Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3821068 A
Publication typeGrant
Publication dateJun 28, 1974
Filing dateOct 17, 1972
Priority dateOct 17, 1972
Also published asCA1020785A1, DE2420932A1, DE2420932C2
Publication numberUS 3821068 A, US 3821068A, US-A-3821068, US3821068 A, US3821068A
InventorsShaw D
Original AssigneeScott Paper Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the fiber furnish until the sheet is at least 80% dry
US 3821068 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Shaw

United States Patent [191 Field Inventor:

Assignee:

Filed:

Appl.

David L Shaw, Philadelphia, Pa.

Scott Paper Company, Philadelphia, Pa.

Oct. 17, 1972 US. Cl 162/111, 156/183, 161/128,

Int. Cl. D211 9/02, B31f l/14 of Search 162/111, 112, 158, 113,

References Cited UNITED STATES PATENTS 4/1971 Parrish.... 162/111 5/1934 Alden 16 2/112 1/1962 Hechtman et a1 117/155 UA 8/1965 McCarty 162/113 1/1967 Cooper et a1. 162/113 1/1967 Sanford et al. 162/113 U11 3,821,068 [45 June 28, 1974 8/1970 lhrman 162/111 l/197l Herveyetal. ..162/158 5 7 ABSTRACT A soft, absorbent, creped paper web formed by deposition from an aqueous slurry of principally lignocellulosic fibers and dried to at least 80 percent fiber consistency or dryness without being subjected to mechanical compression of the web to substantially reduce formation of papermaking bonds which would form upon compression of the web while wet. The resultant uniform density web is adhered to a dryer through the use of a creping adhesive (which does not add significant strength to the web) and is creped therefrom. The fibers in the web are bonded together almost exclusively by conventional papermaking bonds formed upon drying of the web. The uniform density web product has a dry basis weight of from about 10 to 30 lbs/ 2,880 feet a TEA-to-stiffness ratio greater than 0.5 X 10 and an average calculated density throughout it thickness under no load of less than 0.3 grams per cubic centimeter.

12 Claims, 1 Drawing Figure BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an absorbent, creped, sanitary paper product with improved softness and to a method for making it.

2. Description of the Prior Art In the field of sanitary paper products, which includes bathroom tissues and other tissue products, softness is probably the most desired property. Use of these products requires intimate contact with the consumer, and it is well known that a harsh-feeling product will not often be purchased by the consumer.

While the difference between a soft product and a harsh one is perceived by a consumer as a single property, softness is actually a combination of several physical properties. Softness has been described as the subjective property of paper exhibited by the feeling of softness when a sheet is crumpled in the hand. This feeling depends in large measure on the ease of crumpling, or flexibility of the sheet, together with the absence of sharp edges in the crumpled sheet. Therefore, softness is not only a function of the stiffness of the sheet, but also the thickness of the sheet. For example, if two sheets have the same stiffness, the thicker of the two feels softer. Further adding to a feeling of softness is the ability of the sheet to be compressed between the fingers, a factor determined in large measure by the density of the sheet. Thus, a low density sheet formed with, little compaction will be easily compressed between the fingers.

In the conventional process for manufacturing sanitary paper products, an aqueous slurry of papermaking fibers is deposited upon a foraminous member, such as a Fourdrinier wire, and water is removed to form a coherent web of the fibers. Upon drying, the fibers interbond where they contact each other by the hydrate bonding process associated with papermaking. Because conventional, papermaking fibers are short, less than. V4 inch, there is little or no physical entanglement of the fibers, and almost all of the webs strength comes from the papermaking bonds. To a large extent, the interfiber bonding strength of the papermaking bonds formed, and thus the strength of the web, is dependent upon the closeness of the fibers to each other when the bonds are formed. Accordingly, it is customary in a papermaking operation to compact the paper web before it is dry to increase the strength of the web. Accompanyin g this increase of strength is an increase in stiffness.

Furthermore, when the wet-compacted web dries it remains in its compacted condition, resulting in a high density web. Thus, the softness of the conventionally formed web is reduced not only because its stiffness is increased as a result of increased interfiber bonding by papermaking bonds, but also because the compressibility of the web is decreased as a result of the increased density of the web.

It has long been recognized that a reductionin interfiber bonding by papermaking bonds in a paper web will result in a reduction of stifi'ness. Probably the most commonly employed method for reducing papermaking bonds is creping of the dried web from a drying surface with a doctor blade, an action which disrupts and breaks many of the interfiber bonds already formed in the paper web.

Another method of reducing the papermaking bonds is to prevent their formation either by chemical treatment of the fibers to reduce their interfiber bonding capacity or by the use of little or no pressing of the web while it is wet. However, it has always been thought that practice of this method to the degree which would significantly increase softness would make the web too weak to be suitable for commercial products. Accordingly, where this method has been practiced in the past, bonding materials have been added to the web to restore the strength lost by reduction. of the papermaking bonds. These bonding materials were selected to add strength to the web to a greater degree than they add stiffness. This method is disclosed in US. Pat. application Ser. Nos. 156,327 and 156,282, where it is also suggested that further softening of the web can be accomplished by combining creping with the other steps.

Another method of reducing the number of papermaking bonds formed in a web is disclosed in US. Pat. No. 3,301,746 to Sanford et al. In that method, the paper web is formed under little or no pressing; but while still wet enough to allow an increase in bonding by compaction (stated as being between 30 and percent dry), the web is heavily compacted in a knuckle pattern against a dryer drum. The pattern compaction of the web leaves the majority of the web uncompacted, and presumed weak, while at the same time adding strength to the web as a whole with the numerous papermaking bonds present in the compacted'areas. Further softening of. the web is accomplished by creping the web from the dryer drum. The resulting product is alleged to be softer, although weaker than a comparable product formed by a conventional papermaking process. However, the patent indicates that the loss of strength is not so great as to render the product unsuitable for commercial use.

All of these described methods to reduce papermaking bonds can be successfully used to soften paper webs. However, the methods employing the addition of bonding materials have the disadvantages of increased material costs as well as process complications. And the method of the Sanford patent, as well as the creping method, produces a degree of softness which is less than ideally desired. In view of these shortcomings, it is easily appreciated that methods have been sought for a long time to produce a softer web, especially methods which are less expensive than the prior art methods.

In view of the clear teachings of the prior art, it was very surprising to discover that a very soft paper web could be produced with adequate strength for commercially useful products by elimination of a process step which has long been believed necessary in the prior art.

SUMMARY OF THE INVENTION The product of the invention is a soft, absorbent, creped, fibrous web formed by deposition from an aqueous slurry of principally lignocellulosic fibers. The web is formed and dried to a predetermined dryness level withoutbeing subjected to mechanical compression. Atdryness levels beyond this predetermined dryness level, further interbonding of the fibers by papermaking bonds to a significant extent will not occur upon mechanical compression of the web. The predetermined dryness level is chosen to produce a very soft, low density web.

Further reduction of papermaking bonds, and thus softening of the web is accomplished by creping the web from a dryer surface. The web is adhered to the dryer surface through the use of a creping adhesive, chosen to adhere the web to the dryer surface without adding significant interfiber bonding to the web. The fibers in the web are bonded together almost exclusively by papermaking bonds formed upon drying of the web. The web thus formed has exceptional softness and surprisingly adequate strength when compared to products in the prior art relying upon papermaking bonds for their strength.

The predetermined dryness level is preferably at least 80% fiber consistency, that is, containing no more than 20 percent moisture by weight, but the web may be rewet to as low as 70 percent fiber consistency upon application of the creping adhesive to the web. The web is subjected to a modest pressure when it is applied to the creping surface, increasing web density and formation of papermaking bonds to a slight extent when web has been rewet to 70 percent dryness, and much less so when web has been rewet to no wetter than 80 percent fiber consistency.

BRIEF DESCRIPTION OF THE DRAWING The drawing is a schematic side view of a preferred form of apparatus for carrying out the method of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS As illustrated in the drawing, the papermaking machine has a stock distribution means, indicated generally by reference numeral 10, for delivering an aqueous papermaking slurry or fiber furnish to a Fourdrinier wire 16. The stock distribution means includes a tapered manifold or header 11 which is connected to a source (not shown) of an aqueous papermaking slurry or fiber furnish. A number of branch tubes or laterals l2 connect the tapered manifold 11 to blending chamber 13 defined by generally parallel, upper and lower walls 14 and 15. The stock distribution system may be similar to that disclosed in US. Pat. No. 3,298,905.

The Fourdrinier wire 16 is carried over a suction breast roll 17 and over a plurality of table rolls 18, after which it passes around a wire turning roll 20 and is threaded past three guide rolls 2], 22 and 23 and back to the suction breast roll 17. The Fourdrinier wire 16 and its supporting rolls is driven by drive means (not shown) connected to the wire turning roll 20.

One or more vacuum boxes, hydrofoils or other dewatering or formation assisting devices (none of which are shown in the drawing) may be employed in conjunction with the Fourdrinier wire 16. In addition, the configuration of the papennaking machine may vary widely from that described above without having any effect upon the present invention. It is essential, however, that the web thus formed on the Fourdrinier wire 16 or other foraminous surface be maintained virtually free from any mechanical compression or compaction until it is at least 80 percent dry.

After the slurry is deposited on the Fourdrinier wire 16 and dewatered sufficiently to form a web, the web is transferred, substantially free from any compaction or mechanical compression, from the upper surface of the Fourdrinier wire 16 to the surface of aforaminous drying fabric 24. The drying fabric 24 may comprise a woven sheet material, such as made from wire or other filamentary materials, or a perforated or foraminous base. The drying fabric 24 is advanced past the position closely adjacent the portion of the Fourdrinier wire 16 running between the wire turning roll 20 and the first guide roll 22. In doing so, it passes over a rotating suction pickup roll 25 or a stationary suction pickup shoe, and transfer of the web to the drying fabric 24 at this location may be assisted, if desired, by steam or air jet, such as might issue from a header 26 (shown in phantom line in the drawing) disposed opposite the Fourdrinier wire 16 and the suction pickup roll 25.

The drying fabric 24 carrying the web moves from the suction pickup roll 25 into the drying means, indicated generally by reference numeral 27, and then is carried about guide rolls 28 and 30, and about transfer roll 31 which lightly presses the web into contact with the surface of the creping drum 32. One or more vacuum boxes (not shown) may be disposed behind drying fabric 24 following the suction pickup roll 25 to remove additional entrained water from the web without compression. The drying fabric 24 continues on about a'further guide roll 33 and then returns to the transfer point adjacent the suction pickup roll 25.

The drying means 27 may comprise any means for preferably drying, without compressing, a web to a point where it has a moisture content of preferably less than 20 percent by weight, that is, so that it is more than percent dry. Various techniques for drying the web may be employed, such as radiant heat lamps, tunnel dryers, or transpiration dryers wherein air, preferably heated, is passed through the web. The drawing illustrates a typical fonn of transpiration dryerin which air from a hood 34 is passed through the web, through the drying fabric 24, and through the drum 35 which supports both the web and the drying fabric 24. The air is then removed from the interior of the drum 35 by another hood 36. A typical form of such drying apparatus is shown in US. Pat. No- 3,432,936. I

Since the web is applied to the surface of the creping drum 32, which preferably is a Yankee dryer, in a dry condition, it is usually necessary to apply a creping adhesive to the web surface or to the creping drum 32. This is particularly true where the sheet is dried to a level of percent or above, since there is insufficient moisture remaining in the web at this point to adhere it to the creping drum 32 tightly enough to permit it to be creped therefrom. Furthermore, because of the de sirability of avoiding heavy pressure being applied to the web when it is brought into contact with the creping drum 32, there is little natural adhesion of the web to the drum, even at the higher wetness levels.

The creping adhesive may be applied by an elongate sprayer 37, such as that shown in phantom line in the drawing. Alternative methods for applying adhesive to the web in order to adhere to the creping drum 32 may be employed. For example, a glue application roll which picks up adhesive from a reservoir and transmits it to the surface of a web immediately prior to the web contacting the creping drum 32 can be used. Also, a glue application roll which picks up adhesive from a reservoir and applies it directly to the creping drum 32 after which the web is pressed into contact with and adhered to the creping drum 32 can be employed.

In the preferred method of the invention, the web is essentially dried by the creping drum 32, that is, to a fiber consistency of about 95 percent or above. A creping blade 38 disposed on the opposite side of the creping drum32 from the roll 31 is usedto remove the web from the drum while creping it. In the alternative, the web can be creped from the creping drum 32 at a dryness less than 95 percent, in which case the web will be further dried by other, conventional drying means.

In practicing the invention, it would be ideal to avoid all mechanical pressing on the web until it is dry enough to not form significantly more papermaking bonds upon being compressed. However, it is impracticable to avoid small amounts of pressure at some locations in the apparatus, such as where the Fourdrinier wire 16 comes together with the drying fabric 24. But, in accordance with the practice of the invention, the pressure applied at such locations in the apparatus is so small as to be insignificant in the compacting effect it has on the web. As an illustration, the pressure applied to the web at all locations in the apparatus preceding adherence of the web to the creping surface is usually less than 3 psi. In comparison, a conventional press operation, as used in the prior art, applies a pressure to the web of up to several hundred psi, and the knuckle pressure applied to the web in the method disclosed in the Sanford patent ranges from about 1,000 psi up to 11,000 psi, depending upon basis weight of the web. For purposes of interpreting the term without mechanical compression as it is used herein, it shall be considered to be less than 5 psi.

in the preferred method of the invention, the web is dried to at least 80percent dry without mechanical compression of the web more preferably to 90 percent or more, then an adhesive is applied to the web to enable it to be adhered to the dryer drum. The adhesive can be applied to the web directly or to the drum first, by either spraying or printing with a rotogravure roll. The adhesive is selected for its ability to adhere the web to the drum and not for adding strength to the web.ln practice,,the adhesive is a material which because of its nature or the amount used adds no significant strength to the web, less than percent of the total web strength, for example. Examples of suitable adhesives are Accostrength 95 and Accostrength 86, both from American Cyanimid, Creptrol 190 from Hercules Corporation, and animal glues from Peter Cooper Corporation.

The most common adhesives suitable for this purpose are in aqueous solutions, and therefore, the web is rewet somewhat upon application of the adhesive. In the most preferred practice of the invention, the web is more than 90 percent dry upon application of the adhesive, and it is rewet to a degree which reduces the web dryness to no less than 80 percent. The invention may be practiced with beneficial results, however, by applying the adhesive to a web of only about 80 percent dryness, reducing its dryness to as little as 70 percent dry. in all cases, the web is rewet generally evenly all over its surface to avoid excessively wet areas. This is true even though the adhesive is applied in a pattern, because the wet adhesive spreads over' the surface by capillary action. I

Another variation which may be employed in practicing the invention is the addition into the slurry of small amounts of materials which reduce interfiber bonding capacity of the fibers. Examples of such materials are Quaker 2000 and Quaker 2003, both from Quaker Chemical Corporation, and Rycofox 618 from Ryco Corporation. Another variation includes the addition into the slurry of small amounts of fibers other than papermaking fibers, such as cotton, wool, rayon and others.

The most important feature of the invention is the avoidance of significant mechanical pressure being applied to the web until the web is too dry to form significant additional papermaking bonds upon being compressed. It has been known in the prior art that dry paper webs will not be subject to a significant increase in papermaking bonds upon being pressed. However, it was not known in the prior art that acceptable strength can be obtained without wet pressing or some other form of strengthening step, such as those previously described. But, surprisingly, practice of the invention enables production of an exceptionally soft web with adequate strength for commercially useful products. When compared to other paper products relying almost ex clusively upon papermaking bonds for their strength, the product of the invention is remarkably softer than such prior art products of equivalent strength. The product of the invention has been found to have particularly desirable properties when made in the basis weight range from about 10 to about 30 lbs/2,880 ft and is very desirable for a bathroom tissue when made in the basis weight range from about 15 to about 22 lbs/2,880 ft To illustrate the unexpected properties discovered in the product of the invention, examples of the product of the invention and of the prior art and their properties are disclosed herein. Full appreciation of these products and their properties requires a description of the procedures employed to measure them. For purposes of measuring the acceptability of these sheet materials of the present invention from a general standpoint of softness, two different properties have been found which in combination provide a basis for accurately distinguishing such materials from. those of the prior art, as well as providing a reliable indicator of the comparable softness and strength. These properties are: (1) TEA-to-stiffness ratio of the sheet material and (2) the average calculated density throughout the thickness of the sheet material under no load. These properties and the procedures and techniques for determining them are described in detail hereinso as to explain the invention and to permit others to clearly ascertain its scope with regard to such sheet materials.

The TEA-to-stiffness ratio is obtained by first measuring the TEA (tensile energy absorbtion) of a given specimen of sheet material in accordance with the TAPPI'Test, T494 SU-64, in both the machine direction (MD) and the cross-machine direction (CD), in kilogram-meters per square meter, with the exception that a jaw spacing of 2 inches rather than the 8 inches recommended by TAPPI is used because of the particular nature of the product, some of which have lines of perforation which must be avoided. This test method is not a TAPPI standard, but is suggested by TAPPI as the most suitable method to date. The stiffness of the product is then measured by subjecting the specimen to the test set forth in TAPPI standard test, T451 M-60, in

both the machine direction and the cross-machine direction, to determine its effective overhanging length (critical length) denoted as L in centimeters. The stiffness of the product is proportional to the cube of the effective overhanging length and is therefore expressed herein as L Briefly described, the TEA of a product is obtained by clamping a 1.000 i 0.005 in. (2.54 i 0.01 cm) wide specimen in two spaced sets of jaws when they are 2 in. (5.08 cm) apart, with any noticeable slack being pulled out of the strip before clamping. Strain is applied to the specimen by moving the jaws farther apart at a constant rate of 1.00 i 0.01 in./min. (2.54 t 0.02 cm./min.) while recording the elongation with an accuracy of i 2 percent of the actual value and the load, in either pounds or kilograms, with an accuracy of $0.5 percent until breakage of the specimen. The area under the load-elongation curve is then measured by planimeter or integrator with an accuracy of i 2 percent. The TEA is then calculated using the equation:

TEA lA/LW with units of kilogram-meters per square meter where:

A area under load elongation curve in kilogramcentimeters L initial span between clamp lines in centimeters W initial width of specimen in centimeters.

The stiffness of a product is obtained with a Clark Softness Tester by placing the end of a to 50 mm. (%'to 2 inches) wide specimen with parallel edges and of convenient length between the jaws or rollers comprising a clamp mounted on a rotatable spindle. The spindle can be rotated about a horizontal axis parallel to the long axis of the jaws or rollers and perpendicular to the long axis of the paper strip. The overhanging length of the specimen is adjusted by resetting the jaws or turning the rollers until, when the spindle is slowly rotated back and forth through 90, the specimen just falls over at each of the end points of rotation. The overhanging or critical length L is then measured from the line where the edges of the jaws or rollers grip the specimen to the end of the strip. For purposes of defining the product of the present invention, the stiffness is indicated by the cube of L.

In using the above tests for TEA and stiffness to form a ratio which defines a desired property of a fibrous product of the invention, specimens for each test are taken in both the machine direction (M.D.) and the cross-machine direction (C.D.). Preferably, several tests are made with each and the results averaged in order to eliminate errors due to measurement or to formation. The resulting values are then combined in ratio form as follows:

The TEA-to-stiffness ratio TEA (M.D.) X TEA (C.D.)/L (M.D.) X L (C.D.)

The average calculated density throughout the thickness of the sheet material under no load is determined by the following procedure'An approximately 1 inch long specimen of the product is oven-dried to eliminate moisture therein. The dried specimen is inserted in a small container and is slowly immersed at atmospheric pressure in a solution of butyl methacrylate monomer therein containing a small amount of benzoyl peroxide as a catalyst. The container and the immersed specimen are placed in an oven having an interior temperature of 55 C for a period of about 16 hours to cause polymerization of the monomer. A small amount of volumetric shrinkage occurs which is insignificant because it is constant for each sample. Cross-sections are cut from the resulting embedded sample using a microtome, the sections having a thickness of 10 to 12 microns.

Each section is placed on a glass slide, and covered with mineral oil and a glass cover slip. The section of the specimen is now photographed by transmitted light through a microscope adjusted to give a linear magnification of 80, and the magnified picture is printed in a 5 inches by 7 inches format.

The resulting photomicrograph is mounted on a board, and transparent paper is placed over the photomicrograph. The outline of the resulting cross-section shown in the photomicrograph is now traced onto the transparent paper, care being taken to follow the basic curves and undulations of the cross-sectional outline to an extent sufficient to get inside the outline at least percent or more of the cross-sectional area including any stray fibers. Certain stray fibers deviating from the outline of the cross-section should be left outside the area in order to obtain truer density values. A planimeter is then used to measure the area within the inside edge of the line defining the cross-sectional outline in square inches. Several photographs of each specimen are preferably used and several cross-sectional area measurements are taken, the results being averaged to obtain a reliable cross-sectional area.

The actual thickness of the sample is obtained by dividing the area by the length of the cross-section outlined and by the linear magnification of 80. The calculated density under no load in grams per cubic centimeter was obtained by the equation:

Calculated Density g/cc [basis weight (g/m )/Actual thickness (in.)] X

(2.54 cm/in.) X (10,000 cm /m where the basis weight is that of the original sheet materialfrom which the specimen was taken as determined by TAPPl'standard T410 OS-61.

Other tests were made in accordance with the following standard tests: Tensile measurements were made using TAPPI standard T404 TS-66; and Stretch measurements were made using TAPPI standard T457 M-46.

The following examples comparatively illustrate the difference between the sheet materials of the present invention and. the conventional sheet materials of the prior art.

' EXAMPLE 1 As an illustration of the prior art, a web was formed from a fiber furnish consisting of the following conventional papermaking pulps in water:

20 percent soft wood bleached kraft 20 percent soft wood bleached sulfite 40 percent hardwood bleached kraft 20 percent mechanical fiber.

The web was formed on a conventional Fourdriniertype papermaking machine which included wet pressing to remove water and add strength to the web and was transferred onto the surface of the Yankee dryer at about 30 percent dryness. The web was creped from the Yankee dryer when it was about 65 percent dry, that is, when it contained about 35 percent moisture by weight. The web was further dried in an afterdryer in the form of heated drums until it was more than about 92 percent dry. The resulting sheet material was one which was typically used in sanitary paper products, such as wet creped bathroom tissue, and possessed the following general properties:

basis weight 12.3 lbs/2880 ft bulk 0.081 in/24 sheets As another illustration of the prior art, a web was formed from a fiber furnish consisting of water and the following papermaking pulps:

30 percent softwood bleached kraft 25 percent softwood bleached sulfite 35 percent hardwood bleached kraft 10 percent mechanical fiber The web was formed in a conventional Fourdriniertype paper-making machine which included wet pressing to remove water and add strength to the web and was transferred onto the surface of the Yankee dryer at about 30 percent dryness. The web was creped from the Yankee dryer when it was about 94 percent dry, that is, when it contained only about 6 percent moisture by weight. The resulting sheet material was one which was typically used in sanitary paper products such as dry creped bathroom tissue, and possessed the following general properties:

basis weight 9.5 lbs/2880 ft bulk 0.074 in/24 sheets tensile (M.D.) 8.8 oz/in. stretch (M.D.) 14.271 TEA (M.D.) .875 kg M/M tensile (C.D.) 2.5 oz/in stretch (C.D.) 5.4% TEA (C.D.) 0.173 kg M/M L (M.D.) 3.9 cm. L (C.D.) 4.0 cm.

EXAMPLE Ill As yet another illustration of the prior art, a commercial bathroom tissue made using the process described in US. Pat. No. 3,301,746, was tested and possessed the following general properties:

basis weight 1 1.1 lbs/2880 ft hulk 0.135 in/24 sheets tensile (M.D.) 11.20 oz/in.

stretch (M.D.) 13.3%

TEA (M.D.) 0.806 kg M/M tensile (C.D.) 5.7 oz/in.

stretch (C.D.) 5.192

TEA (C.D.) 0.306 kg M/M" L (M.D.) 4.5 cm.

L (C.D.) 5.3 cm.

EXAMPLE IV As an illustration of the present invention, the web was formed from an aqueous slurry of 80 percent kraft softwood pulp and percent kraft hardwood pulp, which was passed through an open gap and formed into tion of mechanical compression to 98 percent fiber consistency by passing heated air through the web. The sheet was then adhered to a Yankee dryer drum with a transfer roll exerting about 150 psi pressure to the web and with the aid of an adhesive applied to the web by gravure printing in a repeating hexagonal pattern, 40 mils in length, 7.5 mils wide, and microns deep, from a copper roll with a 0.002 inch thick chrome outer layer. The adhesive was an aqueous solution of 3 percent Accostrength 95, obtainable from American Cyanamid Corporation, 1 percent National Starch latex 5329, obtainable from National Starch Corporation, and 0.34 percent Rycofax 618, obtainable from the Ryco Corporation. The dryness of the web after printing was 76 percent, and the web had pickedup 0.7 percent adhesive solids. The sheet was then creped and lightly calendered for bulk control. The creped sheet was converted into tissue rolls. The converted paper had the following general properties:

basis weight 16.8 lbs/2880 ft bulk 0.197 in/24 sheets tensile (MD 16.1 oz/in;

stretch (M.D) 16.6%

TEA (M.D.) 0.955 kg M/M tensile (C.D 4.6 oz/in.

stretch (C.D 8.4%

TEA (C.D.) 0.370 kg M/M L (M.D.) 4.0 cm.

L (C.D.) 4.65 cm.

EXAMPLE V As a further illustration of the invention, a web was formed from an aqueous slurry of 80 percent kraft softa h e hashss we.tbrq ishrisqwithsm sas es:

wood fibers and 20 percent kraft hardwood fibers refined to a freeness of 560 mlLTo the aqueous fibrous slurry, 0.2 percent Quaker 2000, obtainable from Quaker Chemical Company, (based on bond dry fiber weight) was added to reduce the interfiber bonding capacity of the fibers. The fiber suspension was formed into a sheet on a Fourdrinier wire and through-dried without application of mechanical compression with hot air to percent fiber consistency. The sheet was then adhered to a Yankee dryer drum by spraying an aqueous solution of 1 percent Accostrength 86 obtainable from American Cyanamid Corporation, in the manner illustrated in the drawing. The amount of chemical pickup to the web from the application of the creping adhesive was less than 1 percent. The amount of pressure exerted on the web by the transfer roll was about psi. The sheet was then creped and converted into bathroom tissue rolls, and had the following general properties:

basis weight 17.4 lbs/2880 i't bulk 188 tn/24 sheets tensile (M.D.) 23.6 oz/in. stretch (M.D.) 19.3% TEA (M.D.) 2.20 kg M/M tensile (C.D.) 5.9 oz/in. stretch (C.D 6.8% TEA (C.D.) .364 kg M/M L (M.D.) I 4.4 cm.

1 l ties for these five examples are set forth below in Table TABLE I 3. Method according to claim 1, wherein application of the creping adhesive causes the web to be rewet to Average Calculated Density TEA-to-Stiffness Table I clearly illustrates the superior softness properties of the product of the invention in comparison with the products of the prior art. For example, the examples of the prior art products all have average calculated densities under no load greater than 0.4 gms/cc. In contrast, the examples of the product of the invention all had average calculated densities under no load of less than 0.3 gms/cc.

In further comparison, the TEA-to-stiffness ratios for the examples of the prior art were all 0.40 X or less, in most cases, far less. In contrast, the same ratios for examples of the invention were higher than 0.5 X 10*, and in one case almost twice as high.

It is believed that lower density adds to the subjective feeling of softness in a paper web, and therefore, the above measurement is important in distinguishing the product of the invention over the prior art products. Also, it is believed that the TEA-to-stiffness ratio is an important measurement in comparing flexibility (as exhibited by the length overhang test) of webs on a basis of equal strength, or to state the same in other words, to compare the strength of webs of equal stiffness. Thus, it can be seen from Table I, that the product of the invention is superior to the prior art in this respect also.

Having described the preferred embodiments of the invention, 1 claim:

. 1. Method for making a soft, absorbent, creped, sanitary paper product, comprising the steps of:

forming a web of principally lignocellulosic fibers by deposition of an aqueous slurry of the fibers onto a foraminous surface;

removing water from the web without mechanical compression until the web is at least 80 percent dry to form a web having uniform density;

bonding the fibers together almost exclusively by papermaking bonds formed upon drying of the web;

applying a creping adhesive to one surface of the web, the adhesive not adding significant strength to 1 the web; adhering the web to a creping surface; drying the web on the creping surface to about 95 percent dry; and removing the dried web from the creping surface with a creping blade. 2. Method according to claim 1, wherein the web is at least 90 percent dry prior to application of the crepanew? t swqhra degree which is no wetter than percent dry when adhered to the creping surface.

4. Method according to claim 3, wherein the web is at least percent dry when adhered to the creping surface.

5. Method according to claim 4, wherein the web is at least percent dry when adhered to the creping surface.

6. Method according to claim 5, wherein the web has a dry basis weight of from about .15 to about 22 lbs/2,880 feet 7. Method according to claim 4, wherein the web has a dry basis weight of from about 10 to about 30 lbs/2,880 feet 8. Method according to claim 1, wherein water is removed from the web by passing air through the web. 9. Method according to claim 1, wherein the fibers are treated with a debonding agent before drying of the web to reduce their inter-fiber bonding capacity.

10. Method for making a soft, absorbent, creped, sanitary paper product, comprising the steps of:

forming a web of principally lignocellulosic fibers by deposition of an aqueous slurry of the fibers onto a foraminous surface;

removing water from the web without mechanical compression while the web is less than 80 percent dry to form a web having uniform density;

bonding the fibers together almost exclusively by pa-' permaking bonds formed upon drying of the web; and

creping the web from a creping surface.

11. A soft, absorbent, creped, sanitary paper web product formed by deposition from an aqueous slurry, the web comprising:

randomly arranged, contacting lignocellulosicfibers bonded together almost exclusively by papermaking bonds;

the web being of uniform density and having a dry basis weight of from about 10 to 30 lbs/2,880 feet a TEA-to-stiffness ratio greater than 0.5 X 10 and an average calculated density throughout its thickness under no load of less than 0.3 grams per cubic centimeter.

12. A web according to claim 11, wherein the web is a bathroom tissue having a basis weight of from about 15 to about 22 lbs/2,880 feet UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION patent No. 3,821,068 Dated June 28, 1974 Inventor) DAVID L. SHAW It is certified that error appears in the above-identified patent fend that said Letters Patent are hereby corrected as shown below:

n In co umn 11, in Table I, in the lTEA-to-Stiffness Ratio X 10 column, the "10 should read 10 also that portion of the Ratio column of Table I reading-".98" should read .55-, and that portion of the same column reading ".58" should read .80.

Signed and Scaled this [SEAL] I sixteenth Day Of December 1975 A ttest:

RUTH C. MASON Arresting Officer C. MARSHALL DANN ummissimzer ofPatents and Trademarks

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3905863 *Apr 1, 1974Sep 16, 1975Procter & GambleProcess for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof
US3974025 *Jun 19, 1975Aug 10, 1976The Procter & Gamble CompanyAbsorbent paper having imprinted thereon a semi-twill, fabric knuckle pattern prior to final drying
US3992254 *Jan 7, 1975Nov 16, 1976Valmet OyStructure for separating a web and wire in a paper machine
US4064213 *Feb 9, 1976Dec 20, 1977Scott Paper CompanyCreping process using two-position adhesive application
US4093765 *Feb 13, 1976Jun 6, 1978Scott Paper CompanySoft absorbent fibrous web and disposable diaper including same
US4120747 *Jul 18, 1977Oct 17, 1978The Procter & Gamble CompanyUse of ozone treated chemithermomechanical pulp in a high bulk tissue papermaking process
US4157938 *Apr 21, 1977Jun 12, 1979The Procter & Gamble CompanyMethod and apparatus for continuously expelling an atomized stream of water from a moving fibrous web
US4194947 *Jul 6, 1978Mar 25, 1980Oy Nokia Ab & Valmet OyTransferring a web from a pick-up fabric to a flow-through drying wire
US4196045 *Apr 3, 1978Apr 1, 1980Beloit CorporationMethod and apparatus for texturizing and softening non-woven webs
US4238284 *Jul 6, 1978Dec 9, 1980Oy Nokia Ab & Valmet OyMethod for dewatering a tissue web
US4256877 *Dec 13, 1977Mar 17, 1981Sca Development AktiebolagMethod of manufacturing cellulose derivative
US4351699 *Oct 15, 1980Sep 28, 1982The Procter & Gamble CompanySoft, absorbent tissue paper
US4441962 *Jul 30, 1982Apr 10, 1984The Procter & Gamble CompanySoft, absorbent tissue paper
US4447294 *Dec 30, 1981May 8, 1984The Procter & Gamble CompanyProcess for making absorbent tissue paper with high wet strength and low dry strength
US4448638 *Sep 29, 1982May 15, 1984James River-Dixie/Northern, Inc.Paper webs having high bulk and absorbency and process and apparatus for producing the same
US4464224 *Jun 30, 1982Aug 7, 1984Cip Inc.Process for manufacture of high bulk paper
US4834838 *Feb 20, 1987May 30, 1989James River CorporationFibrous tape base material
US4874465 *Mar 28, 1988Oct 17, 1989Kimberly-Clark CorporationTissue products containing sliced fibers
US4940513 *Dec 5, 1988Jul 10, 1990The Procter & Gamble CompanyProcess for preparing soft tissue paper treated with noncationic surfactant
US4959125 *Dec 5, 1988Sep 25, 1990The Procter & Gamble CompanySoft tissue paper containing noncationic surfactant
US5048589 *Dec 18, 1989Sep 17, 1991Kimberly-Clark CorporationNon-creped hand or wiper towel
US5059282 *Feb 21, 1990Oct 22, 1991The Procter & Gamble CompanySoft tissue paper
US5137600 *Nov 1, 1990Aug 11, 1992Kimberley-Clark CorporationHydraulically needled nonwoven pulp fiber web
US5164046 *May 7, 1991Nov 17, 1992The Procter & Gamble CompanyMethod for making soft tissue paper using polysiloxane compound
US5215626 *Jul 19, 1991Jun 1, 1993The Procter & Gamble CompanyProcess for applying a polysiloxane to tissue paper
US5223092 *Apr 30, 1991Jun 29, 1993James River CorporationFibrous paper cover stock with textured surface pattern and method of manufacturing the same
US5227242 *Jun 6, 1990Jul 13, 1993Kimberly-Clark CorporationMultifunctional facial tissue
US5246546 *Aug 27, 1992Sep 21, 1993Procter & Gamble CompanyProcess for applying a thin film containing polysiloxane to tissue paper
US5306395 *Apr 5, 1993Apr 26, 1994Valmet-Karlstad AbC-wrap type twin wire former
US5314584 *Dec 17, 1992May 24, 1994James River CorporationFibrous paper cover stock with textured surface pattern and method of manufacturing the same
US5354425 *Dec 13, 1993Oct 11, 1994The Procter & Gamble CompanyTissue paper treated with polyhydroxy fatty acid amide softener systems that are biodegradable
US5397437 *Jan 31, 1994Mar 14, 1995Valmet-Karlstad AbMethod of rebuilding a conventional tissue machine to a TAD machine
US5399412 *May 21, 1993Mar 21, 1995Kimberly-Clark CorporationUncreped throughdried towels and wipers having high strength and absorbency
US5525345 *Mar 6, 1995Jun 11, 1996The Proctor & Gamble CompanyLotion composition for imparting soft, lubricious feel to tissue paper
US5556511 *Dec 15, 1994Sep 17, 1996Sulzer-Escher Wyss GmbhProcess for drying paper webs
US5607551 *Jun 24, 1993Mar 4, 1997Kimberly-Clark CorporationSoft tissue
US5611890 *Apr 7, 1995Mar 18, 1997The Proctor & Gamble CompanyTissue paper containing a fine particulate filler
US5616207 *Nov 21, 1994Apr 1, 1997Kimberly-Clark CorporationMethod for making uncreped throughdried towels and wipers
US5624676 *Aug 3, 1995Apr 29, 1997The Procter & Gamble CompanyLotioned tissue paper containing an emollient and a polyol polyester immobilizing agent
US5656132 *Mar 6, 1995Aug 12, 1997Kimberly-Clark Worldwide, Inc.Soft tissue
US5667636 *Oct 27, 1994Sep 16, 1997Kimberly-Clark Worldwide, Inc.Method for making smooth uncreped throughdried sheets
US5672249 *Apr 3, 1996Sep 30, 1997The Procter & Gamble CompanyProcess for including a fine particulate filler into tissue paper using starch
US5700352 *Apr 3, 1996Dec 23, 1997The Procter & Gamble CompanyProcess for including a fine particulate filler into tissue paper using an anionic polyelectrolyte
US5705164 *Aug 3, 1995Jan 6, 1998The Procter & Gamble CompanyLotioned tissue paper containing a liquid polyol polyester emollient and an immobilizing agent
US5722180 *Sep 4, 1996Mar 3, 1998Fort James CorporationApparatus for drying a wet paper web
US5759346 *Sep 27, 1996Jun 2, 1998The Procter & Gamble CompanyProcess for making smooth uncreped tissue paper containing fine particulate fillers
US5772845 *Oct 17, 1996Jun 30, 1998Kimberly-Clark Worldwide, Inc.Soft tissue
US5801107 *Dec 20, 1996Sep 1, 1998Kimberly-Clark CorporationLiquid transport material
US5830317 *Dec 20, 1996Nov 3, 1998The Procter & Gamble CompanySoft tissue paper with biased surface properties containing fine particulate fillers
US5851629 *Aug 13, 1997Dec 22, 1998Fort James CorporationSoft single-ply tissue having very low sidedness
US5865950 *May 22, 1996Feb 2, 1999The Procter & Gamble CompanyProcess for creping tissue paper
US5888347 *May 2, 1997Mar 30, 1999Kimberly-Clark World Wide, Inc.Method for making smooth uncreped throughdried sheets
US5915813 *May 21, 1996Jun 29, 1999Fort James CorporationApparatus and method for drying a wet web and modifying the moisture profile thereof
US5932068 *Mar 10, 1997Aug 3, 1999Kimberly-Clark Worldwide, Inc.Soft tissue
US5935381 *Jun 6, 1997Aug 10, 1999The Procter & Gamble CompanyDifferential density cellulosic structure and process for making same
US5938893 *Aug 15, 1997Aug 17, 1999The Procter & Gamble CompanyFibrous structure and process for making same
US5944954 *Feb 5, 1997Aug 31, 1999The Procter & Gamble CompanyProcess for creping tissue paper
US5958185 *Nov 7, 1995Sep 28, 1999Vinson; Kenneth DouglasSoft filled tissue paper with biased surface properties
US5958187 *Jul 11, 1997Sep 28, 1999Fort James CorporationPrewettable high softness paper product having temporary wet strength
US6001218 *Jul 7, 1997Dec 14, 1999Kimberly-Clark Worldwide, Inc.Production of soft paper products from old newspaper
US6022818 *Apr 2, 1996Feb 8, 2000Kimberly-Clark Worldwide, Inc.Hydroentangled nonwoven composites
US6027610 *Jun 7, 1995Feb 22, 2000Kimberly-Clark CorporationProduction of soft paper products from old newspaper
US6042692 *Jul 8, 1996Mar 28, 2000Valmet-Karlstad AbPaper machine for manufacturing a web of soft crepe paper
US6059928 *Sep 18, 1995May 9, 2000Fort James CorporationPrewettable high softness paper product having temporary wet strength
US6074527 *Nov 20, 1997Jun 13, 2000Kimberly-Clark Worldwide, Inc.Production of soft paper products from coarse cellulosic fibers
US6096152 *Apr 30, 1997Aug 1, 2000Kimberly-Clark Worldwide, Inc.Creped tissue product having a low friction surface and improved wet strength
US6103061 *Jul 7, 1998Aug 15, 2000Kimberly-Clark Worldwide, Inc.Soft, strong hydraulically entangled nonwoven composite material and method for making the same
US6139686 *Dec 19, 1997Oct 31, 2000The Procter & Gamble CompanyProcess and apparatus for making foreshortened cellulsic structure
US6171442Apr 30, 1999Jan 9, 2001Kimberly-Clark Worldwide, Inc.Soft tissue
US6171695May 19, 1997Jan 9, 2001Kimberly-Clark Worldwide, Inc.Thin absorbent pads for food products
US6199296Dec 16, 1999Mar 13, 2001Valmet-Karlstad AbSeal arrangement for through-air drying papermaking machine
US6209224Dec 8, 1998Apr 3, 2001Kimberly-Clark Worldwide, Inc.Method and apparatus for making a throughdried tissue product without a throughdrying fabric
US6238682Mar 12, 1998May 29, 2001The Procter & Gamble CompanyAnhydrous skin lotions having antimicrobial components for application to tissue paper products which mitigate the potential for skin irritation
US6261580Aug 31, 1998Jul 17, 2001The Procter & Gamble CompanyTissue paper with enhanced lotion transfer
US6296736Oct 30, 1997Oct 2, 2001Kimberly-Clark Worldwide, Inc.Process for modifying pulp from recycled newspapers
US6315864Oct 30, 1997Nov 13, 2001Kimberly-Clark Worldwide, Inc.Cloth-like base sheet and method for making the same
US6387210Sep 30, 1998May 14, 2002Kimberly-Clark Worldwide, Inc.Method of making sanitary paper product from coarse fibers
US6387217Nov 12, 1999May 14, 2002Fort James CorporationApparatus for maximizing water removal in a press nip
US6428794Sep 20, 1995Aug 6, 2002The Procter & Gamble CompanyLotion composition for treating tissue paper
US6458248Mar 17, 2000Oct 1, 2002Fort James CorporationApparatus for maximizing water removal in a press nip
US6464830Nov 7, 2000Oct 15, 2002Kimberly-Clark Worldwide, Inc.Method for forming a multi-layered paper web
US6517672Jul 16, 2001Feb 11, 2003Fort James CorporationMethod for maximizing water removal in a press nip
US6547928Nov 30, 2001Apr 15, 2003The Procter & Gamble CompanySoft tissue paper having a softening composition containing an extensional viscosity modifier deposited thereon
US6572735Aug 22, 2000Jun 3, 2003Kimberly-Clark Worldwide, Inc.Wet-formed composite defining latent voids and macro-cavities
US6602387Nov 22, 2000Aug 5, 2003The Procter & Gamble CompanyThick and smooth multi-ply tissue
US6669821Nov 14, 2001Dec 30, 2003Fort James CorporationApparatus for maximizing water removal in a press nip
US6701637Apr 20, 2001Mar 9, 2004Kimberly-Clark Worldwide, Inc.Systems for tissue dried with metal bands
US6712121Oct 12, 2001Mar 30, 2004Kimberly-Clark Worldwide, Inc.Antimicrobially-treated fabrics
US6739023Jul 18, 2002May 25, 2004Kimberly Clark Worldwide, Inc.Method of forming a nonwoven composite fabric and fabric produced thereof
US6752905 *Oct 8, 2002Jun 22, 2004Kimberly-Clark Worldwide, Inc.Tissue products having reduced slough
US6780282Jun 14, 2001Aug 24, 2004Voith Pater Patent GmbhMachine and process for producing a fibrous material web
US6797117Nov 30, 2000Sep 28, 2004The Procter & Gamble CompanyLow viscosity bilayer disrupted softening composition for tissue paper
US6808597 *Jul 9, 2002Oct 26, 2004Hercules IncorporatedMethods of making and using creping adhesives comprised of polyamine-epihalohydrin resin/poly(vinyl alcohol) mixtures
US6808790May 23, 2002Oct 26, 2004Kimberly-Clark Worldwide, Inc.Wet-resilient webs and disposable articles made therewith
US6827818Sep 27, 2002Dec 7, 2004Kimberly-Clark Worldwide, Inc.Soft tissue
US6846383 *Jul 10, 2002Jan 25, 2005Kimberly-Clark Worldwide, Inc.Wiping products made according to a low temperature delamination process
US6849157May 7, 2004Feb 1, 2005Kimberly-Clark Worldwide, Inc.Soft tissue
US6855229Jan 16, 2004Feb 15, 2005The Procter & Gamble CompanyLow viscosity bilayer disrupted softening composition for tissue paper
US6861380Nov 6, 2002Mar 1, 2005Kimberly-Clark Worldwide, Inc.Tissue products having reduced lint and slough
US6887350Dec 13, 2002May 3, 2005Kimberly-Clark Worldwide, Inc.Tissue products having enhanced strength
US6918993 *May 28, 2003Jul 19, 2005Kimberly-Clark Worldwide, Inc.Multi-ply wiping products made according to a low temperature delamination process
US6929714Apr 23, 2004Aug 16, 2005Kimberly-Clark Worldwide, Inc.Tissue products having reduced slough
US6958103Dec 23, 2002Oct 25, 2005Kimberly-Clark Worldwide, Inc.Entangled fabrics containing staple fibers
US6979386Aug 22, 2000Dec 27, 2005Kimberly-Clark Worldwide, Inc.Tissue products having increased absorbency
US6986830 *Dec 19, 2003Jan 17, 2006Voith Paper Patent GmbhMethod and a machine for the manufacture of a fiber web
US6991706Sep 2, 2003Jan 31, 2006Kimberly-Clark Worldwide, Inc.Clothlike pattern densified web
US6992028Sep 9, 2002Jan 31, 2006Kimberly-Clark Worldwide, Inc.Multi-layer nonwoven fabric
US7022201Dec 23, 2002Apr 4, 2006Kimberly-Clark Worldwide, Inc.Entangled fabric wipers for oil and grease absorbency
US7041196Dec 18, 2003May 9, 2006The Procter & Gamble CompanyProcess for making a fibrous structure comprising cellulosic and synthetic fibers
US7045026Dec 18, 2003May 16, 2006The Procter & Gamble CompanyProcess for making a fibrous structure comprising cellulosic and synthetic fibers
US7156954May 7, 2004Jan 2, 2007Kimberly-Clark Worldwide, Inc.Soft tissue
US7189307Sep 2, 2003Mar 13, 2007Kimberly-Clark Worldwide, Inc.Low odor binders curable at room temperature
US7194788Dec 23, 2003Mar 27, 2007Kimberly-Clark Worldwide, Inc.Soft and bulky composite fabrics
US7194789Dec 23, 2003Mar 27, 2007Kimberly-Clark Worldwide, Inc.Abraded nonwoven composite fabrics
US7229529Jul 15, 2004Jun 12, 2007Kimberly-Clark Worldwide, Inc.Low odor binders curable at room temperature
US7255816Nov 5, 2001Aug 14, 2007Kimberly-Clark Worldwide, Inc.Method of recycling bonded fibrous materials and synthetic fibers and fiber-like materials produced thereof
US7297231Jul 15, 2004Nov 20, 2007Kimberly-Clark Worldwide, Inc.Binders curable at room temperature with low blocking
US7300552Mar 3, 2003Nov 27, 2007Georgia-Pacific Consumer Products LpMethod for maximizing water removal in a press nip
US7311853Sep 20, 2002Dec 25, 2007The Procter & Gamble CompanyPaper softening compositions containing quaternary ammonium compound and high levels of free amine and soft tissue paper products comprising said compositions
US7354502Dec 18, 2003Apr 8, 2008The Procter & Gamble CompanyMethod for making a fibrous structure comprising cellulosic and synthetic fibers
US7361253Jul 18, 2005Apr 22, 2008Kimberly-Clark Worldwide, Inc.Multi-ply wiping products made according to a low temperature delamination process
US7432309Oct 17, 2003Oct 7, 2008The Procter & Gamble CompanyPaper softening compositions containing low levels of high molecular weight polymers and soft tissue paper products comprising said compositions
US7435312Nov 9, 2005Oct 14, 2008Kimberly-Clark Worldwide, Inc.Method of making a clothlike pattern densified web
US7449085Nov 1, 2006Nov 11, 2008Kimberly-Clark Worldwide, Inc.Paper sheet having high absorbent capacity and delayed wet-out
US7478463Sep 26, 2005Jan 20, 2009Kimberly-Clark Worldwide, Inc.Manufacturing process for combining a layer of pulp fibers with another substrate
US7566381Apr 16, 2007Jul 28, 2009Kimberly-Clark Worldwide, Inc.Low odor binders curable at room temperature
US7582577Mar 23, 2006Sep 1, 2009The Procter & Gamble CompanyFibrous structure comprising an oil system
US7645353Dec 23, 2003Jan 12, 2010Kimberly-Clark Worldwide, Inc.Ultrasonically laminated multi-ply fabrics
US7645359Jan 3, 2006Jan 12, 2010The Procter & Gamble CompanyProcess for making a fibrous structure comprising cellulosic and synthetic fibers
US7662256Aug 8, 2008Feb 16, 2010Kimberly-Clark Worldwide, Inc.Methods of making two-sided cloth like webs
US7678228Sep 17, 2007Mar 16, 2010Kimberly-Clark Worldwide, Inc.Binders curable at room temperature with low blocking
US7678856Sep 17, 2007Mar 16, 2010Kimberly-Clark Worldwide Inc.Binders curable at room temperature with low blocking
US7744723May 2, 2007Jun 29, 2010The Procter & Gamble CompanyFibrous structure product with high softness
US7749355Oct 25, 2005Jul 6, 2010The Procter & Gamble CompanyTissue paper
US7754049Oct 18, 2007Jul 13, 2010Georgia-Pacific Consumer Products LpMethod for maximizing water removal in a press nip
US7811951Aug 19, 2009Oct 12, 2010The Procter & Gamble CompanyFibrous structure comprising an oil system
US7820874Feb 10, 2006Oct 26, 2010The Procter & Gamble CompanyAcacia fiber-containing fibrous structures and methods for making same
US7829177Jun 8, 2005Nov 9, 2010The Procter & Gamble CompanyWeb materials having offset emboss patterns disposed thereon
US7918951Jan 3, 2006Apr 5, 2011The Procter & Gamble CompanyProcess for making a fibrous structure comprising cellulosic and synthetic fibers
US8021996Dec 23, 2008Sep 20, 2011Kimberly-Clark Worldwide, Inc.Nonwoven web and filter media containing partially split multicomponent fibers
US8049060Jun 29, 2006Nov 1, 2011The Procter & Gamble CompanyBulk softened fibrous structures
US8080130Jan 22, 2009Dec 20, 2011Georgia-Pacific Consumer Products LpHigh basis weight TAD towel prepared from coarse furnish
US8110072May 4, 2009Feb 7, 2012The Procter & Gamble CompanyThrough air dried papermaking machine employing an impermeable transfer belt
US8425729Dec 17, 2008Apr 23, 2013Kimberly-Clark Worldwide, Inc.Embossed nonwoven fabric
US8455077May 7, 2007Jun 4, 2013The Procter & Gamble CompanyFibrous structures comprising a region of auxiliary bonding and methods for making same
US8466216Apr 16, 2007Jun 18, 2013Kimberly-Clark Worldwide, Inc.Low odor binders curable at room temperature
US8616126Mar 4, 2011Dec 31, 2013The Procter & Gamble CompanyApparatus for applying indicia having a large color gamut on web substrates
US8665493Mar 4, 2011Mar 4, 2014The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8758560Mar 4, 2011Jun 24, 2014The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8833250Mar 4, 2011Sep 16, 2014The Procter & Gamble CompanyApparatus for applying indicia having a large color gamut on web substrates
US8839716Mar 4, 2011Sep 23, 2014The Procter & Gamble CompanyApparatus for applying indicia having a large color gamut on web substrates
US8839717Mar 4, 2011Sep 23, 2014The Procter & Gamble CompanyUnique process for printing multiple color indicia upon web substrates
US8916260Mar 4, 2011Dec 23, 2014The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8916261Mar 4, 2011Dec 23, 2014The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8920911Mar 4, 2011Dec 30, 2014The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8927092Mar 4, 2011Jan 6, 2015The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8927093Mar 4, 2011Jan 6, 2015The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8943957Mar 4, 2011Feb 3, 2015The Procter & Gamble CompanyApparatus for applying indicia having a large color gamut on web substrates
US8943958Mar 4, 2011Feb 3, 2015The Procter & Gamble CompanyApparatus for applying indicia having a large color gamut on web substrates
US8943959Mar 4, 2011Feb 3, 2015The Procter & Gamble CompanyUnique process for printing multiple color indicia upon web substrates
US8943960Mar 4, 2011Feb 3, 2015The Procter & Gamble CompanyUnique process for printing multiple color indicia upon web substrates
US8962124Mar 4, 2011Feb 24, 2015The Procter & Gamble CompanyWeb substrates having wide color gamut indicia printed thereon
US8985013Mar 4, 2011Mar 24, 2015The Procter & Gamble CompanyApparatus for applying indicia having a large color gamut on web substrates
US9032875Aug 27, 2014May 19, 2015The Procter & Gamble CompanyApparatus for applying indicia on web substrates
US9085130Sep 27, 2013Jul 21, 2015The Procter & Gamble CompanyOptimized internally-fed high-speed rotary printing device
US20020060046 *Jun 14, 2001May 23, 2002Voith Paper Patent GmbhMachine and process for producing a fibrous material web
US20040065422 *Oct 8, 2002Apr 8, 2004Kimberly-Clark Worldwide, Inc.Tissue products having reduced slough
US20040082668 *Oct 17, 2003Apr 29, 2004Vinson Kenneth DouglasPaper softening compositions containing low levels of high molecular weight polymers and soft tissue paper products comprising said compositions
US20040112558 *Dec 13, 2002Jun 17, 2004Kimberly-Clark Worldwide, Inc.Tissue products having enhanced strength
US20040121121 *Dec 23, 2002Jun 24, 2004Kimberly -Clark Worldwide, Inc.Entangled fabrics containing an apertured nonwoven web
US20040121683 *Dec 20, 2002Jun 24, 2004Joy JordanComposite elastic material
US20040121689 *Dec 23, 2002Jun 24, 2004Kimberly-Clark Worldwide, Inc.Entangled fabrics containing staple fibers
US20040121693 *Dec 23, 2002Jun 24, 2004Anderson Ralph LeeEntangled fabric wipers for oil and grease absorbency
US20040144511 *Jan 16, 2004Jul 29, 2004Mckay David D.Low viscosity bilayer disrupted softening composition for tissue paper
US20040154763 *Dec 18, 2003Aug 12, 2004The Procter & Gamble CompanyMethod for making a fibrous structure comprising cellulosic and synthetic fibers
US20040154769 *Dec 18, 2003Aug 12, 2004The Procter & Gamble CompanyProcess for making a fibrous structure comprising cellulosic and synthetic fibers
US20040157515 *Dec 18, 2003Aug 12, 2004The Procter & Gamble CompanyProcess for making a fibrous structure comprising cellulosic and synthetic fibers
US20040157524 *Dec 18, 2003Aug 12, 2004The Procter & Gamble CompanyFibrous structure comprising cellulosic and synthetic fibers
US20040194901 *Apr 23, 2004Oct 7, 2004Sheng-Hsin HuTissue products having reduced slough
US20040206465 *May 7, 2004Oct 21, 2004Farrington Theodore EdwinSoft tissue
US20040244933 *Dec 19, 2003Dec 9, 2004Scherb Thomas ThoroeMethod and a machine for the manufacture of a fiber web
US20050006039 *May 7, 2004Jan 13, 2005Farrington Theodore EdwinSoft tissue
USRE42968 *Mar 15, 2011Nov 29, 2011The Procter & Gamble CompanyFibrous structure product with high softness
EP0098148A2 *Jun 28, 1983Jan 11, 1984Canadian Pacific Forest Products Limited/ Produits Forestiers Canadien Pacifique LimiteeProcess for manufacture of high bulk paper
EP1176250A2 *Mar 30, 2001Jan 30, 2002Voith Paper Patent GmbHProcess and apparatus for making a fibrous web
EP2088237A1Jan 26, 2009Aug 12, 2009Georgia-Pacific Consumer Products LPHigh basis weight TAD towel prepared from coarse furnish
WO1981002704A1 *Mar 18, 1981Oct 1, 1981Valmet OyProcedure and paper machine for manufacturing creped paper web
WO1997003247A1 *May 30, 1996Jan 30, 1997Valmet Karlstad AbA paper machine for manufacturing a web of soft crepe paper
WO1999020821A1 *Oct 16, 1998Apr 29, 1999Kimberly Clark CoSoft, strong hydraulically entangled nonwoven composite material and method for making the same
WO1999023290A1 *Oct 30, 1998May 14, 1999Kimberly Clark CoCloth-like base sheet and method for making the same
WO2002043546A1Nov 27, 2001Jun 6, 2002Procter & GambleDispensing apparatus
WO2007040662A2 *Jun 2, 2006Apr 12, 2007Kimberly Clark CoManufacturing process for combining a layer of pulp fibers with another substrate
WO2010004519A2Jul 9, 2009Jan 14, 2010Kimberly-Clark Worldwide, Inc.Substrates having formulations with improved transferability
WO2010073149A2Nov 24, 2009Jul 1, 2010Kimberly-Clark Worldwide, Inc.Nonwoven web and filter media containing partially split multicomponent fibers
WO2011106584A1Feb 25, 2011Sep 1, 2011The Procter & Gamble CompanyFibrous structure product with high wet bulk recovery
WO2013126531A1Feb 21, 2013Aug 29, 2013The Procter & Gamble CompanyEmbossed fibrous structures and methods for making same
WO2014004939A1Jun 28, 2013Jan 3, 2014The Procter & Gamble CompanyTextured fibrous webs, apparatus and methods for forming textured fibrous webs
Classifications
U.S. Classification162/111, 156/183, 162/207, 162/179, 162/290, 162/168.1, 428/153, 162/281
International ClassificationD21F9/02, D21F11/14, D21F9/00, D21F11/00, D21H21/14
Cooperative ClassificationD21H21/146, D21F9/02, D21F11/14
European ClassificationD21H21/14D, D21F11/14, D21F9/02