Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3819522 A
Publication typeGrant
Publication dateJun 25, 1974
Filing dateSep 25, 1972
Priority dateSep 25, 1972
Publication numberUS 3819522 A, US 3819522A, US-A-3819522, US3819522 A, US3819522A
InventorsBrown R, Zmoda B
Original AssigneeColgate Palmolive Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Anti-fogging window cleaner surfactant mixture
US 3819522 A
Abstract
An anti-fogging surfactant mixture for use in a window cleaning composition consisting essentially of a mixture of a nonionic surface active agent having the formula WHEREIN R is an alkyl group having from one to four carbon atoms and R1 is a radical selected from the group consisting of methyl, ethyl, cyclopropyl, and phenyl or the reaction product of the above glycol and from 2 to 200 moles of ethylene oxide and an anionic or nonionic surfactant in a weight ratio of 1:50 to 1:1. A non-fogging window cleaner containing from 0.1 to 3 percent of the above noted anti-fogging surfactant mixture as well as a method for utilizing the same is provided.
Images(8)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191' Zmoda et a1. t

[ June 25, 1974 ANTI-FOGGING WINDOW CLEANER SURFACTANT MIXTURE [75] Inventors: Barney J. Zmoda, Bridgewater;

Raymond S. Brown, lselin, both of NJ.

[73] Assignee: Colgate-Palmolive Company, New

York, NY.

22 Filed: Sept. 25, 1972 21 Appl. No.: 291,681

Primary ExaminerWilliam E. Schultz Attorney, Agent, or Firm-Herbert S. Sylvester; Murray M. Grill; Norman Blumenkopf [57] ABSTRACT An anti-fogging surfactant mixture for use in a Window cleaning composition consisting essentially of a mixture of a nonionic surface active agent having the formula wherein R is an alkyl group having from one to four carbon atoms and R is a radical selected from the group consisting of methyl, ethyl, cyclopropyl, and phenyl or the reaction product of the above glycol and from 2 to 200 moles of ethylene oxide and an anionic or nonionic surfactant in a weight ratio of 1:50 to 1:1. A non-fogging window cleaner containing from 0.1 to 3 percent of the above noted anti-fogging surfactant mixture as well as a method for utilizing the same is provided.

20 Claims, N0 Drawings ANTI-FOGGING WINDOW CLEANER SURFACTANT MIXTURE This invention relates to a non-fogging window cleaning composition. More particularly, this invention relates to a synergistic non-fogging surfactant mixture for use in a window cleaning composition.

The formation of fog on glass surfaces with its resultant loss of visibility is a problem which has troubled home owners, drivers, pilots or virtually anyone who depends upon clear visibility through a window or similar glass article. The attention which has been paid to this problem is evidenced by the remarkable number of glass cleaning compositions which are on the market claiming anti-fogging or defogging characteristics.

Window or mirror fogging is caused at least in part by the condensation of moisture droplets onto the transparent surface. These individual condensed droplets form a whitish fog which renders the glass or mirror opaque and obstructs vision. It has been known to utilize the various surface active agents to reduce the surface tension and thereby enhance the coalescence of these individual water droplets into a larger, more transparent form. Howver, these prior art compositions, although they possess adequate defogging characteristics, possess a series of other undesirable properties, such as high initial film formation, heavy image distortion, streaking, smearing, and smudging of the surface. Obviously, a preferred window cleaner and antifogging composition would possess superior, or at least quite satisfactory, results in each of the above categories as well as possessing adequate anti-fogging properties.

It is within the above embodiment that the antifogging surfactant mixture for window cleaning compositions and window cleaning compositions of the present invention were developed. Briefly, such mixture comprises a mixture of a nonionic surface active agent having the formula wherein R is an alkyl group having from one to four carbon atoms and R is a radical selected from the group consisting essentially of methyl, ethyl, cyclopropyl, and phenyl or the reaction product of the above glycol and from 2 to 200 moles of ethylene oxide and an anionic surface active agent in a weight ratio of 1:50 to 1:1. The window cleaning composition of the present invention comprises from 0.2 to 3 percent by weight of the above synergistic anti-fogging surfactant mixture, from 80 to 93.7 percent water, from 3 to 8 percent by weight of at least one glycol ether, from 3 to 7 percent by weight of a monohydric alcohol and from 0.1 to 2 percent by weight of a hydroxide selected from sodium, potassium and ammonium hydroxide.

It is, therefore, the primary object of the present invention to provide an anti-fogging window cleaner with improved properties.

It is a further object of the present invention to provide a synergistic anti-fogging surfactant mixture which is effective when used in a small amount in a window cleaning composition.

It is a still further object of the present invention to provide an anti-fogging window cleaning composition which minimizes film formation, sight distortion, smearing, smudging, and streaking.

It is a still further object of the present invention to provide a synergistic anti-fogging surfactant mixture comprising a mixture of a nonionic acetylenic glycol and an anionic sulfate.

Still further objects and advantages of the mixture and window cleaning composition of the present invention will become more apparent from the following, more detailed description thereof.

The foregoing objects and advantages of the present invention are achieved through the anti-fogging surfactant mixture of the present invention which is for use with a window cleaning composition consists essentially of a mixture of a nonionic surface active agent having the formula wherein R is an alkyl group having from one to four carbon atoms and R is a radical selected from the group consisting essentially of methyl, ethyl, cyclopropyl and phenyl or the reactionproduct of the aboveglycol and from 2 to 200 moles of ethylene oxide and an anionic or nonionic surface active agent, especially an anionic surface active agent having the formula R O(C H O,,)SO M wherein R is an alkyl group having from 8 to 20 carbon atoms, n is a number from 2 to 200 and M is a cation selected from the group consisting of sodium, potassium and ammonium or a nonionic surface active agent having the formula R O(C H O),,H wherein R and n are defined as above in a weight ratio of 1:50 to 1:1, preferably 1:20 to 1:4 and most preferably 1:20 to 1:10.

The anti-fogging window cleaning composition of the present invention comprises from 0.2 to 3 percent and preferably from 0.3 to 0.5 percent by weight of the above noted synergistic mixture, from 80 to 93.7 percent water, from 3 to 8 percent by weight glycol ether, from 3 to 7 percent lower monohydric alcohol and from 0.1 to 2 percent of an alkali hydroxide selected from sodium, potassium and ammonium hydroxides.

The acetylenic glycols which comprise one component of the anti-fogging surfactant mixture of the present invention have the following structural formula wherein R is-an alkyl group, either a branched or a straight chain group containing from one to four carbon atoms, such as methyl, ethyl, propyl, isopropyl, nbutyl, isobutyl or t-butyl and wherein R is aradical selected from the group of methyl, ethyl, cyclopropyl and phenyl. Representative compounds of the above noted acetylenic glycols include the following 2,4,7,9-tetramethyl-5-decyne-4,7-diol 4,7-dimethyl-5-decyne-4,7-diol 2,3,6,7-tetrarnethyl-4-octyne-3,6-diol 3,6-diethyl-4-octyne-3,6-diol prepared by a number of well known techniques, such as by reacting calcium carbide, an alkali metal hydroxide and the corresponding ketone to give the desired glycol as disclosed in US. Pat. No. 2,250,445, or by reacting the ketones with an alkali metal acetylide as disclosed in US. Pat. No. 2,106,180, or, lastly, by reacting acetylene with an excess of the ketone in the presence of a solid caustic potash in a solvent medium.

Although the above noted acetylenic glycols have been utilized as non-foaming surface active agents for 2,5-dicyclopropyl-3-hexyne-2,5-diol SOEO 3,6-dimethyl-4-octyne-3,6-diol 2OEO 2,5-diphenyl-3-hexyne-2,5-diol 30EO 2,5-dimethyl-3-hexyne-2,5-diol IOEO 5 ,8-dimethyl-6-dodecyne-5,8-diol, etc. 5E0 2,4,7,9-tetramethyl-5-decyne-4,7-diol 2OEO 4,7-dimethyl-5-decyne-4,7-diol 8E0 2,3,6,7-tetramethyl-4'octyne-3,6-diol l2EO 3,6-diethyl-4-octyne-3,6-diol 15EO 2,5-dicyclopropyl-3-hexyne-2,5-diol IOEO 3,6-dimethyl-4-octyne-3,6-diol SOEO 2,4,7,9-tetramethyl-5-decyne-4,7-diol 30EO 4,7-dimethyl-5-decyne-4,7-diol 10EO 2,3,6,7-tetramethyl-4-octyne-3,6-di0l 5E0 3,6-diethyl-4-octyne-3,6-diol 2E0 2,5-diphenyl-3-hexyne-2,5-diol 5E0 2,5-dimethyl-3-hexyne-2,S-diol 20150 5,8-dimethyl-6-dodecyne-5,8-diol lOEO, etc. Any of the above noted reaction products between a great variety of uses, such as dentifrices, toilet soaps, ethylene oxide and the acetylenic glycols may be utishampoos, laundry detergents, pigment dispersants in water based paints, viscosity reducers, gel inhibitors and freeze-thaw additives, these materials have not been utilized as a component in an anti-fogging composition. This is, of course, due to the fact that the acetylenic glycols themselves without the anionic sulfate do not possess any significant anti-fogging properties and any anti-fogging activity is accompanied by heavy image distortion, streaking, smearing or initial film formation. Accordingly, these materials had been thought to be completely unsuited for utilization in a window cleaning composition in any percentage and, especially unsuited for use in an anti-fogging window cleaning composition.

The reaction products of the above noted acetylenic glycols and ethylene oxide may also be utilized in the anti-fogging window cleaning composition of the present invention. More particularly, this reaction product comprises the reaction product of one mole of the acetylenic glycol having the formula wherein R and R1 are defined as above and from 2 to 200 moles of ethylene oxide. Although any amount of ethylene oxide within the above noted range may be utilized for producing the reaction product utilized in the mixture of the present invention, it is preferred to react the acetylenic glycols with from 2 to 20 moles of ethylene oxide. Representative ethoxylated acetylenic glycols include the following wherein the amount of ethylene oxide reacted with the acetylenic glycol is indicated as +NEO wherein N is the number of moles reacted:

2,4,7,9-tetramethyl-S-decyne-4,7-diol 3.5EO 4,7-dimethyl-5-decyne-4,7-diol 20OEO 2,3,6,7-tetramethyl-4-octyne-3,6-diol lOEO 3,6-diethyl-4-octyne-3,6-di0l 9E0 2,5-dicyclopropyl-3-hexyne-2,5-diol 20150 3,6-dimethyl-4-octyne-3,6-diol 30EO 2,4,7,9-tetramethyl-5-decyne-4,7-diol 15EO 4,7-dimethyl-5-decyne-4,7-diol 20EO 2,3,6,7-tetramethyl-4-octyne-3,6-diol 2E0 3,6-diethyl-4-octyne-3,6-diol IOOEO lized, although it is preferred to utilize the reaction products of ethylene oxide and 2,4,7,9-tetramethyl-5- decyne-4,7-diol.

It is important to utilize the glycolic surface active agents and the nonionic and anionic surfactants within the ratio specified since outside the broad weight ratio, i.e. 1:50 to 1:1 glycolic surfactant to added surface active agent, i.e. anionics or nonio'nics, the anti-fogging properties appreciably disappear. And within the preferred ratio i.e. 1:20 to 1:4 glycolic surfactant to added surfactant and especially within the most preferred range i.e. 1:20 to 1:10, the anti-fog properties are maximized with a concomitent decrease. in adverse films, etc.

The second component of the anti-fogging mixture is an anionic or nonionic surfactant or mixtures thereof.

A preferred class of anionic surfactants suitable for use in the synergistic mixture of the present invention has the formula RO(C H O),,SO M wherein R is a fatty alkyl having from eight to 20 carbon atoms, n is a number from 2 to 200 and M is a cation selected from ammonium, potassium and sodium ions. Although any of the higher fatty acid ethoxylated sulfates may be utilized, it is preferred to utilize a sulfate wherein R is a fatty alkyl from between 10 and 18 carbon atoms, n is a number between two and 20 and M is ammonium. The most preferred sulfated anionic utilized in the antifogging window cleaner of the present invention is a mixed C normal primary alkyl'triethanoxy sulfate ammonium salt. This most preferred anionic sulfate salt produces the optimum results in combination with the above noted acetylenic glycol.

' The anionic detergents generally have the fatty alkyl group terminally joined to the polyoxyethylene chain which is of necessity terminally joined to the sulfur of the sulfate group. Although a slight degree of a branching of the higher alkyl group may be tolerated, the detergency of the anionic sulfate is improved if the alkyl group is essentially straight chained. Furthermore, me-

dial joinder of the alkyl to the ethanoxy chain should be minimized although a small percentage up to about 10 percent of medial joinder near one end of the alkyl chain is acceptable. As noted above, the preferred range of the alkyl is from 10 to 18 carbon atoms and within this range, the mixed alkyls having 12 to 15 carbon atoms are most preferred, these mixtures containing approximately between and 50 percent of each chain length.

The ethylene oxide content of the anionic detergent is such that n is from 2 to 200 and preferably from 2 to 20 with the most preferred ethylene oxide content being about 3, especially when R is a mixed l2 carbon atom alkyl mixture. The value of n or the ethylene oxide content is determined by the desired hydrophobic-hydrophylic balance which may be varied markedly by variations in the ethylene oxide content and the length of the alkyl groups.

The salt forming cation may be any suitable solubilizing metal; however, the alkali metals, i.e. sodium and potassium and ammonium ions are preferred with the ammonium ion being most preferred.

Examples of the higher alcohol polyethenoxy sulfates which may be used as the anionic sulfate in the antifogging mixture of the present invention include: mixed C1245 normal primary alkyl triethenoxy sulfate, ammonium salt; myristyl triethenoxy sulfate, potassium salt; n-decyl diethenoxy sulfate, sodium salt; lauryl diethenoxy sulfate, ammonium salt, palmityl tetraethenoxy sulfate, sodium salt; mixed C1245 normal primary alkyl mixed triand tetraethenoxy sulfate, sodium salt; stearyl pentaethenoxy sulfate, ammonium salt and mixed C normal primary alkyl triethenoxy sulfate, potassium salt.

In addition to the above noted anionic detergents, nonionic detergents having the following formula may also be utilized in conjunction with the acetylenic glycols or ethoxylated acetylenic glycols in the surfactant composition of the present invention:

wherein R and n are as defined above.

The configuration of the nonionic detergent should be roughly similar to those described with regard to the anionic detergents, i.e. the nonionic detergents could be formed primarily from straight chained fatty alcohols with the alcohol groups being terminally joined to the alkyl radical. Generally, it is preferred to utilize nonionic compounds wherein the alkyl group has from between eight and carbon atoms with the preferred nonionics having from between 1 l to 16 carbon atoms. Furthermore, with regard to moles of ethylene oxides or length of the ethenoxy chain is generally preferred that from 2 to 20 moles of ethylene oxide be utilized. Furthermore, since these materials are generally formed from mixed alkyl alcohols, the carbon atom chain length would generally be an average chain length with a most preferred nonionic being the reaction product of ethylene oxide with an alkyl alcohol having from 11 to 15 carbon atoms.

Examples of other suitable non-ionic detergents include alkaryl polyglycol detergents such as alkylphenol-ethylene oxide condensates (2-20O moles ethylene oxide), such as p-isooctyl phenol polyethylene oxide (10 ethylene oxide units); polyglycerol monolaurate, glycol dioleate, sorbitan monolaurate, sorbitan monostearate, sorbitan monopalmitate, sorbitan monooleate, sorbitan sesquioleate, the condensation products of ethylene oxide with sorbitan esters of long chain fatty acids (Tweens), alkylolamides, amine oxides, phosphine oxides, etc.

The anti-fogging window cleaner of the present in;

vention in addition to the acetylenic glycol and anionic sulfates includes from 80 to 93.7 percent by weight of water, from 3 to 8 percent by weight of at least one glycol ether, from 3 to 7 percent by weight of an alcohol, from 0.1 to 2 percent of ammonium, hydroxide or an alkaline metal hydroxide and from 0.1 to 3 percent by weight of the mixture of anionic or nonionic surfactant and acetylenic glycol.

The glycol ethers which are suitable for use in the window cleaning composition of the present invention are employed primarily for their solvent and additional detersive properties and include monoethers of ethylene glycols, such as the monomethyl, the monoethyl, the monopropyl and the monobutyl ethers of ethylene glycol and the monoethers of propylene glycol, such as the monomethyl, the monoethyl, the monopropyl and the monobutyl ethers of propylene glycol.

The alcohol utilized is generally a lower alkyl monohydric alcohol, such as methyl alcohol, ethyl alcohol, isopropyl alcohol and butyl alcohol. If ethyl alcohol is utilized, generally such material is utilized as denatured ethyl alcohol.

The hydroxides are utilized in the window cleaning composition so as to control the pH level of the resultant composition and, generally, the hydroxide corresponding to the anionic sulfate salt is utilized. Generally, the pH of the window cleaning compositions of the present invention'is between 8 and 11 with the preferred pH being 10.

In addition to the above noted ingredients, small amounts of color, perfume and other agents, such as propellants for aerosol dispensing, may be included.

The window cleaning composition of the present invention may be packaged either for dispensing inan aerosol dispenser or utilizing a mechanical pump type valve dispenser. When an aerosol dipensing package is utilized, generally, the composition includes up to about 10 percent by weight of a suitable propellant, such as any of the well known fluorochloroethanes and similar materials; and the hydrocarbon propellants, such as isobutane, etc.

The mixture and window cleaning composition of the present invention will now be further illustrated by way of the following examples wherein all parts and percentages are by weight and all temperatures are in degrees centigrade.

EXAMPLE 1 A window cleaner having the following composition is prepared:

9l.0l5% Water, demineralized 2.000 Ethylene glycol monobutyl ether 2.500 Propylene glycol monomethyl ether 3.800 lsopropyl alcohol 0.350 Cl2-l5 alcohol (3 E0) ammonium sulfate 0.035 TG(A commercially available mixture containing 83% 2,4,7,9-tetramethyl- 5-decyne-4,7-diol, ethylene glycol and an alkyl phenyl-ethylene oxide adduct 0.300 26 Be Ammonium Hydroxide The cleaning performance of the above the above noted composition is detemlined by the ability of this composition to flush off from a pane of glass a film of mixed kitchen fats. The anti-fogging properties of the above noted composition is evaluated by applying the composition to a pane of glass followed by chilling the glass pane and exposing the same to steam. The antifog efficacy is judged by observing whether or not the compositions sudsing is proper upon application, the

absence of filming on application, the prevention of TABLE I Example No. Cleaner Characteristics Comp. Ex. 1 Com. Product W Glass fogged on first exposure to steam.

Comp. Ex. 2 Corn. Product EO Poor anti-fog first exposure,

very poor on second.

Comp. Ex. 3 Com. Product A Glass fogged on first exposure.

Comp. Ex. 4 0.6% AAS Fair anti-fog effect, distorted sight.

Comp. Ex. 5 l.0% AAS Excessive sudsing. Good anti-fog.

Moderate sight distortion.

Comp. Ex. 6 1.2% AAS Excessive sudsing. Good anti-fog.

Good sight. Moderate filming, smearing.

Comp. Ex. 7 L47: AAS Excessive sudsing. Good anti fog.

Good sight. Heavy filming, smearing.

CQWPcEJQli. 9.05% 9 N0 g effect.

Example 2 0.010% TG Fair anti-fog effect. Moderate Example 3 0.025% TG Good anti-fog effect. Good sight.

0.250% AAS No filming, no smearing. Example 4 0.0l0% 2.4,7.9-tetramethvl-5-decvne-4,7-diol 0.250% AAS 7 Good anti-fog effect. Good sight.

No filming, no smearing.

'Cl2-l5 alcohol (3E0) Ammonium Sulfate. Same as in Example I fogging when exposed to steam, the clarity of sight through the glass following steaming, the absence of COMPARATIVE EXAMPLES 1 s and EXAMPLES 24 Three commercially available window cleaners plus the window cleaning composition of Example 1 wherein the surfactants are replaced with the surfactants, as shown in Table I with a corresponding reduction or increase in the amount of water present, are applied to a glass surface. These glass surfaces are then Each of the above noted window cleaning compositions performs adequately in the cleaning test, i.e. the ability to flush off a film of mixed kitchen fats; however, as shown in Table I, only those window cleaners of Examples 2-4 which contain the novel synergistic mixture of the present invention provide adequate antifog characteristics with minimal distortion, filming and 5 smearing. The anionic sulfate surfactant used by itself produces fair to good anti-fog effect; however, the distortion, smearing, filming and sudsing characteristics are not acceptable. The acetylenic diol when used by itself produces absolutely no anti-fogging effect what- 40 soever.

COMPARATIVE EXAMPLES 9-16 and Examples 5-10 The formulation of Example I is varied utilizing the 45 following surfactants in place of the TG and anionic sulfate with a concomitant change in the water content of the formulation.

TAELE if 7 Total Window cleaner of Evalua- Glycol/ surfac- Ratio Example product Ex. 1 tion Initial Image dis- AAS, tent, glycol: number c0ntaining surface film Anti-fog tortion Streaking smearing percent percent AAS Comp. Ex. 9 0.200% TG No. AAS Glass 1 Moderate.. Poor Heavy- Slight None... 0. 2/0.0 0. 200 2:

pane Comp. Ex. 10. 0.200% 2,4,7,9-tetra- .do Very None- Complete- None -do 0. 2/0. 0 0. 200 2:0

giietihyl-ii-decyne'iflslight o Comp. Ex. 11 0.200% 3,6-dimethyl- ...do d0 ..do ..do do .do 0. 2/0.0 0. 200 2:0

4-octyne-3,6-diol. Example 5 0.100% 2,4,7,9-tetra- .d0 M0derate.. Fair- Moderate... .do Slight..." 0.1/0. 1 0. 200 1:1

methyl-5-decyne-4J- diol, 0.100% AAS. Example 6 0.050% 2,4,7,9tetra- ...d0 Slight..." Good. Slight .d0 None. 0. 050/0. 210 0. 260 1:4. 2

methy1-5-decyne-4,7- diol, 0.210% AAS. Example 7 0.025% 2,4,7,9-tetra- .d0 None. Fair- Moderate.-...do ..do 0 025/0. 221 0. 246 1:8. 8

methyl-5-decyne-4,7- diol, 0.221% AAS. Example 8 0.010% 2,4,7,9-tetra .do .do Good. None .do .do 0. 010/0. 254 0. 264 1:25. 4

methyl-5-decyne-4,7- diol, 0.254% AAS. Example 9 0.015% 2,4,7,9-tetra- .do Very .do do do Slight. 0. 015/0. 350 0. 365 1:23. 3

methyl-5-decyne-4,7- slight.

01, 0.350% AAS. Example 10. 0.012% 2,4,7,9tetm- Mirror do d0 d0 d0 None 0. 012/0. 300 0. 312 1: 25

methyl-5-decyne-4,7-

diol. 0.300% AAS.

' TABLE ii continued Total Window cleaner o1 Evalua- Glycol/ surlac Ratio Example product Ex. 1 tlon Initial Image dis- AAS, tant, glycol: number contalnlngsurface film Anti-fog tortion Streaking smearing percent percent AAS Compflfii T2... 0.600% AAS only. do Modratcfl Poor-Iairl ll Iilideraw- S1ight..... Moderate KEY/0.00 OLW' '6'500 eavy. Comp. Ex. 13. 0.100% AAS only ..do None..- None Complete- None. None. 0. /0. 0. 100 0:10 Comp. Ex. 14... 1.200% AAS only do Heavy Good. None Heavy... Severe. 0.00:1.20 1.200 0:120

Competitive products Comp. Ex. 15... Commercial product 13.... Glass 1 Slight ..do Slight ..do ..do

pane Comp. Ex. 16." Commerclal product 0 ..do Mgderate- Fair Heavy.-. Moderate... .do

eavy.

1 Same as in Examlglc 1. 1 012- alcohol (3 0) ammonium sulfate.

As is apparent with reference to Table 11 only by the use of the acetylenic glycol and the anionic sulfate are the results regarding film formation, anti-fog, image distortion, streaking and smearing acceptable. When either the acetylenic glycol or the anionic sulfate is utilized singly poor anti-fogging characteristics are ob served or if acceptable anti-fogging characteristics are obtained, other undesirable properties, such as heavy initial film, streaking or smearing, are encountered. Regarding the commercial products B and C which are included for their comparative value, it is noted that they anti-fogging characteristics of these materials are judged fair to good and that these materials are inferior regarding initial film formation, image distortion, streaking and smearing when compared to the products of the present invention.

EXAMPLE 1 1 A window cleaner, having the following formulation,

is prepared:

Part l- Liguid Base The above noted formulation is packaged utilizing an aerosol container wherein 98.2 parts by weight of the above noted liquid base is mixed with 1.8 parts by weight of isobutane propellant;

A window cleaner composition identical to the liquid base for use in the aerosol container is also packaged in a mechanical spray dispenser and the cleaning and anti-fogging effects of each are compared on panes of glass. Each of the above noted window cleaning compositions performs adequately with regard to the removal of the mixed kitchen fats which have been previ-{ ously streaked upon the glass panes; and, further, when these glass panes are subjected to steam, the anti fogging properties are rated as good with virtually no image distortion, initial film fonnation, streaking or smearing.

ExAMPLE 12 The formulation of Example 1 is utilized except that the surfactant TG mixture is replaced with a similar EXAMPLE 13 The formulation of Example 1 is again utilized with. the exception that the anionic sulfate is replaced with an equivalent amount of the following anionic sulfates:

A. mixed C1245 normal primary alkyl triethenoxy sulfate, sodium salt;

B. myristyl triethenoxy sulfate, potassium salt;

C. n-decyl diethenoxy sulfate, sodium salt;

D. lauryl diethenoxy sulfate, ammonium salt;

E. palmityl tetraethenoxy sulfate, sodium salt;

F. mixed C normal primary alkyl mixed triand tetraethenoxy sulfate, sodium salt;

G. stearyl pentaethenoxy sulfate, ammonium salt;

and

H. mixed C1048 normal primary alkyl triethenoxy sulfate, potassium salt.

Each of the above noted formulations has satisfactoryanti-fogging properties; however,-the anti-fogging properties of D and G are slightly better than the an- .ionic sulfates utilizing potassium and sodium cations. This appears to be caused by the lower residue of the ammonium sulfates as compared to the sodium and potassium salts.

EXAMPLE 14 The formulation of Example 1 is utilized with the exception that the anionic sulfate and the acetylenic glycol are replaced with the following mixtures of acetylenic glycols and anionic sulfates (The glycols are taken from Example 12 and the anionic sulfates are taken from Example 13) with a corresponding increase or decrease in the amount of water present, all other compo nents remaining stable.

A. 0.01 Ex. 12(A), 0.19 Ex. 13 (D);

B. 0.06 Ex. 12(C), 2.94 Ex. 13(A);

0.75 Ex. 12(B), 2,25 Ex. 13(0); 0.05 Ex. 12(D), 0.15 Ex. 13(B); 0.02 Ex. 12(F), 0.48 Ex. 13(C);

F. 0.03 Ex. 12(H), 0.97 Ex. 13(H); and

G. 0.10 Ex. 12(E), 1.00 Ex. 13(E).

Each of the above noted formulations has satisfactory anti-fogging properties and performs adequately as regards to cleansing ability.

EXAMPLE 15 The composition of Example 1 is utilized except for that the surfactant TG mixture is replaced with a similar amount of the following ethoxylated acetylenic glycols;

A. 2,4,7,9-tetramethyl-5-decyne-4,7-diol 3.5EO

B. 4,7-dimethyl-5-decyne-4,7-diol 30EO C. 2,3,6,7-tetramethyl-4-octyne-3,6-diol 200EO D. 3,6-diethyl-4-octyne-3,6-diol 10 E E. 2,5-dicyclopropyl-3-hexyne-2,5-diol 20EO F. 3,6-dimethyl-4-octyne-3,6-diol 5E0 G. 2,5-diphenyl-3-hexyne-2,5-diol 15EO H. 2,S-dimethyl-3-hexyne-2,5-diol 2E0 l. 5,8; -dimethyl-6-dodecyne-5,8-diol 7E0 Each of the above noted formulations performs adequately with regard to both cleaning and anti-fogging properties.

C. D. E.

EXAMPLE [6 The formulation of Example'l is again utilized except that the anionic sulfate is replaced with an equivalent amount of the following nonionic surfactants:

A. p-isooctyl phenol polyethylene oxide 10 ethylene oxide units);

B. dodecyl alcohol-polyethylene oxides (6 ethylene oxide units) C. mixed C l 2- l 5 alcohol polyethylene oxide l0 ethylene oxides);

D. sorbitan monolaurate;

E. mixed l l-] 5 alcohol polyethylene oxide having 1 1 ethylene oxide units.

Each of the above noted compositions performs adequately with regard both to cleaning properties and anti-fogging, streaking, and smearing properties. However, when a composition similar to the above noted composition with the exception of the deletion of the acetylenic glycol component is utilized, the antifogging properties are markedly reduced. While the window cleaning composition and antifogging mixture of the present invention and process for utilizing the same have been described with reference to the foregoing specific examples, the same are for the purposes of illustration only and are to be in no way as construed as limiting the present invention which is properly defined by way of the following appended claims.

What is claimed is: 1

1. An anti-fogging mixture for use in a window cleaning composition consisting essentially of a mixture of a glycolic surface active agent selected from acetylenic glycols having the formula M l n F R-o-o o-p-R OH OH I where R is an alkyl group havingfrom one to four car bon atoms and R, is a radical selected from the group consisting of methyl, ethyl, cyclopropyl and phenyl, or the reaction product of an acetylenic glycol having the formula dium, and potassium and nonionic surface agent having the formula R O(C H.,O),,H wherein R and n are as defined in a weight ratio of glycolic to anionic or nonionic surface active agent from 1:50 to 1:1.

2. The composition of claim 1 wherein said anionic surface active agent is selected from the group consisting of mixed C1245 normal primary alkyl triethenoxy sulfate, ammonium salt; myristyl triethenoxy sulfate, potassium salt, n-decyl diethenoxy sulfate, sodim salt; lauryl diethenoxy sulfate, ammonium salt, palmityl tetraethenoxy sulfate, sodium salt; mixed C1245 normal primary alkyl mixed triand tetraethenoxy sulfate, sodium salt, stearyl pentaethenoxy sulfate, ammonium salt and mixed C normal primary alkyl triethenoxy sulfate, potassium salt.

3. The composition of claim 1 wherein said glycolic surface active agent is selected from the group consisting of 2,4,7,9-tetramethyl-5-decyne-4,7-diol 4,7-dimethyl-5-decyne-4,7-diol 2,3,6,7-tetramethyl-4-octyne-3,6-diol 3,6diethyl-4-octyne-3,6-diol 2,5-dicyclopropyl-3-hexyne-2,5-diol 3,6-dimethyl-4-octyne-3,6-diol 2,5-diphenyl-3hexyne-2,5-diol 2,5-dimethyl-3-hexyne-2,5-diol 5,8-dimethyl-6-dodecyne-5,8-diol 2,4,7,9-tetramethyl-5-decyne-4,7-diol '3.5EO 4,7-dimethyl-5-decyne-4,7 diol 200EO 2,3,6,7-tetramethyl-4-octyne-3,6-diol l0EO 3,6-diethyl-4-octyne-3,6-diol 9E0 2,5-dicyclopropyl-3-hexyne-2,5-diol 20EO I 3 ,6-dimethyl-4-octyne-3 ,6-diol- 30EO 2,4,7,9 tetramethyl-5-decyne-4,7-diol ISEO 4,7-dimethyl-5-decyne-4,7-diol 20EO 2,3,6,7-tetramethyl-4-octyne-3,6-diol 2E0 3,6-diethyl-4-octyne-3,6-diol EO 2,5-dicyclopropyl-3-hexyne-2,5-diol 50EO 3,6-dimethyl-4-octyne-3,6-diol 20EO 2,5-diphenyl-3-hexyne-2,5diol 30EO 2,5-dimethyl-3-hexyne-2,Sdiol IOEO 5,8-dimethyl-6-dodecyne-5,8-diol, etc. 5E0 2,4,7,9-tetramethyl-5-decyne-4,7-diol 20EO 4,7-dimethyl-5-decyne-4,7-diol 8E0 2,3,6,7-tetramethyl-4-octyne-3,6-diol l2EO 3,6-diethyL4-octyne-3,6-diol l5EO 2,5-dicyclopropyl-3 hexyne-2,5-diol IOEO 3,6-dimethyl-4-octyne-3 ,6-diol 50EO 2,4,7,9-tetramethyl-5-decyne-4,7-diol 30150 4,7-dimethyl-5-decyne-4,-7-diol IOEO anionic surface active agent is C1245 normal primary alkyl triethanoxy sulfate ammonium salt.

7. The composition of claim 1 wherein M is an ammonium ion.

8. The composition of claim 1 wherein said glycolic surface active agent is an acetylenic glycol having the formula wherein R is an alkyl group having from one to four carbon atoms, and R, is a radical selected from the group consisting of methyl, ethyl, cyclopropyl and phenyl.

9. The composition of claim 4 wherein said glycolic, surface active agent is 2,4,7,9-tetramethyl-5-decyne- 4,7-diol.

10. The composition of claim 1 wherein said weight ratio of said glycolic surface active agent to said surface active agent is 1:20 to 1:4.

11. The composition of claim 1 wherein said weight ratio of said glycolic surface active agent to said surface active agent is 1:20 to 1:10.

12. A window cleaning composition comprising from 80 to 93.7 percent water, from 3 to 8 percent by weight of at least one glycol ether selected from the group consisting of monoalkyl ethers of ethylene glycol and propylene glycol from 3 to 7 percent by weight of a lower monohydric alcohol, from 0.1 to 2 percent by weight of an alkali or ammonium hydroxide and from 0.1 to 3 percent by weight of an anti-fogging mixture consisting essentially of a mixture of a glycolic surface active agelnt selected from acetylenic glycols having the formu a wherein R is an alkyl group having from one to four carbon atoms, and R is a radical selected from the 14 group consisting of methyl, ethyl, cyclopropyl and phenyl, or the reaction product of an acetylenic glycol having the formula wherein R is an alkyl group having from on e to four carbon atoms and R is a radical selected from the group consisting of methyl, ethyl, cyclopropyl and phenyl, and from 2 to 200 moles of ethylene oxide, and

a surface active agent selected from anionic surface active agents having the formula R O(C H O),,SO M wherein R is an alkyl group having from 8 to 20 carbon atoms, n is a number from 2 to 200 and M is a cation selected from the group consisting of ammonium, sodium and potassium and nonionic surface active agent having the formula R O(C H O),,H wherein R and n are as defined in a weight ratio of glycolic to anionic or nonionic surface active agent of from 1:50 to 1:1.

13. The composition of claim 12 wherein the glycol ether is a mixture of ethylene glycol monobutyl ether and propylene glycol monomethyl ether.

14. The composition of claim 12 wherein said lower monohydric alcohol is isopropanol.

15. The composition of claim 12 having a pH between 8 and ll.

16. The composition of claim 12 werein M is an ammonium ion.

17. The composition of claim 12 wherein said glycolic surface active agent is an acetylenic glycol having the formula wherein R is an alkyl group having from one to four carbon atoms and R is a radical selected from the group consisting of methyl, ethyl, cyclopropyl and phenyl.

18. The composition of claim 17 wherein said glycolic surface active agent is 2,4,7,9-tetramethyl-5- decyne-4,7-diol.

19. The combination of claim 12 wherein said weight ration of said glycolic surface active agent to said surface active agent is l:20 to 1:4.

20. The composition of claim 12 wherein said weight ratio of said glycolic surface active agent to said surface active agent is 1:20 to 1:10.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2414074 *Dec 14, 1943Jan 7, 1947American Cyanamid CoAntifogging composition
US2997447 *Aug 1, 1955Aug 22, 1961Air ReductionAqueous acetylenic glycol compositions
US3048266 *Mar 29, 1961Aug 7, 1962Union Carbide CorpFog resistant polyolefin films
US3075228 *Feb 24, 1958Jan 29, 1963Elias Nathaniel MAnti-fogging article
US3095381 *Aug 28, 1959Jun 25, 1963Air ReductionCleaning compositions
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3939090 *Oct 23, 1973Feb 17, 1976Colgate-Palmolive CompanyAntifogging cleaner
US4053422 *Jun 16, 1976Oct 11, 1977Texaco Inc.Drilling fluids containing polyethoxylated tetraalkyl acetylenic diols
US4054534 *May 28, 1976Oct 18, 1977Xerox CorporationVolatile cleaning solution for mirrors and lenses
US4100093 *Oct 4, 1976Jul 11, 1978Giorgio RialdiCompositions for the treatment of glass surfaces
US4343725 *Aug 30, 1979Aug 10, 1982Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa)Cleansers for windows, mirrors and reflecting surfaces containing a high molecular weight polyoxyethylene glycol polymer
US4477286 *Jul 19, 1982Oct 16, 1984Henkel Kommanditgesellschaft Auf AktienBreaking oil-in-water emulsions
US4599250 *Nov 19, 1982Jul 8, 1986Exxon Research & Engineering Co.Freeze conditioning agent for particulate solids
US4689168 *Apr 9, 1985Aug 25, 1987The Drackett CompanyHard surface cleaning composition
US4692277 *Dec 20, 1985Sep 8, 1987The Procter & Gamble CompanyHigher molecular weight diols for improved liquid cleaners
US5585186 *Dec 12, 1994Dec 17, 1996Minnesota Mining And Manufacturing CompanyCoating composition having anti-reflective, and anti-fogging properties
US5639711 *Aug 7, 1996Jun 17, 1997Monsanto CompanyGlyphosate-containing herbicidal compositions having enhanced effectiveness
US5658853 *Nov 12, 1996Aug 19, 1997Monsanto CompanyGlyphosate herbicidal compositions having enhanced rainfastness comprising an acetylenic diol and an alkyl polyglycoside
US5686023 *Apr 27, 1995Nov 11, 1997Witco CorporationC7 -C12 diol and diol alkoxylates as coupling agents for surfactant formulations
US5716921 *Apr 10, 1996Feb 10, 1998Neumiller; Phillip J.Glass cleaner with enhanced antifog properties
US5723175 *Jul 19, 1996Mar 3, 1998Minnesota Mining And Manufacturing CompanyCoating composition having anti-reflective and anti-fogging properties
US5750482 *Dec 7, 1995May 12, 1998S. C. Johnson & Son, Inc.Glass cleaning composition
US5753079 *May 3, 1996May 19, 1998Witco CorporationObtaining enhanced paper production using cationic compositions containing diol and/or diol alkoxylate
US5753373 *Dec 21, 1995May 19, 1998Minnesota Mining And Manufacturing CompanyCoating composition having anti-reflective and anti-fogging properties
US5824635 *Apr 26, 1996Oct 20, 1998Keys; Robert O.Cationic compositions containing hydroxyester
US5846650 *May 10, 1996Dec 8, 1998Minnesota Mining And Manufacturing CompanyAnti-reflective, abrasion resistant, anti-fogging coated articles and methods
US5849681 *Feb 9, 1996Dec 15, 1998S. C. Johnson & Son, Inc.Glass cleaner with enhanced anti-streaking properties
US5873931 *Oct 29, 1996Feb 23, 1999Minnesota Mining And Manufacturing CompanyCoating composition having anti-reflective and anti-fogging properties
US5977189 *Jul 25, 1997Nov 2, 1999Witco CorporationC7 -C12 diol and diol alkoxylates as coupling agents for surfactant formulations
US5997621 *Oct 7, 1998Dec 7, 1999Minnesota Mining And Manufacturing Co.Coating composition having anti-reflective and anti-fogging properties
US6040053 *Mar 2, 1998Mar 21, 2000Minnesota Mining And Manufacturing CompanyCoating composition having anti-reflective and anti-fogging properties
US6057961 *Feb 28, 1997May 2, 20003M Innovative Properties CompanyOptical film with increased gain at non-normal angles of incidence
US6075060 *Mar 3, 1998Jun 13, 2000Air Products And Chemicals, Inc.Trans olefinic diols with surfactant properties
US6111696 *Feb 28, 1997Aug 29, 20003M Innovative Properties CompanyBrightness enhancement film
US6111697 *Jan 13, 1998Aug 29, 20003M Innovative Properties CompanyOptical device with a dichroic polarizer and a multilayer optical film
US6256146Jul 31, 1998Jul 3, 20013M Innovative PropertiesPost-forming continuous/disperse phase optical bodies
US6296694 *Jun 17, 1999Oct 2, 2001Roger MachsonTransparent anti-fog anti-splash coating compositions
US6297906Feb 28, 1997Oct 2, 20013M Innovative Properties CompanyLight fixture containing optical film
US6307676Jul 10, 2000Oct 23, 20013M Innovative Properties CompanyOptical device with a dichroic polarizer and a multilayer optical film
US6310671Mar 30, 1998Oct 30, 2001Honeywell, Inc.Polarization sensitive scattering element
US6352761Jan 15, 1999Mar 5, 20023M Innovative Properties CompanyModified copolyesters and improved multilayer reflective films
US6419483Mar 1, 2000Jul 16, 20023M Innovative Properties CompanyMethod and apparatus for curling light-curable dental materials
US6449093Oct 12, 1999Sep 10, 20023M Innovative Properties CompanyOptical bodies made with a birefringent polymer
US6569515Jan 13, 1998May 27, 20033M Innovative Properties CompanyMultilayered polymer films with recyclable or recycled layers
US6574045Jan 31, 2002Jun 3, 20033M Innovative Properties CompanyOptical bodies made with a birefringent polymer
US6641900Nov 28, 2001Nov 4, 20033M Innovative Properties CompanyModified copolyesters and improved multilayer reflective films
US6760157Jul 25, 2000Jul 6, 20043M Innovative Properties CompanyBrightness enhancement film
US6783349Mar 16, 2001Aug 31, 20043M Innovative Properties CompanyApparatus for making multilayer optical films
US6797366Jul 1, 2002Sep 28, 20043M Innovative Properties CompanyColor shifting film articles
US6808658Mar 15, 2001Oct 26, 20043M Innovative Properties CompanyMethod for making texture multilayer optical films
US6827886Mar 16, 2001Dec 7, 20043M Innovative Properties CompanyMethod for making multilayer optical films
US6830713Mar 16, 2001Dec 14, 20043M Innovative Properties CompanyMethod for making coPEN/PMMA multilayer optical films
US6923997Mar 4, 2003Aug 2, 2005Pactiv CorporationAntifogging compositions and methods for using the same
US6946188Oct 1, 2003Sep 20, 20053M Innovative Properties CompanyModified copolyesters and improved multilayer reflective films
US6969698Apr 13, 2004Nov 29, 2005S. C. Johnson & Son, Inc.Aerosol cleaner
US7078358May 3, 2001Jul 18, 2006Air Products And Chemicals, Inc.Low VOC cleanroom cleaning wipe
US7138173Sep 27, 2004Nov 21, 20063Minnovative Properties CompanyRed-green-blue polymeric interference film
US7150907Jun 30, 2005Dec 19, 20063M Innovative Properties CompanyModified copolyesters and improved multilayer reflective films
US7459204Dec 15, 2006Dec 2, 20083M Innovative Properties CompanyModified copolyesters and improved multilayer reflective films
US7618930 *Nov 17, 2006Nov 17, 2009Colgate-Palmolive CompanyFoaming hard surface cleaner comprising a TEA alkyl sulfate and amine oxide surfactant system
US7700536Aug 17, 2009Apr 20, 2010Colgate-Palmolive CompanyFoaming hard surface cleaner comprising a surfactant/solvent/dispersant mixture
US7703456Dec 18, 2003Apr 27, 2010Kimberly-Clark Worldwide, Inc.Facemasks containing an anti-fog / anti-glare composition
US7794794Jun 23, 2005Sep 14, 2010Pactiv CorporationAntifogging compositions and methods for using same
US7851054Apr 30, 2009Dec 14, 20103M Innovative Properties CompanyMultilayer optical films having one or more reflection bands
US7852560Dec 4, 2008Dec 14, 20103M Innovative Properties CompanyDisplay incorporating reflective polarizer
US7977293Jul 27, 2009Jul 12, 2011Palm Beach Lighting LLCVolatile cleaning solution for fragile objects and method of use
US8168302Nov 10, 2008May 1, 20123M Innovative Properties CompanyModified copolyesters and improved multilayer reflective films
US8476214 *Oct 21, 2010Jul 2, 2013S.C. Johnson & Son, Inc.Low voc hard surface treating composition providing anti-fogging and cleaning benefits
US20010011779 *Mar 15, 2001Aug 9, 20013M Innovative Properties CompanyMethod for making textured multilayer optical films
US20010013668 *Mar 16, 2001Aug 16, 20013M Innovative Properties CompanyMethod for making multilayer optical films
US20110098206 *Oct 21, 2010Apr 28, 2011S. C. Johnson & Son, Inc.Low voc hard surface treating composition providing anti-fogging and cleaning benefits
EP0089522A1 *Mar 3, 1983Sep 28, 1983Henkel Kommanditgesellschaft auf AktienBreaking up of oil-in-water emulsions
EP0531269A2 *Jul 31, 1992Mar 10, 1993Monsanto CompanyGlyphosate-containing herbicidal compositions having enhanced effectiveness
EP0983332A1 *Dec 10, 1998Mar 8, 2000Robert H. BlackComposition for cleaning hard surfaces
EP1050577A1 *May 3, 2000Nov 8, 2000Air Products And Chemicals, Inc.Low voc cleanroom cleaning wipe
EP2147771A2Jan 13, 1999Jan 27, 2010Minnesota Mining And Manufacturing CompanyProcess for making multilayer optical films
EP2292422A1Jan 13, 1999Mar 9, 2011Minnesota Mining And Manufacturing CompanyColor shifting film
EP2292423A1Jan 13, 1999Mar 9, 2011Minnesota Mining And Manufacturing CompanyColor shifting film
EP2740591A1Jan 13, 1999Jun 11, 2014Minnesota Mining And Manufacturing CompanyColor Shifting Film
WO1994005765A1 *Aug 6, 1993Mar 17, 1994Chemie X 2000 Schrupstock GmbhCleaning-fluid composition
Classifications
U.S. Classification510/182, 510/505, 510/536, 510/537, 510/497, 510/506, 510/400, 510/535, 106/13
International ClassificationC11D3/16, C11D1/29, C11D1/72, C11D1/02
Cooperative ClassificationC11D1/72, C11D1/29, C11D3/164
European ClassificationC11D1/29, C11D1/72, C11D3/16D