric furnace
US4414786 *Aug 18, 1981Nov 15, 1983Frahme Carl EHeat insulating module for high temperature chambers
US4440099 *May 3, 1982Apr 3, 1984La Farge RefractairesCeramic fiber modular assemblies for lining furnace walls
US4478022 *May 18, 1982Oct 23, 1984Ksm Fastening Systems Inc.Insulation system and method and apparatus for retaining same
US4647022 *Mar 21, 1983Mar 3, 1987Coble Gary LRefractory insulation mounting system and insulated structures
US4653171 *Oct 11, 1984Mar 31, 1987Coble Gary LRefractory insulation mounting system and insulated structures
US4670318 *Feb 13, 1986Jun 2, 1987Toshiba Monofrax Company, Ltd.For lining furnace inner wall; inorganic fibers
US4763458 *Oct 18, 1984Aug 16, 1988Ksm Fastening Systems, Inc.Insulation system and method and apparatus for retaining same
US4802425 *Dec 16, 1982Feb 7, 1989The Babcock & Wilcox CompanyHigh temperature fiber system with controlled shrinkage and stress resistance
US4803822 *Jan 30, 1987Feb 14, 1989Stemcor CorporationModular furnace lining and hardware system therefor
US4829734 *Oct 31, 1986May 16, 1989Eltech Systems CorporationCeramic fiber insulation module and method of assembly
US4850171 *Nov 7, 1988Jul 25, 1989Stemcor CorporationModular furnace lining and hardware system therefor
US4885890 *Nov 7, 1988Dec 12, 1989Stemcor CorporationModular furnace lining and hardware system therefor
US5010706 *May 10, 1990Apr 30, 1991Thermal Ceramics, Inc.Insulation and the provision thereof
US5115114 *Apr 25, 1990May 19, 1992Eltech Systems CorporationCeramic fiber attaching system for a backing plate
US5176876 *Oct 10, 1990Jan 5, 1993Simko & Sons Industrial Refractories Inc.Insulating ceramic fiber batting module, anchoring system, ladle cover assembly and method of assembly
US5234660 *Jun 25, 1992Aug 10, 1993Simko & Sons Industrial Refractories, Inc.Insulating ceramic fiber batting module, anchoring system, ladle cover assembly and method of assembly
US5277955 *Dec 8, 1989Jan 11, 1994Owens-Corning Fiberglas Technology Inc.Insulation assembly
US5308046 *Apr 30, 1991May 3, 1994Coble Gary LFor admitting elongate articles to a treatment chamber
US5318644 *Jun 2, 1993Jun 7, 1994Owens-Corning Fiberglas Technology Inc.Method and apparatus for making an insulation assembly
US5335897 *Oct 31, 1991Aug 9, 1994Coble Gary LInsulated furnace door system
US5353567 *Apr 12, 1993Oct 11, 1994Premier Refractories And Chemicals, Inc.Insulation module assembly and apparatus for installation
US5390217 *Apr 24, 1992Feb 14, 1995Mitsubishi Jukogyo Kabushiki KaishaCarbon fiber-reinforced carbon composite materials processes for their production, and first walls of nuclear fusion reactors employing them
US5398840 *May 24, 1993Mar 21, 1995The Boeing CompanyMicroparticle enhanced fibrous ceramic baffle for cryogenic liquid containers
US5402615 *Nov 13, 1992Apr 4, 1995International Copper Association, Ltd.Fire retardant barrier system and method
US5483548 *Aug 8, 1994Jan 9, 1996Coble; Gary L.Insulated furnace door and wall panel system
US5549850 *Sep 15, 1992Aug 27, 1996The Boeing CompanySlurrying ceramics and forming porous mat from lanthanium manganate perovskite ceramics, drying and curing
US5569343 *Jun 13, 1990Oct 29, 1996The Boeing CompanyCeramic fabric reinforced fiber/microparticle ceramic composite
US5586152 *May 25, 1995Dec 17, 1996Mitsubishi Jukogyo Kabushiki KaishaCarbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
US5624613 *May 12, 1995Apr 29, 1997The Boeing CompanyRigidized refractory fibrous ceramic insulation
US5753573 *Jun 5, 1995May 19, 1998The Boeing CompanySlurry for making felted ceramic insulation
US5759663 *Oct 31, 1996Jun 2, 1998Thorpe Products CompanyFolded, ceramic blanket with a layer of thermally stable, abrasion resistant material
US5863846 *Jun 5, 1995Jan 26, 1999The Boeing CompanyForming the slurry of ceramic microparticles and fugitive microballoons, molding to form wet mat, impregnating wet mat with sol, gelling sol by diffusing ammonia to form gel sol bond, drying to form ceramic insulation
US5955387 *Jun 23, 1997Sep 21, 1999The Boeing CompanyHigh strength, high temperature insulation material.
US6143107 *Jan 2, 1998Nov 7, 2000Hounsel; Mack A.Hard-faced insulating refractory fiber linings
US6333000Jun 5, 1995Dec 25, 2001The Boeing CompanyProcess for making LaMnO3-coated ceramics
US6782669 *May 17, 1999Aug 31, 2004F. C. S. Dixon LimitedFurnace lining
US6969250Nov 29, 1999Nov 29, 2005Ebara CorporationExhaust gas treating device
US8307717Aug 22, 2008Nov 13, 2012Refractory Anchors, Inc.Method and apparatus for installing an insulation material to a surface and testing thereof
US8309212Jun 30, 2009Nov 13, 2012A.P. Green Industries, Inc.Ceramic fiber modules
US8763473Aug 7, 2012Jul 1, 2014Refractory Anchors, Inc.Method and apparatus for installing a refractory material to a surface
DE2749126A1 *Nov 3, 1977May 11, 1978Kohaszati Gyarepitoe VallalatIndustrieofen, insbesondere fuer waermebehandlungen
DE3304738A1 *Feb 11, 1983Aug 25, 1983Kennecott CorpNahtlose verbunderzeugnisse aus keramikfasern sowie verfahren und vorrichtung zu ihrer herstellung
DE3304738C2 *Feb 11, 1983May 19, 1994Kennecott CorpEbene Isoliermatten und Verfahren zur ihrer Herstellung
DE3448315C2 *May 21, 1984May 19, 1993Toshiba Monofrax Co. Ltd., Katori, Chiba, JpTitle not available
EP0018677A1 *Apr 11, 1980Nov 12, 1980Heattreatment Advising Company N.V.Oven walls comprising panels made of ceramic fibre materials
EP0077608A1 *Sep 13, 1982Apr 27, 1983THE BABCOCK & WILCOX COMPANYThermally insulative modules for lining furnaces or like equipment
EP0090518A1 *Mar 8, 1983Oct 5, 1983Fuel Conservation Services LimitedThermally insulating blocks
EP0109185A1 *Oct 13, 1983May 23, 1984Armco Inc.High temperature box annealing furnace
WO1983001475A1 *Sep 2, 1982Apr 28, 1983Babcock & Wilcox CoRod-anchored, accordion-fold, full-lining module
WO1983004063A1 *May 17, 1983Nov 24, 1983Omark Industries IncInsulation system and method and apparatus for retaining same
WO2000032990A1 *Nov 29, 1999Jun 8, 2000Ebara CorpExhaust gas treating device
Classifications
U.S. Classification428/99, 156/92, 428/119, 428/920, 52/270, 428/124, 428/223, 428/131, 52/699, 52/506.2, 428/114, 52/511, 156/71, 336/186, 428/902
International ClassificationF27D1/00, F23M5/04, F23M5/00, F27D1/14, F16L59/02
Cooperative ClassificationF27D1/002, Y10S428/902, Y10S428/92
European ClassificationF27D1/00A1B2
Legal Events
DateCodeEventDescription
Jun 6, 1989ASAssignment
Owner name: THERMAL CERAMICS INC., A CORP OF DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BABCOCK & WILCOX COMPANY, THE;REEL/FRAME:005106/0474
Effective date: 19880120
Jun 6, 1989AS02Assignment of assignor's interest
Owner name: BABCOCK & WILCOX COMPANY, THE
Effective date: 19880120
Owner name: THERMAL CERAMICS INC., A CORP OF DELAWARE
Feb 25, 1985ASAssignment
Owner name: BABCOCK & WILCOX COMPANY THE, 1010 COMMON ST., NEW
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SAUDER ENERGY SYSTEMS, INC., 220 WEAVER ST., EMPORIA, KS66801, A CORP OF DE;REEL/FRAME:004371/0634
Effective date: 19850222
Feb 25, 1985AS02Assignment of assignor's interest
Owner name: BABCOCK & WILCOX COMPANY THE, 1010 COMMON ST., NEW
Effective date: 19850222
Owner name: SAUDER ENERGY SYSTEMS, INC., 220 WEAVER ST., EMPOR
Feb 20, 1985AS02Assignment of assignor's interest
Owner name: SAUDER ENERGY SYSTEMS, INC., 220 WEAVER STREET, EM
Effective date: 19850213
Owner name: SAUDER INDUSTRIES, INC.
Feb 20, 1985ASAssignment
Owner name: SAUDER ENERGY SYSTEMS, INC., 220 WEAVER STREET, EM
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SAUDER INDUSTRIES, INC.;REEL/FRAME:004364/0588
Effective date: 19850213
Feb 15, 1985ASAssignment
Owner name: SAUDER ENERGY SYSTEMS, INC., 220 WEAVER STREET, EM
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. AS OF OCTOBER 31, 1984;ASSIGNOR:SAUDER INDUSTRIES, INC., A KS CORP;REEL/FRAME:004368/0595
Effective date: 19850213
Feb 15, 1985AS02Assignment of assignor's interest
Owner name: SAUDER ENERGY SYSTEMS, INC., 220 WEAVER STREET, EM
Owner name: SAUDER INDUSTRIES, INC., A KS CORP
Effective date: 19850213