Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3824521 A
Publication typeGrant
Publication dateJul 16, 1974
Filing dateSep 24, 1973
Priority dateSep 24, 1973
Publication numberUS 3824521 A, US 3824521A, US-A-3824521, US3824521 A, US3824521A
InventorsHorii K, Ohya K, Takashina H, Zama M
Original AssigneeTdk Electronics Co Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Resistor
US 3824521 A
Abstract
An improved thin-film resistor low in the resistance temperature coefficient is provided. A metal film or foil is bonded with a thermosetting resin onto an insulating base plate having a lower linear expansion coefficient than the metal and is etching-processed so as to be of a desired resistance pattern. The difference in the linear expansion coefficient between the metal and the insulating base is selected to be 26 to 66 x 10<->7/ DEG C. The metal and base are covered with a resin so as to be a molded assembly, together with lead wires connected to both ends of the metal.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Horii et a1.

[11] 3,824,521 July 16, 1974 RESISTOR lnventors: Kazuo Horii, Funabashi; Kazuo Ohya, Yachiyo; Matuo Zama, Tokyo; Hiroyuki Takashina, Kawasaki, all of Japan TDK Electronics (10., Ltd., Tokyo, Japan Filed: Sept. 24, 1973 Appl. No.: 400,345

Assignee:

us. Cl 338/275, 338/254, 338/293 Int. Cl H0lc 1/02 Field of Search 338/254, 275, 262, 293,

References Cited UNITED STATES PATENTS 1/1932 Terwilligor 338/262 10/1954 Hicks 338/254 10/1968 Zandoran 338/254 Primary ExaminerE. A. Goldberg Attorney, Agent, or Firm-Wolfe, Hubbard, Leydig, Voit & Osann, Ltd.

57 ABSTRACT An improved thin-film resistor low in the resistance temperature coefficient is provided. A metal film or foil is bonded with a thermosetting resin onto an insulating base plate having a lower linear expansion coefficient than the metal and is etching-processed so as to be of a desired resistance pattern. The difference in the linear expansion coefficient between the metal and the insulating base is selected to be 26 to 66 X l0' /C. The metal and base are covered with a resin so as to be a molded assembly, together with lead wires connected to both ends of the metal.

6 Claims, 6 Drawing Figures PAIENTEB 1 51974 SHEET 3 BF 3 Qo/Wdd HILL RESISTOR This invention relates to resistors and, more particularly, to a resistor which is low in the resisitance temperature coefficient.

Resistors to be used generally for electronic computors, communication instruments, measuring instruments and the like are required to meet such various requirements that the resistance temperature coefficient (which shall be merely called temperature coefficient hereinafter) should be low, that the allowance of the resistance value should be low, that the size should be small, and so on.

In conventional resistors, the one which can meet the above mentioned requirements will be thin film resistors, or wire-wound resistors in which alloys comparatively low in the temperature coefficient are used. However, the thin film resistors are made by a vacuum evaporation or cathode sputtering process and, therefore, they have a defect that they are short of a temperature stability as a property peculiar to thin films, that is, as different from bulky metals.

Generally, in the thin film resistors, the temperature coefficient is :t several to i several I00 p.p.m./C and it is very difficult to make the value of the temperature coefficient smaller.

On the other hand, in the case of a wire-wound resistor, as the structure of the resistor is three-dimensional, the residual inductance becomes so high that it is difficult to use the resistor in a high frequency range. Further, it is almost impossible to stably manufacture resistors having the temperature coefficient less than to 5 p.p.m./C.

There have been already suggested certain measures to solve such defects in the conventional resistors of the kind referred to, for example, in Zandman et al. US. Pat. Nos. 3,405,381 and 3,517,436.

In the techniques suggested in such patents, a foil is bonded to a base with an adhesive resin, which resin causes the balance of the force to be broken and thereby there occurs a distortion of the base, and in order to avoid such phenomena Zandman et al. suggest to apply also on the other surface of the base with the same kind of resin to be of the same thickness, whereby such force that tends to bend the base due to the adhesive resin applied thereto will be balanced. Therefore, there are remarkable limitations to the material and dimensions forming the resin layer and the producing conditions are very difficult.

The present invention has succeeded in solving the above problems by bonding a metal foil on an insulating base having a lower linear expansion coefficient than the metal so that the resistance temperature coefficient will be reduced by the strain produced in the metal foil by the difference between the respective linear expansion coefficients of both.

A main object of the present invention is, therefore, to provide a resistor which is very low in the resistance temperature coefficient.

Another object of the present invention is to provide a resistor low in the residual inductance by bonding a metal foil to an insulating base so that the structure will be substantially two-dimensional.

Further, in a resistor obtained by a vacuum evaporation or cathode sputtering process, as a thin metal film is used, properties peculiar to such thin film are shown and the resistance is unstable in respect of the temperathe properties of a bulky metal.

The present invention shall now be explained in detail with reference to certain preferred embodiments in conjunction with the accompanying drawings, in which:

FIG. 1 shows a heat-treatment curve in the resistor according to the present invention;

FIG. 2 shows an example of dimensions of the insulating base employed in the present invention;

FIG. 3 shows a resistance pattern provided on the base;

FIGS. 4 and Sare diagrams showing resistance variation rate due to temperature of the resistors according to the present invention; and

FIG. 6 shows relations between the temperature coefficient and the difference between the respective linear expansion coefficients of the metal foil (3,) and of the insulating base (B I The resistor according to the present invention is made as follows.

An Ni Cr alloy is rolled to be of a thickness of about I to 10 .t by a known process. The Ni Cr alloy is of Ni/Cr= 10 to 70/30 at the weight ratio. As additives thereto, Cu, Al, Si and Mn are used to adjust the temperature coefficient and linear expansion coefficient of the alloy. The amounts of the addition of these additives by weight percent are:

Cu 2 to 5% AI 0.5 to 3% Si 0.5 to 2% Mn 0 5 to 4% A desired linear expansion coefficient of about 136 X 10 /C is thus obtained. The metalfoil of the alloy thus made and rolled as above is then heat-treated in a vacuum or inert gas. For the heat-treatment, it is desirable to keep the foil at about 600C for 3 hours with the rates of the temperature rise and fall as shown in FIG. 1.

Such insulating base having a linear expansion coefficient in the range of 40 X 10 /C to I25 X 10" /C which is lower than that of the Ni Cr metal foil as, for example, of borosilicate glass, sintered alumina, soda glass or the like is used. The relation between the thickness of the base and the thickness of the metal foil is selected to be of such a ratio that the thickness of the base the thickness of the metal foil to 1000.

The metal foilis then adhered to a surface of such an insulating base as above. An adhesive is thinly applied onto said base. At this time, the thickness of the adhesive should be preferably about 1011., and it is also preferable to use an adhesive made of a thermosetting resin.

Further, in the present invention, the difference in the linear expansion coefficient [3 between the base and metal foil is to be effectively utilizedFor this purpose, it is-desirable that the difference in the coefficient ,B between the base and metal foil is in the range of 26 to 66 X 10 /C. If the difference in the coefficient [3 is made to be larger than 66 X 10 /C, only resistancetemperature coefficient as low as in the conventional.

technique will be obtained. Even if it is made smaller than 26 X 10' /C, only a large valueof the resistancetemperature coefficient will be obtained.

The metal foil bonded to the base as above is then etching-processed depending on desired resistance pattern of each kind, then the insulating base including the foil of desired insulating pattern is individually cut, lead wires (for example, tin-plated copper wires of a diameter of 0.16 mm.) are welded to it to form terminals. Then the product is adjusted to be of a desired resistance value by trimming. After the adjustment, the thus obtained resistance element is molded with a phenol resin or epoxy resin so as to be enclosed in the molded resin.

.An experimental example shall be explained in the following:

A metal foil of a thickness of 371. was made of an Ni Cr alloy of Ni/Cr of 85/ and additives of 4 percent 15 by weight Cu, 2 percent by weight A], 1 percent by weight Si and 1 percent by weight Mn, and was heattreated as shown in FIG. I. A base was of sintered alumina of 48 mm. long, 48 mm. wide and 0.6 mm. thick (see'FIG. 2). This base was thinly painted with a bisphenol type denatured epoxy resin and the above mentioned metal foil was bonded to it. It was etched in squares of 6 mm. X 6 mm. as shownin FIG. 3 to form a resistance pattern. In the drawing, 1 is a base, 2 is an insulation part, 3 is'an etched part, 4 and 5 are terminal metal foil and insulating base is of a certain value. FIG. 5 shows examples of the resistance temperature characteristics of the resistor according to the present invention, showing that the characteristics vary with the difference B of the linear expansion coefficient of the base (of sintered alumina, soda glass or borosilicate glass) at a ratio of Ni/Cr of 85/15. When the linear expansion coefficient of the metal foil is B, and the linear expansion coefficient of the base is 3,, the relations between the difference between them (B1 B2) and the temperature coefficient will be as shown in FIG. 6, in which the hatched part shows the range which can be used in the present invention. It will be understood hereby that the present invention has excellent characteristics.

What is claimed is:

l. A resistor comprising an insulating base, a metal foil bonded onto said insulating base with an adhesive, the difference between the linear expansion coefficient of said metal foil and that of said insulating base being 26 to 66 X 10 lfC, said metal foil being formed in a resistance pattern of a desired length by etching, lead wires connected to the respective ends of said metal foil and a mold covering an assembly of said base, .mstalfq l an dw res- H 2. A resistor according claim 1 wherein said metal foil is of an Ni Cr alloy of a weight ratio of Ni/Cr o 90/10 to 70/30.

3. A resistor according to claim 2 wherein Cu, Al, Si and Mn are added as additives to said Ni Cr alloy.

4. A resistor according to claim 1 wherein the ratio of the thickness of the insulating base to the thickness of the metal foil is 100 to 1,000 1.

5. A resistor. according to claim 1 wherein the linear ns s ssstfisiqnwf s simsntf s. s t nt ally TABLE 1: Resistance temperature coefficient (in p.p.m./C) obtained by the ratio of Ni/Cr and the material of the base Weight ratio of Ni/Cr 77/23 80/20 85/15 Linear Expansion Coefficient (B1) of the metal foil 100 10-/C ll8 70-/C 136 10/C Linear Expansion C i n Base (B2) of the base Borosilicate X l0"/C Resistance B fl I Resistance. B fi Resistance I I ti -B glass temperature X l0- /C temperature 78 X 10-/C temperature 96 X 10-7/C coefficient coefiicient coefiic'ient (p.p.m./C): (p.p.m.lC): H (p.p.m./C): lto+1 -7to+7 7to+7 Sintered X l0"/C Resistance p, 16 Resistance B, B Resistance g, B alumina temperature 3 X 10-7/C temperature 48 X ]0-/C temperature 66 X 10-/C coefficient coefiicient coefficient (p.p.m./C): '(p.p.m./C): (p.p.m./C): I -2to+2 lto+l 2to+2 Soda glass 1 10 X 10' /C Resistance 3, [3 Resistance B2 Resistance B2 temperature 10 X 10 lfC temperature 8 X 10- /C' temperature 26" X 10 /C coefficient coefficient coefficient (pp -PC): (Mm-1 (P-P- -/C)= 3 to 3 I In the above table, the temperature coefficientwas ference in the linear expansion coefficient between the 136 X10 lfC and the linear expansion coefficient of said base is 70 X 10" /C. 1 6. A resistor according to claim 1 wherein said metal 65 foil is of an alloy of Ni/Cr of /15 containing 4 percent by weight Cu, 2 percent by weight Al, 1 percent by weight Si and 1 percent by weight Mn.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1842433 *Dec 28, 1928Jan 26, 1932Ward Leonard Electric CoResistance device and insulator
US2692321 *Dec 15, 1950Oct 19, 1954Hicks William MResistor
US3405381 *May 4, 1965Oct 8, 1968Vishay Intertechnology IncThin film resistor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4064477 *Aug 25, 1975Dec 20, 1977American Components Inc.Metal foil resistor
US4176445 *Jun 3, 1977Dec 4, 1979Angstrohm Precision, Inc.Metal foil resistor
US4203198 *Dec 4, 1978May 20, 1980International Telephone And Telegraph CorporationMethod of construction of electrical heating panels
US4286249 *Dec 13, 1979Aug 25, 1981Vishay Intertechnology, Inc.Attachment of leads to precision resistors
US4297670 *May 24, 1979Oct 27, 1981Angstrohm Precision, Inc.Metal foil resistor
US4528546 *May 2, 1983Jul 9, 1985National Semiconductor CorporationHigh power thick film
US5102470 *Oct 2, 1990Apr 7, 1992Anritsu CorporationElectric resistor having a thin film conductor
US5518521 *Nov 8, 1993May 21, 1996Cts CorporationProcess of producing a low TCR surge resistor using a nickel chromium alloy
US5667554 *Apr 19, 1996Sep 16, 1997Cts CorporationProcess of producing a low TCR surge resistor using a nickel chromium alloy
US6094129 *Jul 16, 1997Jul 25, 2000Daimlerchrysler AgPTC thermistor and a current limiter device having at least one PTC thermistor
US6892443Nov 25, 2002May 17, 2005Vishay IntertechnologyMethod of manufacturing a resistor
US7278201Oct 18, 2004Oct 9, 2007Vishay Intertechnology, IncMethod of manufacturing a resistor
US20040100356 *Nov 25, 2002May 27, 2004Vishay IntertechnologyHigh precision power resistors
US20050083170 *Oct 18, 2004Apr 21, 2005Vishay IntertechnologyMethod of manufacturing a resistor
DE2706789A1 *Feb 17, 1977Sep 29, 1977Electro ResistanceVerfahren zur herstellung von elektrischen widerstaenden unter ausgang von einem auf einer isolierenden unterlage befestigten metallblatt
EP1126479A1 *Feb 6, 2001Aug 22, 2001Thomson-CsfHigh Tension Resistor, specifically for Current Limiting Purposes within an Travelling Wave High Frequency Transmitter Tube
EP1422730A1 *Oct 2, 2003May 26, 2004Vishay Intertechnology, Inc.High precision power resistors
Classifications
U.S. Classification338/275, 338/293, 338/254
International ClassificationH01C7/22, H01C7/06
Cooperative ClassificationH01C7/06, H01C7/22
European ClassificationH01C7/06, H01C7/22