Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3824604 A
Publication typeGrant
Publication dateJul 16, 1974
Filing dateOct 12, 1972
Priority dateOct 12, 1972
Publication numberUS 3824604 A, US 3824604A, US-A-3824604, US3824604 A, US3824604A
InventorsE Stein
Original AssigneeE Stein
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Alphanumeric printing system employing liquid crystal matrix
US 3824604 A
Abstract
A completely solid state printing system having a keyboard or computer input, a bit encoder or data translator, a matrix switching system, a liquid crystal matrix to optically form the characters to be printed, a fiber optics translator, and a xerographic printing machine to reproduce the character impressions received from the fiber optics translator.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

are 39829960 5 f ,i 1 f (5?; Unite Statr 1111 3,824,604 Stein 1 July 16, 1974 [54] ALPHANIUMERIC PRINTING SYSTEM 3,693,517 9/1972 Clark 95/45 R 3,716,290 2/1973 Borel et a1. 350/160 LC EMPLOYING LIQUID CRYSTAL MATRIX [76] Inventor: figt g' g 5' Primary Examiner-Samuel S. Matthews Assistant ExaminerRichard A. Wintercorn [22] Filed: Oct. 12, 1972 Attorney, Agent, or Firm-Strauch, Nolan, Neale, Nies 1211 Appl. N()..' 297,011 Km v 5 [52] U.S. Cl. 354/5, 350/160 LC, 355/40 7] ABSTiRAFT 5 1] 1m Cl. 34% 13 09 34 15 1341b 17/00 A completely solid state print ng system having a key- [581 Field Search 355/40; /45; board 91 Computer P @"COdm data 350/16() LC Iator, a matrix switching system, a liquid crystal matrix to optically form the characters to be printed, 21 fiber 5 References Cited optics translator, and a xerographic printing machine UNITED STATES PATENTS to reproduce the character impressions received from I the fiber optics translator. 3,499,112 3/1970 Heilmeier et a], 350/ LC 3,626,830 12 1971 Sobottka et a1 95/45 R 15 Claims, 6 Drawing Figures 10 INPUT ENCODER I4 RING COUNTER IIIIIIIIIIIIIIII LIQUID CRYSTAL -/I8 MATRIX FIBER OPTICS OPTICAL INPUT PRINTER 22 3 824004" GRIN 359 PAIENIED 51974 3.824.604 SHEET 1 (IF 3 IO INPUT I2 ENCODER l4 RING COUNTER IIIIIIIIIIIIIIII l LIQUID CRYSTAL A/Ie MATRIX FIBER OPTICS OPTICAL INPUT PRINTER FIG. I

ALPI-IANUMERIC PRINTING SYSTEM EMPLOYING LIQUID CRYSTAL TX BACKGROUND OF THE INVENTION A basic solid state printing system employing a memory bank output, matrix encoding means alphanumeric character forming means, and a printout means opera- The general system under discussion is clearly disclosed in three prior U.S. pats. Nos. 3,217,640 issued to Bradshaw; 3,354,817 issued to Sakurai et al. and 3,453,648, issued to Stegenga. In each case, however, mechanics enter in along the the system imparting unreliability of performance. An easily recognized example of this is found in the disclosure of the U.S. pat. No. 2,632,386 to Hyland, wherein a wire type print machine uses alphanumeric character blocks as the actual print means, each block having 35 extensible print bits to form the individual character. If one'or more bits jam in high speed operation, which they invariably will, then the entire printing system is imperfect.

In major contradistinction to prior art systems and processes, the present invention calls for an optical character matrix system to optically form the characters and convey the same to optical input printing means, such as a xerographic machine.

SUMMARY OF THE INVENTION It is the primary object of the invention to provide an alphanumeric character printing system having a lightoptical character forming and conveying means to the printing means.

It is another object of the invention to provide such a printing system with a liquid crystal matrix to form an individual, light-optically readable character.

Yet another object of the invention is to provide such a printing system with a liquid crystal matrix to form one or more lines of light-optically read characters for differential character spacing resulting in even line printout.

A further object of the invention is to provide such a printing system with a two-stage alphanumeric character forming matrix, using a circular easily formed etched surface electrode to translate data into optically readable bits and a fiber optics system to convey the readable bits to an alphanumeric character display board.

A still further object of the invention is to provide such a printing system with either a steady or intermittently actuated light source to convey the formed alphanumeric character from the character display to the optical input printing means.

Further novel features and other objects of this invention will become apparent from the following detailed description, discussion and the appended claims taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS Preferred structural embodiments of this invention are disclosed in the accompanying drawings in which:

FIG. 1 is a block diagram outlining the entire printing system and process;

FIG. 2 is a diagrammatic view of one embodiment of the alphanumeric character forming means, employing a liquid crystal matrix for each character;

FIG. 3 is a partial plan view showing a line matrix instead of the single character matrix of FIG. 2;

FIG. 4 is a view similar to FIG. 2 but showing a twostage alphanumeric character forming system employing a circular liquid crystal matrix;

FIG. 5 is a partial sectional view of the liquid crystal matrix illustrated in FIG. 4; and

FIG. 6 is a partial plan view showing a multiple adjacent line matrix for forming graphic images.

DESCRIPTION OF THE PREFERRED EMBODIMENTS The schematic block diagram of FIG. 1 clearly illustrates the entire printing system of the instant invention. Input 10 may be either a keyboard or computer input for translating the data which is to eventually be retranslated and printed. In easily understood lan guage, input If) is a properly programmed computer which in and of itself forms no part of the instant invention. Data from input 10 is then conveyed to a matrix bit encoder 12 which performs itsusual function of transforming raw input data into proper sequence to be eventually fed to the alphanumericcharacter forming means and'printout. Next, a ring counter 14 may be used to switch from alphanumeric character matrix to alphanumeric character matrix (e.g., FIG. 2) or, in another embodiment, the bit encoder 12 may be arranged to program an entire alphanumeric character matrix line (FIG. 3) for more acceptable, differential character spacing for even line printout.

Liquid crystal matrix M forms characters via a common electrode and multiple input electrodes which change each liquid crystal input bit from opaque to clear to form a complete character, as will be further explained below. Alternatively, the specific liquid crystal used may turn from clear to opaque when receiving an impulse; both types of liquid crystals are currently commercially available. Through fiber optics l8 arranged to one side of the matrix 16 and a steady or intermittent light source 20 on the other (FIG. 2) the alphanumeric character is conveyed to an optical input printer 22 which, in a preferred embodiment, comprises a xerographic machine 24 (FIG. 2).

As shown in FIG. 2 and at the right side of FIG. 4, the liquid crystal matrix 16 comprises an alphanumeric character block comprising seven rows of five liquid crystal bits each, or a total of 35 data input, binary (off-on) bits 26 to form the desired alphanumeric character. This arrangement of bits to comprise an alphanumeric character display is classic, described in the prior art discussed above, and is clearly shown in the Hyland U.S. pat., No. 2,632,386.

As llereinbefore set forth, computer It), encoder l2 and ring counter or matrix switcher 14 operate in the usual manner; a bundle of 35 input lines 28 electronically conveys the translated input data to the liquid crystal matrix 16, one input line being provided for each liquid crystal bit 26 (FIG. 2). By way of example, suppose it was desired to display the letter I on the single matrix 26. Such a single matrix is also shown in FIG. 4, numbered 30. Each bit 32 of matrix 30 is numbered left to right by successive rows from ii to 35. To form the letter I, the bits 32 numbered 2, i, 32, 3d, and the central vertical column numbered 3, 8, 13, T10, 23, 28 and 33 would be activated to display the letter I." Similarly in FIG. 2, the central vertical column of bits 26 would be charged along with the bits to either side of the vertical column at top and bottom to display the letter I."

Unlike prior art devices, display and transfer of alphanumeric characters on the matrix 16 and transfer of the characters to printout means is entirely optico-- electronically actuated to completely eliminate any need for mechanical devices and thus impart a high degree of stability and reliability to the entire printing system.

Specifically, each alphanumeric bit 26 comprises a liquid crystal, a cholesteric compound having significant electrooptical properties. These cholesteric compounds are marketed by Eastman Kodak Company of Rochester, New York, and are described and listed in detail in Eastmans Liquid Crystals Kodak Publication No. 1]14. The compounds are of smectic and nematic varieties, the nematic one being the type possessing electro-optical properties.

By way of background, liquid crystals are incomplete or semicrystalline structures having two distinct mesomorphic states, the first being nematic, wherein the orientation of molecules or atoms making up the crystal are arranged in parallel lines but not uniformly layered, and the second state being smectic, wherein the orientation of molecules or atoms making up the crystal are oriented in parallel planes or layers. The present inven tion is concerned with the utilization of nematic cholesteric compounds of the type disclosed in the hereinbefore identified Eastman Kodak publication.

One suitable cholesteric liquid crystal for use in the present invention is Eastman Kodaks No. H643 nematic mixture having the following enumerated properties:

Temperature Range: l5-97C.

Rise Time: 10 milliseconds Decay Time: 350 milliseconds Response Time: 8 milliseconds Resistivity: 6.67 x 10 Ohm-cm.

Threshold Voltage: 4 Volts Optimum Voltage: 40 DC; 50-60 A.C.

Contrast Ratio: 100 to l Transmittance, Clear State: 78 percent Transmittance, Saturated State: 0.1%

Excitation Source: 200 volts, peak to peak Measurements Made: 0.5 X 0.5 cm. cell nesa coated glass with a 0.5 mil. teflon spacer, in excess of 5,000 continuous A.C. hours.

This specific compound is quite suitable for the present invention particularly for its clear (uncharged) to opaque (charged) light transmission characteristics set forth above. Of course, the particular liquid crystal used could be of the opposite charged variety, or clear when charged, turning opaque when uncharged. In the present embodiment, the clear (uncharged) to opaque (charged) variety is desirable so that transfer directly to xerography printout means may be used without need of white-n-black light reversal. Additionally, it is rather easy within the present state of the art of liquid crystals to reduce the decay time from 350 milliseconds as in the above compound to 50 milliseconds or less, for even higher speed operations.

Returning now to a further discussion of FIG. 2, specific alphanumeric liquid crystal bits 26 are electrically charged to form the individual character programmed and received from bundle 28. A steady or intermittent light source 20 shines through matrix 16, properly charged to form the letter T for example as hereinbefore set forth, so that individual strands 34 of a fiber 0ptics bundle 36 collect the image rearwardly of matrix 16. Of course, in this case, there are 35 fiber optic lines 34 provided, one for each liquid crystal bit 26. Although bundle 36 is identified as a fiber optics bundle, obviously it could be a projection lens to easily serve the purpose of conveying the character image to be printed. to the xerographic printer 24. in any event, the formed character is optically conveyed to the selenium drum of the xerographic printer, which is plus charged in the usual manner as indicated. Other standard components shown of the xerographic printer 24 include a charging potential 40, printing resin pickup tray and contents 42, heater 44, and a paper supply roll 46 conveying an endless printing paper supply beneath drum 33 for printout of the electro-optically conveyed character.

The immediately preceeding discussion concerned the entire process of image forming, conveying and printing of but a single character; obviously, an entire line of such individual alphanumeric characters will be sequentially activated from the ring counter 14 in order to print a complete line, in the present embodiment. Once a complete line has been projected, the selenium drum 38 is advanced by a signal from the input 10 to prepare drum 30 to receive another line of characters. Alternatively, the drum could also be advanced at a predetermined rate, with transmission of a signal at the time of each advance to input 10 to activate display of the next character line in the matrices 16.

instead of a row of individual liquid crystal matrices ilti being used to form each character individually, matrix 16 may be in the form ofa single complete line matrix d8, as partially shown in FlG. 3, comprising any de' sired number of vertical columns of seven liquid crystal bits 26 each, so that differential spacing of alphanumeric characters to form even line printout may be accomplished. Thus, the matrix switching unit 14 will be arranged to program an entire alphanumeric liquid crystal matrix line 43 with all characters in the line displayed simultaneously, rather than equentially as in the case of an individual alphanumeric matrix 16. Similarly, several lines 48 may be provided to be actuated simultaneously to even further speed up the printout process.

The precise shape of each alphanumeric bit 26 or 32 is not crucial; the individual bit may be square as shown, circular or bar shaped, all three varieties being popular in alphanumeric character displays.

Turning now to FlGS. 4- and 5, another embodiment of the invention is illustrated wherein each alphanumeric character is formed in two stages, using a circular liquid crystai matrix 50 as a primary data receptor from the switching matrix or ring counter 14, and a secondary, alphanumeric character display or block 30 which is optically energized by suitable light conveying means from circular matrix 50, means 51 preferably being an optical fiber bundle comprising 35 strands keyed by numbers, as illustrated from circular matrix 50 to alphanumeric character block 30. The structure of circular liquid crystal matrix 50 is best illustrated in the partial cross-section view of FIG. 5. Matrix 5t} comprises glass plates 52 and 54 having facing transparent electrodes 56 and 58 coated thereon respectively in a known manner. In this case, the common electrode will be 58, coating the entire surface of glass plate 54, and indicated as C in FIG. 41, while the individual transparent electrodes for each of the alphanumeric bits is formed on glass plate 52, by etching away electrode material to form the contacts 56 as shown in FIGS. d and 5. An insulated gasket spacer 6t) separates common electrode 58 and each individual electrode 56 while the cholesteric nematic liquid crystal is located therebetween at 62. A lens 64 receives light or no light through crystal 62. from light source 66 and conveys the optical impulse received to a strand 6% of fiber optics bundle 51. Thus alphanumeric block 31) receives optical impulses which are displayed on the face thereof and transmitted to final printout in the same manner as shown in FIG. 2 and described above. In this embodiment then, block 30 is essentially a transparent view block rather than a liquid crystal matrix as in the embodiment of FIG. 2. The reason for forming the matrix in the manner shown in FIG. 4 is for cost savings, since each circular liquid crystal matrix 5b can be rapidly and inexpensively formed by well-known processes. The excitation of each crystal in matrix 50 is as before; an impulse is received in one or more electrodes 56 to turn crystal 62 from clear to opaque (or opaque to clear) in order to form the desired character by optical transmission to block 39.

As set forth above, several simultaneously actuated line matrixes 48 may be provided to speed up the printout process. Additionally, as shown in FIG. '6, several lines 48 may be formed adjacent one another to display any graphic design desired, such as indicated at 70, by excitation of the appropriate liquid crystals in each line.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

What is claimed and desired to be secured by Letters Patent is:

l. A solid state electro-optical printing system for composing and printing an infinite variety of characters and/or designs comprising memory bank output means for outputting bit data to be translated and subsequently printed in preselected character and/or design format, matrix bit encoding means fed from said memory bank output means, matrix switching means operable by said bit encoding means, non-mechanical electro-optical graphic character display means for display ing said preselected character and/or design format, activated periodically from said bit encoding means, optical image transfer means associated in fixed, immovable relationship with said graphic character display means, said electro-optical display means functioning solely as a light shutter with said optical image transfer means to form and convey by said latter means said preselected character and/or design format, and optical input printing means for printing images received from said optical image transfer means.

2. The invention as recited in claim 1 wherein said electro-optical graphic character display means comprise a plurality of graphic character image blocks, each block comprising a plurality of electrically actuated liquid crystals, each liquid crystal being selectively activated from said bit encoding means.

3. The invention as recited in claim 2 wherein said electro-optical graphic character display means comprise means for displaying alphanumeric characters.

4. The invention as recited in claim 2 wherein each said liquid crystal is a cholesteric nematic liquid crystal, substantially optically clear in an undisturbed state, and substantially optically opaque under influence of an electrical impulse passing therethrough.

5. The invention as recited in claim 2 wherein each said liquid crystal is a cholesteric nematic liquid crystal, substantially optically opaque in an undisturbed state, and substantially optically clear under influence of an electrical impulse passing therethrough.

6. The invention as recited in claim 1 wherein said optical image transfer means comprise a bundle of optical fibers.

7. The invention as recited in claim 1 wherein said optical input printing means comprise a xerographic printer.

8. The invention as recited in claim 7 wherein said xerographic printer means further comprise a web supply of paper.

9. The invention as recited in claim 1 wherein said electro-optical graphic character display means comprise a circular liquid crystal matrix, each liquid crystal therein being selectively activated from said bit encod ing means, optical signal transfer means from said liquid crystal matrix, and graphic character display means activated by said optical signal transfer means.

iii. The invention as recited in claim 9 wherein said graphic character display means comprise means for displaying alphanumeric characters.

ii. The invention as recited in claim 9 wherein each said liquid crystal is a cholesteric nematic liquid crystal substantially opticaily clear in an undisturbed state, and substantiaily optically opaque under influence of an electricai impulse passing therethrough.

12. The invention as recited in claim 9 wherein each said liquid crystal is a cholesteric nematic liquid crystal substantially optically opaque in an undisturbed state and substantialiy optically clear under influence of an electrical signal passing therethrough.

H3. The invention as recited in claim 1 wherein said electro-optical graphic character display means comprise a line display capable of differential character spacing display of alphanumeric characters.

i i. The invention as recited in claim 1 wherein said electro-opticai graphic character display means comprise a multiple line display capable of differential character spacing display of alphanumeric characters.

Eb. The invention as recited in claim 1 wherein said electro-optica! character display means comprise a multiple line display capable of displaying graphic designs.

i a a s s STATES :PA'I ENT OFFICE" CERTIFICATE OF CORRECTION Patent No. 3,824,604 Dated A July 16, 1974 Inventofl s) Edward I. Stein I It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 3, line 19 insert a hyphen" after "elect'ro" andbefore "optical".

*Colu'mn 4, line 26 correct the spelling of "preceeding"- to --preceding-.

*coiumh} 4, line 49 change "equentially" to -sequentially--. I

*Colurnn- 5, line 34 change spelling "mat rixes" to -matrices I Signed and sealed this 29th day of October 1974.

(SEAL) Attest:

QMCCOY GIBSON JR. c. MARSHALL DANN, A't-testing Officer Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3499112 *Mar 31, 1967Mar 3, 1970Rca CorpElectro-optical device
US3626830 *Jun 20, 1969Dec 14, 1971Olympia Werke AgCharacter viewing and reproducing apparatus for a photocomposing machine
US3693517 *Dec 23, 1969Sep 26, 1972Xerox CorpPrinting apparatus
US3716290 *Oct 18, 1971Feb 13, 1973Commissariat Energie AtomiqueLiquid-crystal display device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3909823 *Mar 26, 1974Sep 30, 1975Keith L KnowltonAn optical fiber variable display system utilizing a single light source
US3936172 *Mar 29, 1974Feb 3, 1976Xerox CorporationLiquid crystalline platen for an electrophotographic printing machine
US3937561 *Dec 2, 1974Feb 10, 1976The United States Of America As Represented By The Secretary Of The NavyLiquid crystal optical image attenuator
US3942886 *Jul 22, 1974Mar 9, 1976Minolta Camera Kabushiki KaishaDisplay unit equipped with copying device
US3987459 *Aug 11, 1975Oct 19, 1976Andrew Anthony CammarotaElectro optical symbol emitting and recognition device
US4012122 *Apr 28, 1975Mar 15, 1977Xerox CorporationLiquid crystalline platen for an electrophotographic printing machine
US4017157 *Mar 26, 1975Apr 12, 1977Maatschappij Van Berkel's Patent N.V.Apparatus for the digital display or recording of data
US4026642 *Jan 22, 1975May 31, 1977Minolta Camera Kabushiki KaishaIdentification card issuing apparatus
US4110762 *Jun 6, 1977Aug 29, 1978Commissariat A L'energie AtomiqueDrawing machines especially for integrated circuit masks
US4110794 *Feb 3, 1977Aug 29, 1978Static Systems CorporationElectronic typewriter using a solid state display to print
US4194833 *May 9, 1977Mar 25, 1980Static Systems CorporationElectronic typewriter having an electronic display
US4290689 *Aug 11, 1980Sep 22, 1981Kleinschnitz Jr Donald JMoving exposure system
US4297022 *Dec 3, 1979Oct 27, 1981Static Systems CorporationLight pipe valve liquid crystal transmissive display for direct imaging on photosensitive materials
US4299447 *Jun 27, 1979Nov 10, 1981The United States Of America As Represented By The Secretary Of The NavyLiquid crystal fiber optics large screen display panel
US4315684 *Apr 17, 1979Feb 16, 1982Canon Kabushiki KaishaCopying method and apparatus
US4353628 *May 8, 1981Oct 12, 1982Delta Scan, Inc.Apparatus for producing images on radiation sensitive recording mediums
US4365275 *May 8, 1981Dec 21, 1982Delta Scan, Inc.Method for producing images on radiation sensitive recording mediums
US4378956 *Jun 5, 1980Apr 5, 1983Lester Robert WDirect imaging of information using light pipe displays
US4386836 *Dec 29, 1980Jun 7, 1983Kabushiki Kaisha Suwa SeikoshaElectro-photographic printer
US4589732 *Dec 23, 1982May 20, 1986Seiko Epson CorporationLiquid crystal optical printing apparatus with rod lens
US4659210 *Apr 12, 1984Apr 21, 1987Canon Kabushiki KaishaCopying apparatus
US4668071 *Mar 9, 1984May 26, 1987Ricoh Company, Ltd.Character generator using cathode ray tube activated liquid crystal display
US4701046 *Dec 19, 1985Oct 20, 1987Koji ShigaMethod of photographing on microfilm and apparatus therefor
US4712907 *Nov 1, 1985Dec 15, 1987Xerox CorporationSequencing means for photocopying processes
US4745433 *Jul 16, 1984May 17, 1988Casio Computer Co., Ltd.Image forming apparatus with a light shutter of the G-H type liquid crystal
US4752806 *Jun 23, 1986Jun 21, 1988Xerox CorporationMulti-mode imaging system
US4774546 *Jan 28, 1987Sep 27, 1988Xerox CorporationApparatus for forming composite images
US4791494 *Apr 30, 1984Dec 13, 1988Savin CorporationMultiple variable light source printer
US4836654 *Jun 24, 1987Jun 6, 1989Casio Computer Co., Ltd.Drive method for a dual-frequency, dielectric anisotropy liquid crystal optical device
US4933754 *Jun 20, 1989Jun 12, 1990Ciba-Geigy CorporationMethod and apparatus for producing modified photographic prints
US4946260 *Feb 24, 1989Aug 7, 1990Casio Computer Co., Ltd.Dual-frequency, dielectric anisotropy liquid crystal optical device
US5105215 *Mar 18, 1991Apr 14, 1992General Electric CompanyLiquid crystal programmable photoresist exposure system
US5298942 *Sep 30, 1992Mar 29, 1994Sharp Kabushiki KaishaCopying apparatus having liquid crystal cells
US5398041 *Apr 27, 1990Mar 14, 1995Hyatt; Gilbert P.Colored liquid crystal display having cooling
US5432526 *Apr 27, 1990Jul 11, 1995Hyatt; Gilbert P.Liquid crystal display having conductive cooling
US5646713 *Feb 16, 1996Jul 8, 1997Eastman Kodak CompanyApparatus and method for exposing data characters onto a strip region of moving photosensitive media
US5701185 *Nov 21, 1994Dec 23, 1997Polaroid CorporationSpatial light modulator assembly for adapting a photographic printer to print electronic images
US6121626 *Sep 17, 1998Sep 19, 2000Vanguard International Semiconductor CorporationMethod and system of exposure with a universal dynamic mask and charge coupled device image feedback control
US6215578Sep 17, 1998Apr 10, 2001Vanguard International Semiconductor CorporationElectronically switchable off-axis illumination blade for stepper illumination system
USRE43841Dec 11, 2001Dec 4, 2012F. Poszat Hu, LlcPrinting by active tiling
USRE44301Jun 19, 2002Jun 18, 2013F. Poszat Hu, L.L.C.Image replication system having focusing means to receive reflected light through lightguide from spatial light modulator
DE2828040A1 *Jun 26, 1978Jan 10, 1980Static Systems CorpWortverarbeitungseinrichtung
EP1322105A1 *Dec 18, 2001Jun 25, 2003Agfa-Gevaert AGDevice and method to capture a high resolution image in an image plane
Classifications
U.S. Classification396/549, 349/3, 347/136, 345/168, 101/DIG.370, 348/804, 348/790, 355/40, 345/50, 396/553, 355/1
International ClassificationG02F1/13, B41J2/465
Cooperative ClassificationB41J2/465, Y10S101/37, G02F1/1313
European ClassificationG02F1/13F, B41J2/465
Legal Events
DateCodeEventDescription
Jul 6, 1987AS02Assignment of assignor's interest
Owner name: AKARI IMEJI COMPANY, A CORP. OF ILLINOIS
Owner name: STEIN, EDWARD I.
Effective date: 19870603
Jul 6, 1987ASAssignment
Owner name: AKARI IMEJI COMPANY, A CORP. OF ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STEIN, EDWARD I.;REEL/FRAME:004747/0370
Effective date: 19870603