Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3821018 A
Publication typeGrant
Publication dateJun 28, 1974
Filing dateSep 21, 1970
Priority dateOct 10, 1969
Also published asDE2049499A1, DE2049499B2
Publication numberUS 3821018 A, US 3821018A, US-A-3821018, US3821018 A, US3821018A
InventorsA Grant
Original AssigneeUnion Carbide Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Porous metallic layer formation
US 3821018 A
Images(9)
Previous page
Next page
Description  (OCR text may contain errors)

Waited States Patent [191 Grant June 28, 1974 1 POROUS METALLIC LAYER FORMATION [75] Inventor: Andrew Campbell Grant,

Williamsville, NY.

[73] Assignee: Union Carbide Corporation, New

York, NY.

[22] Filed: Sept. 21, 1970 [21] Appl. No.: 74,131

Related [1.8. Application Data [63] Continuation-impart of Ser. No. 865,512, Oct. 10,

1969, abandoned.

[52] US. Cl. 117/94, 29/192, 29/196.1, 29/196.3, 29/498, 75/149, 75/153, 75/208 R,

117/18, 117/22, 117/46 CA, 117/l3l,

[51'] Int. Cl....' B23k l/04 [58] Field of Search 117/18, 22, 25, 26, 27, 117/31, 33, 46 CA, 94, 97,131,160 R; 29/182, 182.2, 182.3, 196.1, 196.3, 498, 192; 75/149, 153, 208 R; 865/512 [56] References Cited UNITED STATES PATENTS 1,753,748 4/1930 Lorang 75 149 2,161,057 6/1939 Kalischer 75/153 2,229,330. 1/1941 Langhammer et a1 29/182 2,241,095 2/1940 Marvin .Q 117/31 2,662,270 12/1953 Mitchell et a1 1 17/22 2,683,181 7/1954 Salauze 29/182 2,908,072 10/1959 Johnson... 117/22 3,289,750 12/1966 Valyi 29/1823 3,322,547 5/1967 Ouass et a1.. 117/22 3,330,654 7/1967 Sweet 75/208 R 3,334,400 8/1967 Jaeger 75/208 R 3,364,951 1/1968 Bume et a1. 75/208 R 3,528,807 9/1970 Gatilt 75/153 3,551,622 12/1970 Takeuchi 75/153 OTHER PUBLlCATlONS Smart, J. S. and A. Smith, Jr., The Effect of Certain Elements on the Properties of High-Purity Copper, The Metal Industry, Sept. 3, 1943, pp. 150-153.

Primary Examiner -william D. Martin Assistant Examiner-William R. Trenor Attorney, Agent, or Firm-John C. LeFever ABSTRACT A metallic porous layer is formed on copper or copper alloy base material by providing a loose coating of copper or steel powder matrix, bonding metal alloy consisting of copper and phosphorous, or copper and antimony and a liquidbinder, partially heating to evolve the liquid binder and further heating to 1,3501,550F. to braze the bonding metal alloy to the base material and matrix.

13 Claims, No Drawings 1 POROUS METALLIC LAYER FORMATION 865,512 filed Oct. 10, 1969, now abandoned.

BACKGROUND OF THE INVENTION This invention relates to a method for forming a thin porous copper or steel layer on copper or copper alloy base material, and an article comprising copper or copper alloy tube with a porous copper layer.

A thin layer of metal particles bonded together and to a metal base material as a uniform matrix with inter stitial interconnected pores of equivalent pore radii less than about 6 mils is described in U.S. Pat. No. 3,384,154 issued May 21, 1968 to R. M. Milton. This patent also demonstrates that the porous layer is highly effective for transferring heat from a heat source thermally associated with the base material to boiling liquid within the layer; heat transfer coefficients were obtained on the order of 10 times greater than those for mechanically roughened surfaces.

The Milton patent describes a method for preparing porous heat transfer layers by sintering a metal powder matrix component onto the base material using a plastic binder for initial adhesion of the particles from a slurry. Sintering is accomplished by raising the temperature of the coated surface to the softening point of the base metal and the powder matrix component. In some instances this method results in considerable deformation of the base metal, e.g., thin copper alloy sheets or long tubing. Such deformation must be avoided where the porous metal layer-base metal is to be mass produced within closely controlled and reproducible dimensions, e.g., for assembly in heat exchanger tube sheets and casings. lf annealing occurs, an additional work hardening step may be required to provide an article of satisfactory strength.

Another disadvantage of the sintering method is the relatively long period required to heat the copper base material and powder matrix to its softening point, i.e. above about 1,760F., and maintain the components at this high temperature level to achieve sintering. The same disadvantage exists with copper alloys, e.g. 1 wt.- percent iron in copper. This characteristic not only time-limits mass production but also requires very high heat or power inputs.

It is an object of this invention to provide an improved method for forming a thin porous copper or steel layer on copper or copper alloy base material.

Another object is to provide a method which does not require the high bonding temperature characteristic of the prior art sintering methods for forming porous layers.

SUMMARY Pure copper metal begins to anneal at about 700F. and is fully annealed at 1,200F. For example, the yield strengths of copper at F. before and after annealing at 1,460F., are about 10,000 psi. and 6,000 psi. respectively. Because the formation of a copper porous layer requires heating the base material to this high (1,460F.) temperature range, certain copper alloys can be used instead of commercially pure copper as the base material. These copper alloys become annealed at considerably higher temperatures than pure copper, but even their usage does not eliminate the problem of reduced strength and consequent deformation when the conventional sintering method is used to form the porous layer.

While deoxidized high phosphorous (DHP) copper may be used the copper alloy preferred as the base ma terial in the practice of this invention is identified as No. 192 by the Copper Development Association (CDA) and comprises 98.7 wt.% Cu (minimum), 08-12% Fe, 0.01-0.04% P, and 0.10% (maximum) other constituents: This copper alloy has the following physical properties after heating at 1,460-l,475F.:

Tensile strength 38,000 psi. minimum Yield strength 14,000 psi. minimum (0.5% extension under load) Elongation 35% minimum in 2 inches It is apparent that copper alloy CDA No. 192 is not annealed at 1,460F.; this copper alloy does not start annealing until 1,500F. and is fully annealed at 1,600F. Another suitable copper alloy having a similar temperature-annealing relationship is CDA No. 194, containing 2.l2.6% Fe (iron). Unfortunately the an nealing temperatures of even these copper alloys are below the temperature required for copper sintering.

In the method of this invention, a loose coating is provided on copper base material comprising metal matrix powder, bonding metal alloy powder and an inert liquid binder vehicle. The bonding metal alloy powder consists of either 90.5-93 weight copper and 7-9.5 weight phosphorous or 25-95 weight antimony and the balance copper. The bonding metal alloy powder also comprises 10 30 weight percent of the copper matrix-bonding metal alloy total. The copper matrix and bonding metal alloy are each in particulate form sufficiently small to pass through a 30 mesh screen and be retained on a 500 mesh screen, based on the United States standard screen series. Moreover, the size range of substantially all copper matrix and bonding metal alloy particles of a particular loose coating do not exceed 250 mesh. Accordingly, if the largest particles pass through a 50 mesh screen the smallest particles are retained on a 300 mesh screen. The loose coating includes as a third major component, an inert liquid binder vehicle. as for example a mixture of viscous hydrocarbon binder and petroleum base solvent, e.g., a 50-50 weight percent mixture of isobutylene polymer and kerosene.

The copper base material and loose coating are partially heated in a non-oxidizing atmosphere to temperature below 1,000F. to evolve the liquid binder and form a dried matrix-bonding metal alloy coating on the base material. As used herein, the expression'nonoxidizing atmosphere means a gas atmosphere containing insufficient oxygen to permit oxidationof the copper alloy base material, the copper powder matrix or the bonding metal alloy powder at the elevated environment temperature. If these components have not been previously cleaned of oxide coating in a suitable solvent, as for example phosphoric to chromic acid, a reducing atmosphere such as hydrogen is preferred to effect such cleaning. If the components have been deoxidized immediately prior to practice of this method, the heating atmosphere may be inert, as for example nitrogen gas, although a reducing gas could also be employed.

After the partial heating step, the coated base material is further heated in a non-oxidizing atmosphere preferably at a higher rate than the partial heating and to maximum temperature of l,350-l,550F., and only for sufficient duration to melt the bonding metal alloy and enable it to braze together the base material and the matrix powder. A layer of matrix particles less than 0.125 inch thick is formed in random stacked relation as a uniform structure with interstitial and interconnected pores between adjacent particles having pore radii between 0.05 and 7.5 mils. The porous layer coated base material is immediately cooled from the maximum temperature to below l,350F. to prevent overbrazing which reduces the layers porosity. That is, the copper-phosphorous or copper antimony bonding metal melts during the final heating step and forms an alloy with the outer surface of the copper, copper alloy or steel matrix and base material, e.g., the initial melting point of the bonding metal is about l,330F. If the heating is continued above l,550F., it has been found that the surface alloy itself begins to melt, flow into and close the pores which are essential to obtain the high ,boiling heat transfer coefficient.

This method has been successfully used to form a copper porous layer on the outer surface of long copper alloy tubes in 2 hours, whereas the prior art sintering method required 7 hours. Even more importantly, the tubes used as the copper alloy base material in the practice of this method substantially retained their original dimensions, in marked contrast to tubes of the same length coated by the sintering method. This was accomplished without significantly altering the tensile and yield strengths of the base material.

The porous layer coated base material prepared by the aforedescribed method also constitutes part of this invention.

Another aspect of the invention relates to an article of manufacture comprising a 0.8 2.6 weight percent iron-in-copper alloy tube of grain size below about 0.05 mm. The tube has a porous layer less than 0.125 inch thick on at least one surface, comprising copper or steel particles of 30-500 mesh in random stacked relation as a uniform structure with interstitial and interconnected pores between adjacent particles, and preferably having pore radii of 0.05 7.5 mils. The particles are brazed together and to the tube surface by a bonding metal alloy having a melting point below l,500F. The bonding metal alloy may for example be the aforedescribed 90.5 93% Cu and 7 9.5% P, or alternatively may be a bronze brazing composition such as the Handy-Harman flux No. 560 comprising 56 weight silver, 22% copper, 17% zinc and tin or 25 95% antimony and the remainder being copper. Such porous layered tubes are characterized by high tensile strength, and low percent elongation and deformation as compared to prior art articles.

DESCRIPTION OF PREFERRED EMBODIMENTS An essential characteristic of porous layers for boiling heat transfer is interconnected pores of capillary size, some of which communicate with the outer surface. Liquid to be boiled enters the subsurface cavities through the outer pores and subsurface interconnecting pores, and is heated by the metal forming the walls of the cavities. At least part of the liquid is vaporized within the cavity and resulting bubbles grow against the cavity walls. A part thereof eventually emerges from the cavity through the outer pores and thence rises through the liquid film over the porous layer for disengagement into the gas space over the liquid film. Additional liquid flows into the cavity from the interconnecting pores and the mechanism is continuously repeated.

The high boiling coefficient results from the fact that the heat leaving the base metal surface does not have to travel through an appreciable liquid layer before meeting a vapor-liquid surface producing evaporation. Within the porous layer, a multitude of bubbles are grown so that the heat, in order to reach a vapor-liquid boundary, need travel only through an extremely thin liquid layer having a thickness considerably less than the minute diameter of the confining pore. Vaporization of liquid takes place entirely within the pores and substantially no superheating of the bulk liquid is required or can occur.

It will be apparent from the foregoing description that the porous layer must be structurally stable, reasonably uniform throughout its cross-section, with interconnected pores of capillarysize having a controllable and reproducible equivalent pore radius. As used in this context, the equivalent pore radius emperically defines a porous boiling layer, having varied pore sizes and non-uniform pore configurations, in terms of a single average pore dimension. ln general, for boiling liquids having relatively low surface tension such as the cryogens oxygen and nitrogen, the equivalent pore radius is preferably relatively small, e.g., between 0.05 and 2.5 mils. Conversely with boiling liquids having relatively high surface tension such as water, the equivalent pore radius should be relatively large, e.g., between l.5 and 7.5 mils, the required equivalent pore radius being a function of pressure as well as surface tension.

A bonding metal alloy powder used in the copper porous layer formation method consists of 90.5 93 weight percent copper and 7 9.5 weight percent phosphorous. This particular mixture range is characterized by low melting temperature below about l,500F., so

that it melts below the softening points of the copper alloy base material and metal powder matrix. Accordingly it may be used to fuse these two components together and form a strong metallurgical alloy bond without appreciable softening (and annealing) of the copper alloy base material. A preferred bonding alloy mixture is 92 weight percent copper and 8% phosphorous as it provides an initial melting point of about 1,330F.

weight percent has been found to be from 25 to 95.

The matrix powder can comprise copper, steel or copper alloys such as brass or bronze. Steel, which can be defined as a metal having Fe as its major constituent, has been found to be useful in place of copper with substantially the same result. It has been found that the metal bonding alloy powder forms a coating on the steel matrix powder thereby bonding the steel particles to each other and to the copper base material.

Generally, copper base material can be defined as including pure copper and metallic mixtures containing copper and up to 35 weight percent alloying metal. The term DHP copper is used by the Copper Development Assn, Inc., 405 Lexington Avenue, N.Y., N.Y., to identify deoxidized high phosphorous copper which is a relatively pure copper having high residual phosphorous.

Both the copper powder matrix and the bonding metal alloy particles must be sufficiently small to pass through a 30 mesh screen. Although the particles may be any shape, e.g., spherical, granular or even thin flakes, they must be smaller than 30 mesh size to produce pores in the porous layer to become active as nucleation sites for boiling at low temperature differentials. Larger particles produce porous layers having equivalent pore radii larger than 7.5 mils. On the other hand, the copper matrix and bonding metal alloy particles must be sufficiently large to be retained on a 500 mesh screen. Smaller particles produce porous layers having equivalent pore radii which are too small for bubble release.

In general, large particles produce porous layers having relatively large equivalent pore radii, which in turn are preferred for boiling liquids having relatively high surface tension. The converse is also true. It should be noted, however, that there is no precise correlation between matrix and bonding metal particle size and equivalent pore radii. This is partly because the individual particles used to prepare a given porous layer are not necessarily the same shape, nor do these particles necessarily correspond in shape to the particles of different mesh size used to prepare other porous layers. Moreover, the particles are stacked in random relation on the base metal and sizes of the interstitial and interconnecting pores may vary considerably. The equivalent pore radius for a particular porous layer as described herein is determined by the following method: one end of the porous layer is vertically immersed in a freely wetting liquid and the capillary rise of the liquid is measured along the surface of the porous boiling layer as a function of time and correlated thereafter to the approximate equivalent pore radius.

In addition to the 30-500 mesh particle size range for metal matrix particles and bonding metal alloy particles useful in this method, for any particular embodiment substantially all particles of each component are preferably within a size range of 250 mesh. That is, the largest particles are within 250 mesh of the smallest particles. This relationship ensures that the porous boiling layer is substantially uniform in all directions. If the component particle sizes vary more than 250 mesh, there is a tendency for the smallest particles to preferentially settle in a strata nearest the copper alloy base and the largest particles to form a top strata. For exam ple, if the bonding metal alloy particles are much smaller than the matrix metal particles many of the latter would not intimately contact the copper alloy base material. Conversely if the matrix metal particles are much smaller than the bonding metal alloy particles, primarily the former contact the base material. In either event the resulting porous metal layer is characterized by relatively low boiling coefficients (becauseof an excessively wide range of equivalent pore radii) and low strength (because of non-uniform particle distribution and low brazing strength). Particle sizes in the range of -325 mesh have been found satisfactory to form a porous boiling layer of about 1.5 2.0 mils equivalent pore radii, preferred for boiling relatively low surface tension liquids as for example the halogenated hydrocarbon refrigerants, air, oxygen and nitrogen.

In a preferred embodiment, the powder matrix and bonding metal alloy powder are provided in substantially the same particle size distribution so as to form high strength porous layers and a high boiling heat transfer coefficient on a copper alloy base which retains its original dimensions, shape and high nonannealed tensile and yield strengths.

The bonding metal alloy comprises 10 to 30 weight percent of the matrix powder bonding metal alloy total. The lower limit of this range is based on the requirement of sufficient metal alloy to wet both the copper alloy base material and the copper, copper alloy or steel matrix powder, and form strong metal alloy bonds between the matrix particles and the base material. The 30 weight percent bonding metal alloy upper limit is to avoid the presence of so much of the latter that excessive alloying or erosive action occurs during the brazing, thereby preventing formation of the small equivalent pore radii necessary to enhance boiling heat transfer.

In a preferred embodiment of the instant method the bonding metal alloy powder comprises about 17.5 weight percent of the copper matrix bonding metal alloy total.

The function of the inert liquid binder is to adhere the metal powder matrix and bonding metal alloy powder to the copper alloy base material at the coating temperature so that the base material may be moved and positioned within a furnace, if desired. Suitable binders must be liquid at ambient temperature, inert (or chemically non-reactive) with respect to the other components of the loose coating, and preferably have moderately high volatility and low latent heat. Various plastics may be used to suspend the metal matrix and bonding metal alloy as for example an isobutylene polymer having a molecular weight of about 140,000 and known commercially as Vistanex/f dissolvable in solvents such as kerosene. The preferred binder is a 50 weight percent Vistanex 50 weight percent kerosene mixture. Other organics such as toluene, methyl alcohol, ethyl alcohol or acetone may be used as a dissolving and/or thinner material. The latter preferably boils in the moderately high range of 300 550F. so as to avoid evaporation before bonding has been initiated. A stabilized cut of petroleum distillate is suitable from this standpoint.

Although not essential, a binder may be selected which also temporarily suspends the metal matrix and bonding metal alloy powders and forms a slurry preferably having a paintlike consistency. In this event the quantity of binder-vehicle is detennined to afford a slurry of desired viscosity, preferably about 3,000 centipoise for producing porous layers about 8-12 mil thick. The slurry form is particularly convenient to form the loose coating in relatively inaccessible copper alloy base material areas, as for example the inner surface of tubing.

To obtain a strong mechanical bond between the porous layer and the base material, the latter should be degreased by washing with a suitable agent as for example carbon tetrachloride.

As used herein, the step of providing a loose coating of copper powder matrix, bonding metal alloy powder and liquid binder contemplates all methods of application without appreciable external pressure, e.g., spraying, dipping the copper alloy base metal into one or more fluids, or pouring one or more of the components onto the base material. The porous layer is characterized by substantially interconnecting pores, and such open structure may not be prepared from a compacted or extruded layer.

In a preferred method embodiment, the copper alloy base material is first coated with a uniform thickness film of the liquid binder as for example by dipping, painting or spraying. A uniform mixture of copper powder matrix and bonding metal alloy powder is thereafter applied as a coating of substantially uniform thickness to the binder film. The coating may be formed in several steps by shaking off excess unadhered powder mixture after each application and thereafter sprinkling on an additional layer of powder. This sequence has been found highly satisfactory in providing strong metal bonds between the three essential components. The final layer has substantially uniform effective pore radii and reasonably constant thickness.

This sequential method for forming a thin porous copper layer on copper alloy base material is not my invention but is disclosed and claimed in a copending application Ser. No. 37,649, now US. Pat. No. 3,753,757, Two Step Porous Boiling Surface Formation filed May 15, 1970 by Robert J. Weiner and Arthur Rodgers.

It is also preferred but not essential to apply an additional light coating of matrix powder after the primary loose coating of liquid binder-matrix powder-bonding metal alloy has been formed. The purpose of this final coating of matrix powder is to reduce the possibility of excessive alloying or erosion of primary matrix powder by the bonding metal alloy, by providing additional powder which the outermost bonding metal alloy may preferentially attack.

Alternative satisfactory sequences for providing the loose coating on the copper alloy base metal include first applying the bonding metal alloy powder and then a matrix powder-binder mixture, or first applying a matrix powder-binder mixture and then the bonding metal alloy powder.

Once the loose coating has been formed on the base material the composite is partially heated in a nonx dizin mosphe e t ,ttemnera ur elgw. about 1.000 F. but sufficient to evaporate the Iiquid binder and form a dried matrix bonding metal alloy coating on the base material. Heating may be indirect, e.g., by hot gas surrounding the coated base material, or direct as by using the latter as the heating element in the electrical circuit and controlling the voltage and current. For indirectly heated furnaces wherein thecoated material is stationary, the partial heating step is preferably at rate not exceeding 600 per hour; higher rates tend to evaporate the binder so rapidly as to lift or entrain powder in the evolving vapor. Such is undesirable, both from the standpoint of losing the power and also possibly changing the relative quantities of matrix powder and bonding metal alloy as the particles are lifted by the vapor. For such furnaces, it is preferred to conduct this first heating step at rate of about 400F. per hour. Heating rates above 600F. per hour may be preferred in furnaces where the coated base material is directly heated and/0r moved through the furnace (See Example V). The partial heating is below about l,000F. as suitable liquid binders are completely evolved at 1,000F. and the heating rate may be increased in the final heating step without deleterious effects.

As previously indicated, the partial heating step may be performed in either a chemically inert atmosphere such as nitrogen, or a reducing atmosphere as for example hydrogen. Although not essential, a small quantity of brazing flux such as borax-base type may be included in the loose coating. The brazing flux should not comprise more than about 5 weight percent of the matrix powder bonding metal alloy total. These fluxes act as a solvent for the copper oxide coating on the base material so that if a flux is employed, a reducing atmosphere may not be required for either of the heating steps even if the base material is not precleaned with solvent.

In the second or final heating step, the dry coated base material is further heated in a non-oxidizing atmosphere preferably at faster rate than the first heating step to maximum temperature 'of l,350F.-l ,550F. This final heating step is only for sufficient duration to melt the bonding metal alloy and enable it to braze together the base material and the matrix, and form a layer of particles less than 0.125 inch thick in random stacked relation as a uniform structure with interstitial and interconnected pores between adjacent particles having poreradii between 0.05 and 7.5 mils. The heating rate of this step should not be so high as to exceed the desired maximum temperature for an appreciable period. If this were to occur the base material would become at least partially annealed and characterized by reduced tensile strength and high percent elongation the same disadvantages of copper porous layer base materials prepared by' the sintering method. Also, excessive exposure to the maximum temperature causes overbrazing and flow of the bonding metal copper alloy into the pores as previously discussed. On the other hand, for mass production and high efficiency of manufacturing the final heating rate should be as high as possible and is preferably 1,000-2,000F. per hour in indirectly heated furnaces wherein the work is stationary.

lt has been found that the time-temperature relationship during the last part of the final heating step is an important consideration in producing a high quality article. For example, a relatively lower maximum temperature may be satisfactory if the coated base material is exposed to such temperature for a relatively longer period. Also, the surface oxidative condition of bonding metal alloy powder may affect the duration and maximum temperature of the final heating step. If the bonding metal alloy has been exposed to the oxidizing atmosphere for a long period, a relatively longer and hotter final heating step is required to remove the oxide and form the bonding metal copper alloy bond. In general, the final heating should be terminated prior to reaching the maximum temperature to avoid exceeding same for an appreciable period.

The gas environment during the final heating step should also be non-oxidizing. If the bonding metal alloy has a substantial oxide coating the gas should be reducing, i.e., hydrogen-containing, to remove the oxide. Although not essential, it is convenient and preferable to employ the same gas atmosphere during the partial and further heating steps.

To avoid even partially annealing the base material, the final article is immediately cooled from the maximum temperature of the final heating step to below 1,350F. This can be accomplished by terminating the heating and preferably also circulating cool air around the furnace retort.

The invention will be more fully understood by the following examples:

EXAMPLE 1 This example illustrates the method of this invention, whereby a copper porous layer was formed onthe outer surface of 1 inch outside diameter tubes composed of 99% copper 1% iron. The tubes were five feet long for ultimate use in a heat exchanger.

The outside surface of the tubes was washed with a degreasing solvent and air dried. The cleaned tubes were then horizontally positioned and a 50-50 weightpercent mixture of isobutylene polymer and kerosene liquid binder was poured over the tube outer surface, the tubes being rotated as needed to insure complete coverage. The binder-coated horizontal tubes were drained for 10-12 minutes to remove excess liquid, horizontally rotated 180 and held stationary for another 10 minutes to allow the liquid binder to spread evenly over the tubes outer surface. Bonding metal alloy powder comprising 92 percent by weight copper characterized by pore radii of about 1.5 2.0 mils. When used as a heat transfer surface for boiling water,

the heat transfer coefficient was about 5,000 Btu/hr ft F. about 10 times greater than for mechanically roughened surfaces and similar to the coefficients obtained with porous layers prepared by the sintering method. Another 17 mil thick porous layer on a 99% copper 1% iron tube prepared according to this procedure afforded a boiling heat transfer coefficient of about 4,770 Btu/hr. ft for fluorotrichloromethane at 18-inches vacuum and 13,500 Btu/hr. ft heat flux. A gaTn this performance was comparable to a porous layer prepared by sintering.

The tubes were not distorted by this heating despite their long length. The strength integrity of the porous layer was tested by scraping and wire brushing procedures, and found to be equivalent to porous layers prepared by the sintering method and acceptable by commercial standards.

EXAMPLE 11 This series of tests illustrates the importance of the 1,550F. upper limit for the second or further heating step of the instant method. The procedure was identical to that of Example 1, except that instead of 1,475F., the maximum heating temperature for three different groups of coated tubes was 1,550F., 1,575F. and 1,600F. Examination of the tubes clearly indicated that as heating temperature was increased beyond 1 ,5 F. melting closed at least some of the pores, produced a bumpy layer and destroyed the uniform and controllable pore radii characteristic of highly efficient boiling layers.

EXAMPLE 111 This series of tests illustratesthe effect of copper matrix 92% copper 8% phosphorous bonding metal alloy mixture proportions and particle size on the strength and performance of porous layers prepared in accordance with the Example 1 procedure for boiling fluorotrichloromethane. The porous layers were formed on discs with a maximum heating temperature of 1500F. and thereafter inserted in a pool boiling test unit. The tests are summarized as follows:

Measured at lit-inches vacuum and heat flux of 13.500 Btu/hr. l'i

times at one hour intervals, after which the tubes were placed horizontally on racks in a furnace and heated at a rate of about 400F. per hour to about 1,000F. in a hydrogen gas atmosphere to evaporate the binder. The coated tubes were then further heated at a rate of about 500F. per hour in the same hydrogen gas atmosphere to about 1,475F. and thereafter immediately cooled within the furnace by terminating the heating and air cooling the exterior of the retort enclosing the tubes and surrounding hydrogen atmosphere.

The porous layer comprising copper matrix and copper-phosphorous alloy was about 0.020 inch thick and ll 1 ll 2 a silver-rich mixture comp rising 5 6 weight erenrsnliquid binder, ans was painted on (instead of poured ver, 22% copper, 17% zinc and 5% tin. A 15-inch long over) the tube outer surface. 3/4 inch outside diameter 99% copper-1% iron tube The coated tubes were placed in a mesh belt (chain was cleaned in acetone. Each end was painted with the grat yp l tri furnace over two supp rts spac d aforedescribed 50-50 weight percent mixture of isobu- 5 2 feet apart. The furnace was about 30 feet long with tyl polymer a d k r bi d E d A wa d t d partial heating and further heating zones each 9 inches with a 5 weight percent silver alloy 95 weight percent Wide and 4 inches g The Partial heating Zone of this copper powder matrix of about 100-450 mesh size m EQWQS DQW 7 feet long, the further atingz n until no more powder adhered to the binder. End B was as a u 6.3 feet l ng and th ling n as a ut dusted with a 10 weight percent silver alloy 90 weight 1 14 feet long. The gas atmosphere for partial heating, percent copper powder matrix of about 100450 h final heating and cooling was 36% hydrogen and 64% size in the same manner. The tube was then partially nitrogen by volume, with a 30-60F. dew point.

heated in a furnace and in a hydrogen atmosphere at Both coated tube samples were run at grate speed of rate of about 400F. per hour to about 900F. to evapo- 5 inches per minute through the furnace partial heating rate the binder and thereafter finallly heated at rate of 15 section. The partial heating rate was about 3,300F. per about 500F. per hour in the same hydrogen atmohour up to a maximum temperature of about 1,000F. sphere to l,350F-l,400F. The coated tube was main- The pure copperpowder coated tube was moved tained at this temperature level for about one hour and through the further heating zone at a rate of 1 inch per without excessive melting because it was not suffiminute and further heated to a maximum temperature ciently close to the bonding metal-copper alloy melting of about 1,825F. for about 74 minutes. The coppertemperature to produce overbrazing. phosphorous powder coated tube was moved through On examination, the coating on each end appeared the further heating zone at a rate of about 4 inches per uniform and porous. The 10 weight percent silver alloy minute and further heated to a maximum temperature coating was slightly stronger than the 5 weight percent of about l,525F. for about 18 minutes. The further silver alloy coating but both could be scraped off by heating rates were not directly measured but were of hand. Microscopic examination confirmed that insuffthe same order of magnitude as the partial heating rate, cient bonding metal alloy had been used to form a i.e., about 3,300F. per hour. After the further heating strong porous layer. step, the coated tubes were moved through the cooling In a subsequent test, a powder mixture comprising 20 zone at a rate of about 4-5 inches per minute and the weight percent of the same silver-rich bonding metal cooling rate was on the order of 2,500F. per hour. alloy and 80 weight percent copper matrix of about After removal from the furnace, the vertical deforl00-450 mesh particle size was dusted over the same mation of the center section from the supported end binder coating onto a copper disc. The coateddisc was sections, hereinafter referred to as maximum-sag, heated to 1400F. using the aforedescribed program. was measured. Maximum sag is a criteria for evaluating The strength and integrity of the resulting porous layer the tube deformation resulting from the heating portion was tested by scraping and wire brushing procedures of the copper porous layer forming method. Grain size and found to be equivalent to porous layers prepared measurements of the tube metal were also made to by sintering. The porous layer was tested in a pool boilevaluate the effect of heating on the tube strength. For ing unit using fluorochloromethane at 5.7 psia. at these grain size measurements, the tubes were cut lonl3,500 Btu/hr. ft heat flux and provided a heat transfer gitudinally along the tube center line and measurecoefflcient of about 4,600 Btu/hr. ft F. comparable ments made at right angles to the cuts following the to a sintered copper porous layer under the same conprocedure of ASTM No. E 1 12-63 Tentative Methods ditions. For purposes of this test, the use of pure copper for Estimating Average Grain Size of Metals, Appeninstead of copper-iron alloy base material was not sigdix 4.

nificant. The results of these tests are as follows:

Type of Porous Maximum Heating' Maximum Sag Tube Grain* Porous Coating Layer TemperatureF (inches) Size (mm.) Pore Rudii (mil) Copper I825 9/16 0.200 1.65 Copper-Phosphorous [525 N4 0.03S-0.045 L74 Grain size for unheated 99% copper 1% iron tube 0.0K) mm.

EXAMPLE V It is seen from this data that the present method peri v mitted a subtantially lower bonding temperature and This Series of tests "P both the method provided an article characterized by less than l/2 the manufacture and the article, and compares same with d f ti f i l prepared b h prior an i the P sintering d amcleing method. The deformation of the sintered copper Two samples of l-inch outside diameter tube each porous layered tube was so great as to prevent its use 2.25 feet long and composed of 99% copper 1% iron in heat exchanger construction, whereas the copperwere provided. The outer surface of one tube was phosphorous porous layer tube may be so used. The coated with pure copper powder of 100-325 mesh pardata also indicated that whereas the present method for ticle size and the outer surface of the second tube was fonning the copper porous layer only slightly increased coated with the same 82.5% by weight copper powder the tube grain size, the prior art sintering method matrix 17.5% bonding metal alloy mixture of l00-325 caused an over twenty-fold increase in grain size. In mesh particle size used in Example I. The coating proview of the well known relationship between metal cedure was the same as outlined in Example 1 except grain size and strength, it is apparent that the porous that the fluid comprised a 50-50 weight percent mixcopper layered tube of this invention has substantially ture of isobutylene polymer and petroleum distillate the same strength as the unheated tube in marked contrast to the prior art sintered porous copper layered tube. It is significant that the ASTM No. 1375-62 specification for seamless copper tube, light annealed, is an average grain size not exceeding 0.04 mm. Accordingly, the brazed article of this invention would be acceptable using this standard but the sintered article wholly unacceptable.

Another important advantage of this manufacturing method is the much higher production rate, e.g., the copper-phosphorous powder coated tube movement rate of 4 inches per minute as compared to the pure copper sintering methods rate of 1 inch per minute.

EXAMPLE VI In another example of this invention wherein steel matrix powder is bonded to a copper substrate disc using phosphorous-copper bonding powder, a Dl-lP copper disc and an iron-copper alloy tube CDA No. 192 (0.812% Fe, 0.0l-0.04% P and 0.1% max other constituents) were coated with inert liquid binder as described in Example 1 and then coated with Glidden No. 4,600 steel powder (1.9% Ni, .6% Mn, 0.3% Mo, .04% C, .3% Si and balance- Fe) mixed with C-302 (92 wt.% Cu and 8 wt.% 1) phosphorous-copper powder in a weight ratio of 75/25. All powders were 100-325 mesh. After partial furnace heating to 1,000F. the samples were heated to l,450-l ,500F. Bond strength of the porous coating on the copper disc and CDA No. 192 tube was good. Boiling tests made with R-ll (trichloromonofluoromethane C C1 F) refrigerant at 1 atmosphere pressure using the coated copper disc gave a boiling side heat transfer coefficient of 5,100 Btu/hr. ft F. at a heat flux of 20,000 Btu/hr. ft compared with a smooth surface heat transfer coefficient of less than about 1,000 Btu/hr. ft F. From this and other similar experiments, it is believed that about 30% phosphorous-copper powder (C-302) and 70% steel matrix powder will provide good porous surface bonding. The coated copper substrate disc of this example heated to l ,500F. had an average longitudinal grain size of 0.050 mm as compared with 0025-0030 for the unheattreated copper substrate disc.

EXAMPLE Vll In another example of this invention wherein copper matrix powder is bonded to a copper substrate disc using antimony-copper bonding powder, a bonding alloy powder comprising about 31% antimony and 69% copper by weight was prepared having 100-325 mesh size. This bonding alloy powder was then mixed with pure copper matrix powder, 100-325 mesh size in a weight ratio of 20% bonding powder to 80% matrix powder, coated onto a copper disc which had been coated with inert liquid binder as described in Example 1 and partially heated to about 1000F. and thereafter heated to 15001550F. in a hydrogen atmosphere. The resulting porous surface was well bonded to the copper substrate. A boiling test using R-l 1 refrigerant at one atmosphere pressure showed a boiling side heat transfer coefficient of 7,400 Btu/hr. ft F. at a heat flow per unit area of 20,000 Btu/hr. it compared with a smooth surface heat transfer coefficient of less than about 1,000 Btu/hr. ft F. The coated copper substrate disc of this example heated to 1,550F had a range of longitudinal grain size of from 0.040 0.045 mm as compared with 0.025 0.030 for the unheat-treated copper substrate disc.

EXAMPLE Vlll in still another example of this invention tubes of cupronickel alloys (90% copper 10% nickel and copper 30% nic'kel) were successfully coated on the outside with inert liquid binder as described in Example 1 and with pure copper matrix powder and 9% phosphorous 91% copper bonding metal powder in a weight percent ratio of /20. All powders ranged from 100-325 mesh. The samples were partially heated to about 1,000F. and then brazed in nonoxidizing atmosphere at 1,500F. They demonstrated excellent properties in porous surface substrate bond strength. The average longitudinal grain size increase for the /10 cupronickel alloy was from about 0.015 mm to 0.045 mm. A boiling test using R-l 1 refrigerant at one atmosphere pressure showed boiling side heat transfer coefficients of about 6,000 Btu/hnft F. for both samples at a heat flow rate of 20,000 Btu/hr. compared with a smooth surface heat transfer coefficient of less than about 1,000 Btu/hr. ft F.

Although preferred embodiments of this invention have been described in detail, it is contemplated that modifications of the method and article may be made and that some features may be employed without others, all within the spirit and scope of the invention.

What is claimed is:

1. A method of forming a metallic porous layer having equivalent pore radii of 0.05-7.5 mils on an impervious copper base material comprising the steps of:

a. providing on said copper base material a loose coating comprising an inert liquid binder, metal matrix powder and bonding metal alloy powder wherein said matrix powder comprises a member selected from the group consisting of steel, copper and copper alloy and wherein said bonding metal alloy powder comprises a metal selected from the group consisting of phosphorous-copper alloys containing 7-9.5 weight percent phosphorous and antimony-copper alloys containing 25-95 weight percent antimony, with said bonding metal alloy comprising 10-30 weight percent of the metal matrix-bonding metal alloy total, said metal matrix and bonding metal alloy each being in particulate form sufficiently small to pass through a 30 mesh screen and be retained on a 500 mesh screen;

b. partially heating the coated copper base material in a non-oxidizing atmosphere to temperature below about 1,000F. but sufficient to evolve said liquid binder and form a dried metal matrix powder and bonding metal alloy powder coating on said base metal;

c. further heating the coated copper base material in a non-oxidizing atmosphere to maximum temperature of 1350-l 550F. and only for sufficient duration to melt and braze said bonding metal alloy powder to said copper base material and said metal matrix powder, and form a layer of metal particles less than 0.125 inch thick in random stacked relation as a uniform structure with interstitial and interconnected pores between adjacent particles; and

d. immediately cooling the porous metal coated copper base material from said maximum temperature to below 1,350F.

2. A method as described in claim 1 wherein the base metal comprises 0.8-2.6 weight percent iron-in-copper alloy and the bonding metal alloy powder comprises 15-20 weight percent of the metal matrix powder metal bonding alloy powder total.

3. A method according to claim 1 wherein said further heating is at faster rate than said partial heating.

4. A method according to claim 1 wherein said partial heating is at rate not exceeding 600F. per hour.

5. A method according to claim 1 wherein said partial heating is at rate not exceeding 400F. per hour and said further heating is at rate exceeding 400F. per hour.

6. A method according to claim 1 wherein said metal matrix powder and bonding metal alloy powder are provided in substantially the same particle size distribution.

7. A method according to claim 1 wherein said bonding metal alloy powder comprises 92 weight percent copper and 8% phosphorous.

8. A method according to claim 1 wherein said bonding metal alloy powder comprises 15-20 weight percent of the metal matrix powder bonding metal alloy powder total.

9. A method according to claim 1 wherein the metal matrix powder comprises steel, the bonding metal alloy powder comprises phosphorous-copper and the metal matrix powder comprises 75 weight percent of the metal matrix powder bonding metal alloy powder total.

10. A method according to claim 1 wherein the matrix powder comprises substantially pure copper, the bonding metal alloy powder comprises antimonycopper and the metal matrix powder comprises 80 weight percent of the metal matrix powder bonding metal alloy powder total.

11. A method according to claim 1 wherein the copper base material comprises 90 weight percent copper and 10 weight percent nickel, the metal matrix powder comprises substantially pure copper, the bonding metal alloy powder comprises 91 weight percent copper and 9 weight percent phosphorous, the metal matrix pow- 16 der comprises 80 weight percent of the metal matrix powder metal bonding alloy powder total and the brazing temperature is 1,550F.

12. A method according to claim 11 wherein the copper base material comprises weight percent copper and 30 weight percent nickel.

13. A method for forming a copper porous layer on 0.8-1.2 weight percent iron-in-copper alloy tubular base material comprising the steps of:

a. providing a loose coating on said copper alloy tubular base material comprising copper powder matrix and bonding metal alloy powder consisting of 92 weight percent copper and 8 weight percent phosphorous with said bonding metal alloy comprising 15-20 weight percent of the copper matrix bonding metal alloy total, said copper matrix and bonding metal alloy each being in particulate form sufficiently small to pass through a 30 mesh screen and be retained on a 500 mesh screen, and an inert liquid binder;

b. partially heating said copper alloy tubular base material supporting said copper matrix, bonding metal and liquid binder in hydrogen-containing atmosphere to temperature below about l,000F. but sufficient to evaporate said liquid binder and form a dried matrix-bonding metal alloy coating on said tubular base material;

c. further heating the coated tubular base material in hydrogen-containing atmosphere to maximum temperature of l350l550F. and only for sufficient duration to melt and braze said bonding metal alloy to said tubular base material and said matrix, and form a layer of copper particles less than 0.125 inch thick in random stacked relation as a uniform structure with interstitial and interconnected pores between adjacent particles having pore radii between 0.05 and 7.5 mils; and

d. immediately cooling the copper porous layertubular base material from said maximum temperature to below 1350F.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3990862 *Jan 31, 1975Nov 9, 1976The Gates Rubber CompanyLiquid heat exchanger interface and method
US4101691 *Sep 9, 1976Jul 18, 1978Union Carbide CorporationEnhanced heat transfer device manufacture
US4148969 *Sep 12, 1977Apr 10, 1979Exxon Research & Engineering Co.Flexible printed circuits
US4223826 *Jan 29, 1979Sep 23, 1980Usui Kokusai Sangyo Kabushiki KaishaMethod of brazing stainless steels
US4226913 *Dec 18, 1978Oct 7, 1980Exxon Research & Engineering Co.Polyparabanic acid/copper foil laminates obtained by direct solution casting
US4596691 *Sep 20, 1984Jun 24, 1986Gte Products CorporationProcess for forming a laminated strip containing a brazing alloy
US4663243 *Oct 28, 1982May 5, 1987Union Carbide CorporationFlame-sprayed ferrous alloy enhanced boiling surface
US4687511 *May 15, 1986Aug 18, 1987Gte Products CorporationMetal matrix composite powders and process for producing same
US5413674 *Dec 23, 1992May 9, 1995UopEvaporation for solids concentration
US5759400 *Nov 5, 1996Jun 2, 1998Advance Waste ReductionReticulated foam structured fluid treatment element
US6896039 *May 7, 2004May 24, 2005Thermal Corp.Integrated circuit heat pipe heat spreader with through mounting holes
US6994152 *Jun 26, 2003Feb 7, 2006Thermal Corp.Brazed wick for a heat transfer device
US7028759 *Jan 27, 2004Apr 18, 2006Thermal Corp.Heat transfer device and method of making same
US7028760 *Mar 1, 2005Apr 18, 2006Thermal Corp.Integrated circuit heat pipe heat spreader with through mounting holes
US7073572Jun 18, 2003Jul 11, 2006Zahid Hussain AyubFlooded evaporator with various kinds of tubes
US7124809Apr 6, 2005Oct 24, 2006Thermal Corp.Brazed wick for a heat transfer device
US7137443Feb 10, 2005Nov 21, 2006Thermal Corp.Coating inside a recess-containing container with slurry of metal particles and brazing compound to form a layer of slurry between adjacent grooves of a mandrel; heating so brazing compound is drawn by capillary action to form heat-distribution fillets between particles; heat pipe wicks for electronics
US7360581Nov 7, 2005Apr 22, 20083M Innovative Properties CompanyStructured thermal transfer article
US7695808Nov 7, 2005Apr 13, 20103M Innovative Properties Companymetal bodies and interstitial elements disposed between and connecting the metal bodies to one another; metal bodies comprise an inner portion of a first metal selected from Al, Cu, Ag, or alloy, an outer portion of an alloy of 1st metal and a 2nd metal selected from Cu, Ag, Mg ( different metals)
US7816826Feb 1, 2006Oct 19, 2010Siemens AktiengesellschaftThermosyphon cooled superconductor
US8425834 *Aug 22, 2007Apr 23, 2013Ihi CorporationMethod for producing clad material, and clad material
US8579014 *Aug 18, 2009Nov 12, 2013Richard W. KauppilaCooling arrangement for conveyors and other applications
US20090324984 *Aug 22, 2007Dec 31, 2009Ihi CorporationMethod for producing clad material, and clad material
US20100028710 *Apr 23, 2007Feb 4, 2010Metafoam Technologies Inc.Open cell porous material and method for producing same
US20100059205 *Aug 18, 2009Mar 11, 2010Kauppila Richard WCooling arrangement for conveyors and other applications
CN101116238BFeb 1, 2006Jun 16, 2010西门子公司Machine system with a thermo-syphon cooled superconductor rotor winding
DE112004002179B4 *Oct 22, 2004Sep 18, 2008Sintobrator, Ltd., NagoyaEin Verfahren zum Herstellen eines Feststoff-Plattierungsmaterials
EP0131045A1 *Dec 28, 1983Jan 16, 1985Sermatech International Inc.Surface modified powder metal parts and methods for making same
EP1946032A1 *Oct 23, 2006Jul 23, 20083M Innovative Properties CompanyStructured thermal transfer article
EP1949777A1 *Nov 6, 2006Jul 30, 20083M Innovative Properties CompanyThermal transfer coating
WO1984002483A1 *Dec 28, 1983Jul 5, 1984Sermatech Int IncSurface modified powder metal parts and methods for making same
WO2005114084A1 *Feb 28, 2005Dec 1, 2005Thermal CorpIntegrated circuit heat pipe heat spreader with through mounting holes
WO2005118912A1 *Jun 1, 2005Dec 15, 2005Olli LaaksonenMethod for attaching metal powder to a heat transfer surface and the heat transfer surface
WO2005118913A1 *Jun 1, 2005Dec 15, 2005Olli LaaksonenMethod for reducing metal oxide powder and attaching it to a heat transfer surface and the heat transfer surface
WO2006082138A1 *Jan 18, 2006Aug 10, 2006Siemens AgMotor device with thermosiphon cooling of its superconductive rotor winding
WO2006082194A1 *Feb 1, 2006Aug 10, 2006Siemens AgMachine system with a thermo-syphon cooled superconductor rotor winding
Classifications
U.S. Classification427/377, 427/383.7, 428/674, 228/208, 427/398.5, 228/233.2, 419/9, 428/550, 419/2, 228/227, 228/218, 427/398.4
International ClassificationF02C7/08, B22F7/04, C23C24/00, F28F13/18, C23C24/10, B22F7/02, B22F7/00, B22F1/00, F28F13/00
Cooperative ClassificationC23C24/106, B22F7/002, F28F13/187
European ClassificationC23C24/10B2, B22F7/00B, F28F13/18C2
Legal Events
DateCodeEventDescription
Sep 21, 1988ASAssignment
Owner name: KATALISTIKS INTERNATIONAL, INC., DANBURY, CT, A CO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004998/0636
Effective date: 19880916
Owner name: UOP, DES PLAINES, IL., A NY GENERAL PARTNERSHIP
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KATALISTIKS INTERNATIONAL, INC.;REEL/FRAME:004994/0001
Owner name: KATALISTIKS INTERNATIONAL, INC.,CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:4998/636
Owner name: KATALISTIKS INTERNATIONAL, INC., CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004998/0636
Oct 8, 1986ASAssignment
Owner name: UNION CARBIDE CORPORATION,
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131
Effective date: 19860925
Jan 9, 1986ASAssignment
Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR
Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001
Effective date: 19860106