Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3821508 A
Publication typeGrant
Publication dateJun 28, 1974
Filing dateApr 23, 1973
Priority dateApr 23, 1973
Publication numberUS 3821508 A, US 3821508A, US-A-3821508, US3821508 A, US3821508A
InventorsJ Hagerty
Original AssigneeHagerty Res Dev Co Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for heating fluid
US 3821508 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Hagerty [11] 3,821,508 June 28, 1974 METHOD AND APPARATUS FOR HEATING FLUID Inventor: John P. Hagerty, Prescott, Ariz.

Hagerty Research and Development Co., Inc., Prescott, Ariz.

Filed: Apr. 23, 1973 Appl. No.: 353,646

Assignee:

References Cited UNITED STATES PATENTS Burnett 219/1049 3,671,714 6/1972 Charns 219/1049 X Primary ExaminerBruce A. Reynolds Attorney, Agent, or Firm-Allen D. Gutchess, Jr.

[5 7] ABSTRACT A first plurality or group of magnets is mounted in a housing in a pattern having a circular cross section. A second plurality or group of magnets is mounted in spaced relationship with respect to the first group and means are provided for moving one of the groups of magnets relative to the other. A conductive member is located in the space between the two groups of magnets, in the magnetic field therebetween. Rotation of the one group and variation in the flux causes the conductive member to become heated. A fluid is then di-' rected past the member, in heat-transfer relationship with respect thereto, to cause the fluid to be heated and useable as a working fluid.

118 Cllaims, 11 Drawing Figures PATENTEDJUNN 5974 saw 2 OF 3 PATENWEUJWB m4 SHEET 3 UP 3 METHOD AND APPARATUS FOR HEATING FLUID This invention relates to a method and apparatus for converting the forces of magnetism into heat.

The subject matter is disclosed in Disclosure Document No. 016625.

In accordance with the invention, a first plurality of magnets are disposed in a circular pattern, as viewed in transverse cross section. A second plurality of magnets are maintained in spaced relationship with respect to the first plurality. A conductive member is positioned in the space between the two groups of magnets. At least one of the groups of magnets is rotated to establish a variable flux therebetween by the alternate attraction and repulsion, or variation in the strength of the retraction or repulsion, of the magnets. This induces heating in the conductive member. A fluid such as air is moved past the heated member, in heattransfer relationship with respect thereto, to become heated and ready to impart energy as it exits as a heated working fluid.

It is, therefore, a principal object of the invention to provide an improved method and apparatus for heating a fluid with the aid of a magnetic field.

Many other objects and advantages of the invention will be apparent from the following detailed description of preferred embodiments thereof, reference being made to the accompanying drawings, in which:

FIG. 1 is a somewhat schematic view in longitudinal cross section, with parts broken away, of apparatus according to the invention;

FIG. 2 is a view in transverse cross section, taken along the line 22 of FIG. 1;

FIG. 3 is a view in transverse cross section taken along the line 33 of FIG. 1;

FIG. 4 is a view in longitudinal cross section, taken along the line 44 of FIG. 3;

FIG. 5 is a fragmentary, transverse sectional view of modified apparatus;

FIG. 6 is a view similar to FIG. 5 of further modified apparatus;

FIG. 7 is a schematic view, with parts broken away and with parts in section, of the apparatus of FIGS. 1-4 embodied in a reaction engine;

FIG. 8 is a schematic, enlarged view in elevation, with parts broken away, of the apparatus of FIG. 7 embodied in a closed system;

FIG. 9 is an enlarged, fragmentary view in longitudinal cross section of modified apparatus embodying the invention;

FIG. 10 is a fragmentary view in elevation taken along the line 10-10 of FIG. 9', and

FIG. 11 is a fragmentary view in elevation taken along the line 11-11 of FIG. 9.

Referring to the drawings and particularly to FIGS. 1-4, apparatus for heating a fluid is indicated at and includes a main housing 22. The housing 22 has a central cylindrical portion 24, a fluid inlet 26, a flared rear portion 28, and a fluid outlet 30. A first plurality or group of U-shaped magnets 32 are mounted in the cylindrical portion 24 of the housing 22, with the legs or ends of the magnets extending substantially radially inwardly and with the magnets being disposed in a configuration which is circular in transverse cross section.

A rotor 34 is centrally located within the housing 22 and also has a plurality of magnets 36 mounted therein 'with the legs or ends extending radially outwardly and forming a circular pattern in transverse cross section.

Whilethe magnets are shown as being of the permanent type, the electromagnets can also be employed.

The housing 22, at least the cylindrical portion 24 carrying the magnets 32, and the rotor 34 are made of a heat resistant material which will not have a deleterious effect on the flux of the magnets. A beryllium copper alloy can be used for this purpose. If necessary, the magnets 32 and 36 can be provided with sheaths therearound of a silver-copper alloy, comprising one part of copper to nine parts of silver, to direct the flux more effectively outwardly toward the other magnets. The ends of the magnets, however, do not have such sheaths. The rotor 34 and the cylindrical housing portion 24 can also be made of heat-resistant plastic material, such as a commercially-available silicone desig nated RTV 615 which resists heat at temperatures exceeding 4,000 F. With a plastic material, the magnets can be completely embedded therein to provide additional heat protection for the magnets, since the magnetic flux will not be impeded or absorbed by the plastic material. A combination of metallic and plastic materials can also be employed.

The rotor 34 is supported on a shaft 38 extending therethrough. The shaft 38 is rotatably carried by a bearing 40 at its rearward or downstream end, with the bearing mounted in a stationary support or cowl 42. The cowl 42, in' turn, is supported in the housing 22 by struts 44 (FIGS. 1 and 2). At the forward or upstream end, the shaft 38 is rotatably carried by a bearing 46 through which the shaft extends. The bearing 46 is mounted in a cowl or shield 48 which is also supported by the housing 22 through struts 58. The rotor 34, the rear cowl 42, and the front cowl 48 provide a smooth teardrop configuration to minimize resistance to fluid flowing through the housing 22.

The shaft 38 extends forwardly through the inlet 26 of the housing 22 and through a high-speed rotary compressor 52 (FIG. I) which supplies fluid under pressure through the inlet 26. A drive motor 54 or other suitable power source rotates the shaft 38 to drive the compressor 52 and to rotate the rotor 34.

A heating element 56 is positioned in the space between the first plurality or group of the magnets 32 and the second plurality or group of the magnets 36. The heating element 56 includes a generally cylindrical portion 58 with heavier ribs 60 extending outwardly therefrom between the outer stationary magnets 32. The ribs 60 terminate at their downstream ends in dispersion fins 62 which further aid in transferring heat to the working fluid. As best shown in FIG. 4, the'fins 62 are mounted on the rear cowl 42 to support the rear portion of the heating element 56. The forward portion of the element 56 has short struts 64 mounted on the front cowl 48 to support the front portion of the element 56. The forward portion of the element 56 is open except for the struts 64, while the rear portion has outlets 66 (FIG. 1) between the fins 62 to enable fluid to pass be tween the element 56 and the rotor 34, as well between the elemcnt 56 and the cylindrical portion 24 of the housing 22.

Hence, with this arrangement of the magnets, the flux varies from a maximum attraction force to a maximum repulsion force to produce a rapidly alternating flux which cuts back and forth across the heating element 56. The flux is of an intermediate strength when the magnetic poles of the magnets 36 are between the poles of the magnets 32.

The magnets can also be arranged with like poles always being directly opposite when the poles are aligned. This can be accomplished by reversing the poles of all of the magnets 32 or the poles of all of the magnets 36, or by placing all the magnets 32 and 36 with the north poles, for example, toward the inlet end of the housing 22. In this instance, there is no attraction force but only pulsating repulsion forces which vary from a minimum when the magnets 36 are between the magnets 32 to a maximum when they are directly opposite. Similarly, the magnets can be arranged with unlike poles always being directly opposite when the poles are aligned. Accordingly, the magnets 32 can be positioned with their north poles toward the inlet end of the housing, for example, and the magnets 36 can be positioned with their south poles toward the exhaust end of the housing. In this instance, only pulsating attraction forces exist, with these varying from a minimum with the poles of the magnets 36 between the poles of the magnets 32 to a maximum when the poles are directly opposite.

The magnets can be placed transversely of the housing 22 rather than longitudinally, if desired. An arrangement of this type is shown in FIG. where outer magnets 68 are positioned transversely in the cylindrical portion 24 of the housing 22 and inner magnets 70 are similarly positionedtransversely in the rotor 34. In this instance, a slightly modified heating element 72 has a generally cylindrical portion 74 and heavier ribs 76 which are generally of a wedge shape in transverse cross section rather than semi-cylindrical, as is true of the ribs 60.

In addition to rotating the'rotor 34, it is also possible to rotate the housing in the opposite direction to increase the frequency of pulsations or alternations in the flux field. Referring to FIG. 6, a modified outer housing 78 is rotatably supported, as by bearings at inlet and outlet end portions thereof, andis also suitably driven in a direction opposite that of the rotor 34. A modified heating element 80 is generally cylindrical and specifically of an angular, corrugated shape which is less massive than the heating elements 56 and 72. However, the element 80 provides a sizable surface area for heat transfer and is less expensive to fabricate. The shape of this element also causes variations in space and distance from one magnet field to the opposite one to provide further variations in the flux.

Rather than using the heated fluid to perform work in some other device or location, the apparatus can have a high velocity reaction nozzle to serve as a reaction engine. Referring to FIG. 7, a modified housing 82 includes the cylindrical portion 24 and the flared portion 28 but has an extension chamber 84 therebehind to provide space in which the high temperature working fluid can accummulate and dwell before partially exhausting through a Vena Contracta 86 of a high velocity nozzle 88. This provides the necessary velocity for propulsion of the overall apparatus.

Referring to FIG. 8, the reaction engine of FIG. 7 is mounted in a closed system in an environment where air is not present in sufficient quantities or where a different working fluid such as an inert gas, is employed. In this instance, the nozzle 88 has four vanes 90 therein located at mutually perpendicular angles which direct the fluid through an outlet opening 92 to return ducts 94. The vanes 90 can stabilize or change the flight direction of a vehicle in which the system is installed. The return ducts 94 direct the fluid to displacement tanks 96 which communicate with the rotary compressor 52. The compressor 52 receives the fluid through inlets 98, recompresses it, and again delivers it to the housing 82 to receive additional heat from the element 56. The displacement tanks 96 provide space for negative pressure into which the nozzle 88 can exhaust, to maintain mozzle efficiency.

Referring particularly to FIGS. 9-11, modified apparatus for transferring heat to a fluid is indicated at 100. The apparatus includes a housing 102 having an enlarged, generally cylindrical, intermediate section 104, an annular fluid inlet 106, and an annular fluid exhaust 108. The apparatus has three stationary groups or pluralities 110, 112, 114 of magnets, including U- shaped magnets 116 for the groups and 114 and bar magnets 118 for the central stationary group 112. The magnets 116 are mounted in annular supporting members 120 with the forward member mounted on an inwardly-extending flange 122 near the fluid inlet 106, and the rear member 120 mounted on a transverselyextending wall 124 of a cowl 126. The center bar magnets 118 are mounted in an annular supporting member 128 which is located on a hub 130 and supported by struts 131 extending outwardly to the inner surface of the housing portions 104.

Two rotatable groups or pluralities 132 and 134 of the bar magnets 118 are also mounted in circular rotors or rotatable members 136 and I38. The members 136 and 138 are affixed to a drive shaft 140 which can be driven by a suitable power source or drive motor similar to the motor 54.

Heating elements 142 are located between the adjacent stationary and rotatable magnet groups, including one between the stationary group 110 and the rotatable group 132, one between the rotatable group 132 and the stationary group 112, one between the stationary group 112 and the rotatable group 134, and one between the rotatable group 134 and the stationary group 114. The outer heating elements 142 are mounted on tubular hubs 144 and 146 while the inner two heating elements 142 are mounted on the hub 130 carried by the stationary group 112. Fluid openings 148 are provided in each of the elements 142 and the elements also preferably have slots 150 therein, as shown in FIG. 10, to increase the surface area presented to the fluid passing through. The rotatable groups 132 and 134 also have fluid openings 152 therein and the stationary group 112 has fluid openings 154 therein. The fluid can then flow from the annular inlet 106 through the openings and past the heating elements 142 as the fluid moves outwardly toward the annular exhaust passage 108.

The heating elements 142 are heated in a manner similar to the elements of FIGS. 1, 5, and 6 and also transfer the heat to the fluid. The magnets can be located with opposite poles aligned or with like poles aligned to provide either an alternating or a pulsating type of flux variance. If desired, the apparatus 100 can be employed in a turbine in the section normally carrying the combustion cans to heat the fluid from the forward compressorsection of the turbine in a manner similar to that achieved with the combustion cans but without the need for combustible fuels.

Various modifications of the above described embodiments of the invention will be apparent to those skilled in the art and it is to be understood that such modifications can be made without departing from the scope of the invention, if they are within the spirit and the tenor of the accompanying claims.

I claim: I

1. Apparatus for heating a fluid comprising a first plurality of magnets, means holding said magnets in a predetermined pattern, a second plurality of magnets, means holding the second plurality of magnets in a pre determined pattern in spaced relationship with said first plurality, means for moving at least one of said plurality of magnets relative to the other, a stationary conductive member, means positioning said conductive member in the space between said first and said second plurality of magnets, and means for passing fluid in heat transfer relationship with both sides of said conductive member between said first and second pluralities of magnets.

2. Apparatus according to claim ll characterized by said first and second pluralities of magnets being positioned so that like poles and unlike poles are alternately aligned as the one plurality of magnets is moved.

3. Apparatus according to claim ll characterized by said first and second pluralities of magnets being positioned so that only like poles are aligned as the one plurality of magnets is moved.

4. Apparatus according to claim ll characterized by said first and second pluralities of magnets being positioned so that only unlike poles are aligned as the one plurality of magnets is moved.

5. Apparatus according to claim ll characterized by said conductive member being of a generally cylindrical shape, said moving means rotates saidone plurality of magnets around an axis, and said fluid passing means directs the fluid in a direction substantially parallel to the axis of rotation.

6. Apparatus according to claim 1 characterized by said conductive member being of a generally circular shape. i

7. Apparatus according to claim ll characterized by said magnets being U-shaped permanent magnets with legs extending generally radially.

8. Apparatus according to claim 1 characterized by said magnets being permanent bar magnets extending transversely to the movement of the one plurality of magnets.

9. Apparatus according to claim ll characterized by said first and second pluralities being disposed generally in cylindrical configuration.

10. Apparatus according to claim 1 characterized by there being at least two of the first plurality of magnets and at least two of the second plurality of magnets with at least one of the second plurality being disposed between two adjacent ones of the first plurality.

11. Apparatus for heating a fluid comprising a housing, a first plurality of magnets mounted in a pattern with a circular transverse cross section in said housing, a rotatable member with an outer circular configuration, a second plurality of magnets held by said rotatable member, means for rotating said rotatable member, a conductive member between said first and said second plurality of magnets. and means for establishing a flow of fluid past both sides of said conductive memher from one end of said housing toward the other.

12. Apparatus according to claim lll characterized by said first and second pluralities being positioned so that like poles and unlike polesare alternately aligned as the second plurality of magnets is rotated by said rotatable member.

13. Apparatus according to claim lll characterized by said first and said second pluralities of magnets being positioned so that only like poles are aligned as the second plurality of magnets is rotated by the rotatable member.

14. Apparatus according to claim ill characterized by said first and said second pluralities of magnets being positioned so that only unlike poles are aligned as the second plurality of magnets is rotated by the rotatable member.

15. Apparatus according to claim lll characterized by said heat conductive member being of generally cylindrical shape, and said means for establishing the flow of fluid directs the flow generally parallel to the axis of rotation of said rotatable member.

16. Apparatus according to claim 11 characterized by said conductive member being of generally circular shape.

17. Apparatus for heating a fluid comprising a housing, a first plurality of magnets mounted in a pattern with a circular transverse cross section in said housing, a rotatable member with an outer circular configuration, a second plurality of magnets held by said rotatable member, means for rotating said rotatable member, a conductive member between said first and said second plurality of magnets, means for establishing a flow of fluid past said conductive member, said conductive member being of generally cylindrical shape and having a plurality of longitudinally-extending ribs which extend outwardly between certain ones of said first plurality of magnets.-

18. Apparatus according to claim 117 characterized by said ribs terminating in dispersion fins downstream of said magnets.

=i i 1: l

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4217475 *Aug 25, 1978Aug 12, 1980Hagerty Research & Development Co., Inc.Apparatus for transferring heat to fluids
US4421967 *Jan 25, 1982Dec 20, 1983Vs Systems, Inc.Windmill driven eddy current heater
US4471191 *Sep 22, 1982Sep 11, 1984Asea AbDevice for heating fluent material flowing past short-circuited heating elements within induction coils
US4484049 *Jun 16, 1982Nov 20, 1984Robert Bosch GmbhLiquid-cooled heat generator for a vehicle heating system
US4600821 *Feb 25, 1983Jul 15, 1986Franz Klaus Union Armaturen Pumpen Gmbh & Co.Apparatus for inductively heating fluid
US5012060 *Sep 11, 1989Apr 30, 1991Gerard Frank JPermanent magnet thermal generator
US5914065 *Mar 18, 1996Jun 22, 1999Alavi; KamalApparatus and method for heating a fluid by induction heating
US5994681 *Feb 4, 1998Nov 30, 1999Larkden Pty. LimitedApparatus for eddy current heating a body of graphite
US6144020 *May 12, 1999Nov 7, 2000Usui Kokusai Sangyo Kaisha LimitedApparatus for simultaneously generating a fluid flow and heating the flowing fluid
DE3207436A1 *Feb 27, 1982Sep 8, 1983Klaus Union ArmaturenGeraet und aggregat zur erwaermung eines stroemenden mediums
EP2398296A1 *Jun 21, 2010Dec 21, 2011Agence Spatiale EuropéenneA fluid heating device and an engine comprising said device, in particular for a rocket
Classifications
U.S. Classification219/631, 219/670
International ClassificationH05B6/02, H02K49/04, F02K5/00, F24H1/00
Cooperative ClassificationH05B6/109, F02K5/00, F24H1/00, H02K49/043, H02K49/046, H05B6/108
European ClassificationH05B6/10S6, H05B6/10S8, H02K49/04C, H02K49/04D, F24H1/00, F02K5/00