Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3821350 A
Publication typeGrant
Publication dateJun 28, 1974
Filing dateNov 17, 1972
Priority dateJul 22, 1971
Publication numberUS 3821350 A, US 3821350A, US-A-3821350, US3821350 A, US3821350A
InventorsD Suchane
Original AssigneeKimberly Clark Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of coating a tampon with an insertion aid
US 3821350 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Suchane METHOD OF COATING A TAMPON WITH AN INSERTION AID [75] lnventor: David V. Suchane, Menasha, Wis.

[73] Assignee: Kimberly-Clark Corporation,

Neenah, Wis.

[22 Filed: Nov. 17, i972 [21] Appl. No.: 307,588

Related US. Application Data [62] Division of Ser. No. 165,134, July 22,1971, Pat. No.

[52] US. Cl 264/257, 264/259 [51] lnt. Cl 82% 9/02 [58] Field of Search 264/257, 259,324, 271

[56] References Cited UNITED STATES PATENTS 2,639,252 5/1953 Simon et al 264/257 [451 June 28, 1974 3,184,527 5/1965 Fischer 264/257 11/1966 Clark .L ..264/267 Primary Examiner-Robert F. White Assistant Examiner-T. E. Balhoff Attorney, Agent, or Firm-Daniel .1. Hanlon, .lr.; William D. Herrick; Raymond J. Miller [57 ABSTRACT A method for applying a normally solid lubricant to the tip of a precompressed tampon. The solid lubricant is first melted to a fluid state, then formed into a bead. A portion of the bead surface is'congealed and the head then molded around the tampon tip and solidified.

7 Claims, 4 Drawing Figures PATENTED JUN 2 8 I974 I ll/47111111 METHOD OF COATING A TAMPON WITH AN INSERTION AID This is a division of copening U.S. Pat. application Ser. No. 165,134, filed July 22, 1971 now U.S. Pat. No. 3,724,465 on Apr. 3, 1973.'

BACKGROUND OF THE INVENTION In the manufacture of compressed absorbent tampons, and especially those of the type which are inserted into body cavities without the aid of an insertion tube or a lubricous cover and thus present an inherently dry surface to the body, it is desirable to coat at 7 least the leading end or tip of the tampon with an inserart is replete with proposed solutions to this problem.

While some aspects are successfully solved by the various proposals, others seem to appear with vexing regularity. It is well known, for example, as described in assignees U.S. Pat. No. 3,428,044 of Feb. 18, 1969; that normally solid polyethylene glycols of an average molecular weight of about 1,000 and above, when coated on the tip of a precompressed tampon will provide a surface lubricity suitable for use as an insertion aid. However, it was found that at the elevated temperatures which frequently occur inwarehousing and ship ping, this type of coating softens enough to permit migration of the coating into the body of the tampon. Under such conditions the surface where the coating had been applied then eventually reverts in appearance and feel to that of an uncoated tampon. Asa result the desired lubricity is lost. In assignees U.S. Pat. application Ser. Nol 807,490 filed Mar. 17, 1969 and now U.S. Pat. No. 3,595,236 a more stable polyethylene glycol coating is described in which the stability and opacity of mixtures of specified molecular weight polyethylene glycols are .improved by the addition of starch. While this composition was found to be an improvement over' earlier type Coatings, it, stilllacked the desired long term stability. This invention is directed to a polyethylene glycol coating formulation which overcomes most of the disadvantages formerly encountered. A preferred method of applying the coating to a tampon tip is also disclosed. Accordingly, an important object of the present invention is to provide an improved insertion-aid coating for precompressed tampons which coating remains stable during long term shipment and storage.

Another object is to provide a suitable method for applying the improved coating and similar coating materials fo precompressed tampons.

SUMMARY OF INVENTION 2 tip of a precompressed tampon which is to be coated. The die is maintained at a temperature less than the melting point of the mixture. When the mixture is' injected into the cooled die cavity it forms a head which becomes partially congealed on its outer surface due to contact with the cooled cavity, but the major portion of the interior remains fluid and mobile. The tip of the precompressed tampon is pressed into the cavity containing the internally mobile mixture wherebythe mixture is molded around-the tampon tip to form a smooth cast coating. When the tampon is withdrawn, the molded coating readily releasesfrom the cavity without leaving residue. Apparently this is due to the lubricating properties of the adjuvant as well as the slight shrinkage of the coating as it hardens. The tampon tip is thus provided with a smoothly molded coating. The tampon may also be axially rotated in the die during the molding operation. This axial rotation step speedsup the setting or hardening of the coating, which is desirable when using lower molecular weight polymers. It also results in a dull, matte surface rather than the smooth cast surfacenoted above.

In addition to facilitating residue-free release from the cavity the dispersed adjuvant has other functions which improve performance and appearance of the finished tampons. One is that it stabilizes the-polyethylene glycol coating so that the coating remains in fresh condition and does not migrate into the tampon or leave a dry surface even after a prolonged exposure at temperatures of F. Another is that it provides an opaque color and cosmetic appearance to the coated surface.

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings: i

FIG. 1 is a schematic illustration of a means suitable for carrying out the method for coating tampons in accordance with this invention;

FIG. 2 is a section of a die cavity taken at 22 of FIG. 1 showing a metered amount of lubricant mixture disposed therein.

DESCRIPTION OF. THE PREFERRED EMBODIMENTS As indicated above, this invention is particularly directed to an improved insertion-aid coating for precompressed self-sustaining tampons and a method for applying the coatingwhile in a mobile condition to the tip portion of the tampon. The primary coating material is a normally solid polyethylene glycol and the improvement comprises the addition of particular stabilizing agents to the polyethylene glycol.

As shown in FIG. 4 of the drawings, the preferred tampon 30 comprises a body of absorbent material 4 compressed to a self-sustaining cylindrical shape with a substantially hermispheric frontal portion or tip, and

having a withdrawal string 31 attached to the rear portion. The tampon may be adapted for use for stick insertion by having an axially extending socket 32 centrally drilled part way into the rear portion into which a removable stick 33 may beseated. For digital insertion, the socket is not required.

FIG. 1 illustrates one method for carrying out the invention. The numeral 11 generally indicates a melting, mixing and injecting device for the polyethylene glycol. The device as shown comprises a heated tank 112 into which a normally solid polyethylene glycol is melted to a fluid state as indicated at 13. A small amount of a finely-powdered water-insoluble adjuvant selected from the group consisting of metal stearates and/or fumed silica is introduced into tank 12 through port 14 and dispersed in the melted polyethylene glycol by mixing device 15 driven by motor 16. Preferably the mixer is run continuously to provide a uniform dispersion. Connected to tank 12 is an extruder or ejector means 18 which is also equipped with a metering device I7 for metering the amount of the fluid polyethylene glycol mixture it is desired to eject.

A rotatable turntable 19 is disposed beneath ejector 18. The upper face of turntable 19 is provided with series of die cavities 20 disposed adjacent the circumference. Each die cavity 20 has an interior configuration which substantially conforms to the shape of the tampon it is desired to coat. The cavity shown is hemispheric and conforms to the rounded tampon tip shown in the drawings. The interior of turntable 20 is hollow and is preferably filled with 'a circulating coolant fluid 21 (FIGS. 2 and 3) which surrounds the outer wall of cavities 20 depending from the top wall of turntable I9 to maintain the dies 20 at a temperatue below the melting point of the polyethylene glycol mixture. The coolant is fed through axially disposed tube 22 and removed at 23 through a concentric channel as indicated.

In operation, a metered amount 24 of the melted polyethylene glycol mixture containing the specified adjuvant is injected in timed sequence into each of the cavities 20 on turntable 19 as each cavity is rotated underneath ejector means 18. The turntable 19 may, of course, be rotated continuously or intermittently as desired.

The ejected fluid 24 forms a bead 25 in the bottom of the cavity as shown in FIG. 2. It will be seen that in this condition only a small portion of the bead surface is in contact with the cooled surface of the die cavity, so that only a small surface area of the bead 25 will congeal or start to solidify while the major portion remains mobile. After each cavity receives an injection of the coating mixture, the turntable continues to rotate past the ejection device, and the tip of a tampon 20 is pressed into the mixture-containing cavity at station B. As the tampon tip is pressed into the cavity it causes the polyethylene glycol mixture to flow and mold itself around the tampon tip in the form of a thin cast coating as shown at 34 in FIGS. 3 and 4. As the turntable 19 continues to rotate the cooling liquid 21 surrounding the die cavity reduces the temperature of the molded polyethylene glycol mixture below its melting point, causing the mixture to rapidly congeal and harden into a solidified condition. The coated tampon with a' molded cap 34 of the polymer mixture on the tip thereof, as shown in FIG. 4, is then removed at station C. If desired the tampon may also be rotated axially on itslf as turntable moves the tampon from station B to station C. This axial rotation step speeds up the hardening of the coating, but results in a dull, matte finish.

In the above-described process, it was found that the use of the specified adjuvant permits easy removal of the coated tampon from the die, leaving no residue. This easy release may be attributed to the additional lubricating ability contributed by the adjuvant, but may also come from the fact that the polyethylene glycol takes a firmer set with the adjuvant mixed therein.

The following Examples will set forth several specific embodiments of the invention.

Tampons with hemispherical tips as shown in the drawings were coated in the manner described with each of the formulations described below. In these formulas, polyethylene glycol with an average molecular weight of 1,000 is identified as PEG 1,000 and polyethylene glycol with an average molecular weight of4,000 is identified as PEG 4,000. All parts are parts by weight. In each instance, the PEG 1,000 was heated to about 158 F to reduce it to a fluid state. The die cavity was maintained at about room temperature.

Example A. PEG 1,000 alone. Example B. Ten parts PEG 1,000, one part 10a. Example C. Ten parts PEG 1,000, one part fumed silica, one part magnesium stearate. Example D. Ten parts PEG 1,000, one part fumed silica, one part aluminum stearate. Example E. Ten parts PEG 1,000, one part fumed silica, one part zinc stearate. Example F. Ten parts PEG 1,000, one part fumed silica, one part calcium stearate. Example G. Ten parts PEG 1,000, one part magnesium stearate. Example H. Ten parts PEG 1,000, one part alumifumed silnum stearate. Example I. Ten parts PEG 1,000, one part zinc stearate. 1 Example 1. Ten parts PEG 1,000, one part calcium stearate.

After tampons were coated with each of these mixtures, they were placed in a forced air oven at F. for 16 hours. At the end of that time, the Example A coating consisting of PEG 1,000 alone had completely migrated into the tampon. The coating formulations consisting of PEG 1,000 and fumed silica Example B) as well as those containing PEG 1,000, fumed silica and a metal stearate (Examples C, D, E, F) all remained on the surface of the tampons andretained essentially all of their original smoothnessand lubricity. Those formulations containing PEG 1,000 and a metal stearate (Examples G, H, I, .I) remained on the surface of thetampon but appeared to lose some lubricity. However, this loss was not enough to make the coating defective.

The coatings containing PEG 1,000 and the zinc stearate, the magnesium stearate, and the calcium stearate were a little drier and stickier than similar coatings which also contained fumed silica, while the coating containing PEG 1,000 and aluminum stearate took on a somewhat mottled appearance which was absent in the same coating containing fumed silica. In each case, however, the desired stability was present.

It will be noted therefore that while the metal stearate may be used alone, the combination of stearates with fumed silica is superior.

The above experiments were repeated except that in each of the formulations PEG 4,000 was used instead of PEG 1 .000. Each of the coated tampons were heated for 16 hours at 150 F to test stability. The results were substantially the same as those obtained when PEG 1,000 was used in the formulas.

In each case the metal stearate and fumed silica is added to the coating by simply blending it into the hot PEG melt. The fumed silica has been found to exert a thixotropic effect upon the formulation. That is, the formulation containing fumed silica remains very fluid while it is being stirred but when stirring stops, the formulation begins to thicken, eventually reaching a marshmallow type consistency. Upon stirring, the structure is rapidly broken down and the formulation becomes very fluid once more.

This thixotropic effect has been found to be advantageous for tampon coatings. The tampon is coated with the formulation in the hot fluid state so that the mixture readily flows around the tip as it is pressed into the die. However, because it is thixotropic when containing fumed silica, the coating does not become fluid when similar temperatures are reached during storage of the coated tampon due to the absence of physical agitation. It is believed this phenomenon also aids in preventing migration of the coating into the body of the tampon.

Fumed silica is silicon dioxide formed by the vapor phase hydrolysis of silicon tetrachloride. It is supplied as a low density water-insoluble powder with extremely small particle size and a large surface area. Although it is insoluble, the powder forms a clear, colloidal suspension in water. The grade of fumed silica used in the Examples described is soldunder the trademark CAB-O- SlL by Cabot Corporation. It has been approved by the FDA for use in foods and pharmaceuticals.

The metal stearates may be used in their conventional commercial form which are water-insoluble pow: ders. FDA approved grades should of course be used.

As indicated above, the polyethylene glycol should be one that is normally solid at room temperature. While PEG 600 has a melting point range of about 68 to 77 F and can meet the definition, it is marginal in performance, and it is preferred that polyethylene glycols with an average molecular weight of about 1,000 and above be used. The preferred range is from about 1,000 to about 6,000. Lower molecular weight polymers may of course be used in admixture with higher weight polymers to obtain average molecular weights in the preferred range. Methoxy polyethylene glycol with an average molecular weight of about 750 may also be used.

While the description of the specific examples have been confined to polyethylene glycol and adjuvant mixtures, it will readily be seen that the method of-application itself can readily be used for other coatings which are solid at room temperature but fluid at elevated temperature.

The described method has been found to be superior to the older methods of dipping the compressed tampon tip into the molten polyethylene glycol or of spraying partially congealed material onto the tip. By the described method much better control over the thickness and uniformity of the applied coating is possible. In addition, less coating material is required, providing advantages in both economy and performance.

absorbent tampon with an insertion-aiding lubricant,

said method comprising the steps of melting a normally solid lubricant to a fluid state, dispensing a small predetermined quantity of said lubricant in the form of a bead while said lubricant is in said fluid state, cooling said bead to partially congeal at least a portion of the surface of said bead such that said congealed bead will not migrate into the tip of said tampon, molding said partially congealed bead around the-tip of said co'mpressed tampon while completely congealing said lubricant to a solid state by continuing to cool said lubricant to a temperature below its melting point.

2. A method for coating the rounded tip of a precompressed tampon with an insertion-aiding lubricant mixture, said method comprising the steps of melting a nor mally solid lubricant to a fluid state, dispersing in said melted lubricant a finely-powdered, water-insoluble adjuvant, providing a die cavity having-an internal configuration which conforms to the shape of said tampon tip, injecting a small metered amount of said fluid mixture into said die cavity while said die is maintained at a temperature less than the melting point of said lubricant mixture whereupon at least the outer portion of said mixture in contact with said die begins to set, pressing the tip of said precompressed tampon into said cavity and into contact with said partially set lubricant mixture while the interior of said lubricant mixture is still mobile to form and to set said lubricant mixture around said tip without migration therein while main taining said temperature at less than said melting point, and withdrawing the tampon from said cavity whereby the tip of said tampon is provided with a smooth cast coating of said lubricant mixture.

3. The method of claim 2 wherein said normally solid lubricant is a polyethylene glycol.

.4. The method of claim 2 wherein said normally solid lubricant is a polyethylene glycol with an average molecular weight in the range of about 1,000 and about 6,000.

5. The method of claim 2 wherein said normally solid lubricant is a methoxy polyethylene glycol with an average molecular weight of about 750.

6. The method of claim 2 wherein said adjuvant is selected from the group consisting of metal stearates and fumed silica.

7. The method of claim 6 wherein said metal stearate is selected from the group consisting of aluminum, calcium, magnesium and zinc stearate.

ro-j UNITED STATES PATENT OFFICE x CERTIFICATE OF CORRECTION PatentNo. 3,821,350 Dated June 974 Iuvenwfls) David V. Duchane It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Inventor "David V. Suchane" should read David V. Duchane Column 1, line 56, "0" should read to Column 4, line 40, after "silica" ,and before "Example" insert a parentheses,- 1

Signed and sealed this 8th day of October 1974.

(SEAL) I Attest:

McCOY M. GIBSON JR. I C. MARSHALL DANN Attesting Officer Commissioner of Patents

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5290501 *May 20, 1992Mar 1, 1994Playtex Family Products CorporationMethod of forming cardboard tampon applicators having a dome-shaped forward tip
US6096332 *Jun 30, 1998Aug 1, 2000Mcneil-Ppc, Inc.Adding pharmaceutically active compounds to substrates
US6316019Nov 24, 1999Nov 13, 2001Mcneil-Ppc, Inc.Process for adding pharmaceutically active compounds to substrates
US6503526Oct 20, 2000Jan 7, 2003Kimberly-Clark Worldwide, Inc.Absorbent articles enhancing skin barrier function
US6515029Apr 23, 1999Feb 4, 2003Kimberly-Clark Worldwide, Inc.Absorbent article having a hydrophilic lotionized bodyside liner
US6689932Dec 21, 2001Feb 10, 2004Kimberly-Clark Worldwide, Inc.Absorbent articles with simplified compositions having good stability
US6749860Dec 22, 2000Jun 15, 2004Kimberly-Clark Worldwide, Inc.Absorbent articles with non-aqueous compositions containing botanicals
US6756520Oct 20, 2000Jun 29, 2004Kimberly-Clark Worldwide, Inc.Hydrophilic compositions for use on absorbent articles to enhance skin barrier
US7563401 *Jun 25, 2004Jul 21, 2009Playtex Products, Inc.Tampon pledget having a shaped tip and method of making same
US7771735Apr 3, 2003Aug 10, 2010Kimberly-Clark Worldwide, Inc.Absorbent articles with compositions for reducing irritation response
US7947210Jun 9, 2009May 24, 2011Playtex Products, Inc.Tampon pledget having a shaped tip and method of making same
US7982089Jan 9, 2004Jul 19, 2011Playtex Products, Inc.Methods of lubricating a tampon and a tampon lubricated thereby
US8616149 *Mar 10, 2010Dec 31, 2013Uni-Charm CorporationApparatus for manufacturing a tampon
US20020120241 *Dec 22, 2000Aug 29, 2002Tyrrell David JohnAbsorbent articles with hydrophilic compositions containing anionic polymers
US20020120242 *Dec 22, 2000Aug 29, 2002Tyrrell David JohnAbsorbent articles with hydrophilic compositions containing botanicals
US20020128615 *Dec 22, 2000Sep 12, 2002Tyrrell David JohnAbsorbent articles with non-aqueous compositions containing anionic polymers
US20030130636 *Dec 22, 2001Jul 10, 2003Brock Earl DavidSystem for improving skin health of absorbent article wearers
US20030206979 *Apr 3, 2003Nov 6, 2003Kimberly-Clark Worldwide, Inc.Absorbent articles with compositions for reducing irritation response
US20040153024 *Jan 9, 2004Aug 5, 2004Playtex Products, Inc.Methods of lubricating a tampon and a tampon lubricated thereby
US20050022349 *Jun 25, 2004Feb 3, 2005Playtex Products, Inc.Tampon pledget having a shaped tip and method of making same
US20090249595 *Jun 9, 2009Oct 8, 2009Playtex Products, Inc.Tampon pledget having a shaped tip and method of making same
US20120086140 *Mar 10, 2010Apr 12, 2012Uni-Charm CorporationManufacturing method for a tampon, and a manufacturing apparatus for a tampon
CN102438569A *Mar 10, 2010May 2, 2012尤妮佳股份有限公司Method for producing tampon and apparatus for producing tampon
EP0415087A1 *Jul 27, 1990Mar 6, 1991Vp - Schickedanz AgTampon for medical or hygienic purposes and its method of manufacture
EP0692263A2Jun 23, 1995Jan 17, 1996McNEIL-PPC, INC.Method of reducing the coefficient of friction of absorbent products and wax coated products produced thereby
EP1355606A2 *Nov 16, 2001Oct 29, 2003Playtex Products, Inc.Methods of lubricating a tampon and tampon lubricated thereby
EP1355606A4 *Nov 16, 2001Oct 20, 2004Playtex Products IncMethods of lubricating a tampon and tampon lubricated thereby
EP2412351A1 *Mar 10, 2010Feb 1, 2012Uni-Charm CorporationMethod for producing tampon and apparatus for producing tampon
EP2412351A4 *Mar 10, 2010Dec 26, 2012Uni Charm CorpMethod for producing tampon and apparatus for producing tampon
Classifications
U.S. Classification264/257, 264/259
International ClassificationA61F13/20, A61F13/15
Cooperative ClassificationA61F13/2082, A61F2013/8455, A61F13/202, A61F13/2051
European ClassificationA61F13/20M, A61F13/20C