Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3824990 A
Publication typeGrant
Publication dateJul 23, 1974
Filing dateJun 30, 1971
Priority dateJun 30, 1971
Publication numberUS 3824990 A, US 3824990A, US-A-3824990, US3824990 A, US3824990A
InventorsBaule G
Original AssigneeInstr For Cardiac Res Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for producing sample electrocardiograms
US 3824990 A
An electronic instrument for medical use measures the time intervals between QRS complex portions of the electrical signal wave representing heartbeats. The intervals are quantized in digital form. The occurence of each subinterval is stored. Every incoming time interval is compared with the stored values. The instrument, upon receiving and comparing a novel interval, for example, either too short or too long, will activate an electrocardiograph recorder. The instrument produces a relatively small number of electrocardiographic (ECG) records, in the form of paper strips, but those strips are likely to contain a history of arrhythmic heart activity.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United 1 States Patent 91 Baule [111 3,824,990 1 51 July23, 1974 METHOD AND APPARATUS FOR PRODUCING SAMPLE ELECTROCARDIOGRAMS [75] Inventor: Gerhard M. Baule, Camillus, NY.

[73] Assignee: Instruments for Cardiac Research,

Inc., Syracuse, NY.

[58] Field of Search 128/206 A, 2.06 B, 2.06 F,

3,646,930 3/1972 Patterson et al. 128/206 F 3,648,689 3/1972 Dominy 128/206 R 3,658,055 4/1972 Abe et al. 128/206 A Primary Examiner-William E. Kamm Attorney, Agent, or FirmEliot S. Gerber [5 7 ABSTRACT An electronic instrument for medical use measures the time intervals between QRS complex portions of the electrical signal wave representing heartbeats. The intervals are quantized in digital fonn. The occurence of each subinterval is stored. Every incoming time interval is compared with the stored values. The instrument, upon receiving and comparing a novel interval, for example, either too short or too long, will activate [56] References Cited an electrocardiograph recorder. The instrument produces a relatively small number of electrocardio- UNITED STATES PATENTS graphic (ECG) records, in the form of paper strips,

but those strips are likely to contain a history of arinc 6 a... 3,542,442 8/1970 Horth 128/206 A rhythmlc heart activity 3,616,791 11/1971 Harris 128/206 A 5 Claims, 17 Drawing Figures 5 2 2 2 AMP QRS INTERVAL STORAGE fi DETECTOR TIMER DEVICE I4 INHIBITING DEVICE MONOS TABLE M27 20 STYLUS lbw/1251211 M l DRIVE RECORDER lr- 7 PAIEmmmzslau 3.924.990



F I 6.3a. g, 11 run INVENTOR F lG.3d. H mm j y G h d H. 'baule,




E F G "REA L E C 6 IINE w/I IIONI/ TURNS A 2.6 8EC.---=- 2.6 sEc, ---l A a c| ,P F ECG DELAYED I? 2 SECONDS H n b--. iL


SHEEI s (If 4 FIG. 5a. I l


ATTORNEY 1 METHOD AND APPARATUS FOR PRODUCING SAMPLE ELECTROCARDIOGRAMS BACKGROUND OF THE INVENTION This invention relates to the instrument, analysis and processing by means of an electronic instrument of heart activity, and more particularly to the field of electrocardiography.

DESCRIPTION OF THE PRIOR ART It is possible to detect and amplify voltages associated with the contraction of heart muscles by means of electrodes attached to a patient. The voltages are amplified and the voltage waveforms displayed by a pen marking device on a strip of paper (electrocardiograph).

It is considered good medical practice to continuously monitor a patients electrocardiographic waveform (ECG) for a minimum of several days following a heart attack. Continuous monitoring is also used during operations and during periods of intensive care. It

- subsequent analysis, usually at higher than normal playback speeds.

At the standard ECG speed of 25mm/sec, a continuous record would use 90 meters of paper/hour. This is clearly impractical. As an alternative, an oscilloscope display is used in operating rooms, coronary care and intensive care units. An oscilloscope display is evanescent and does not furnish a document for more leisurely study or as a patient record. For such permanent records, such as ECG paper strips of magnetic tapes, it is desirable to obtain from the vast amount of possible records only a few samples. These samples should include representations of critical portions such as the occurrence of a premature beat, a missed beat (heart block), a run of tachycardia, etc.

The selection of critical portion samples is presently I accomplished by having a specially trained nurse, who more or less continually observes the oscilloscope display, turn on the ECG recorder when a section of possible interest occurs in the displayed waveform. The ECG signal to the recorder is delayed from 2 to 20 seconds, with respect to the oscilloscope display, so that the event can be recorded after it has occurred. When the long term monitoring is by means of tape recording, the analyst reviewing the tape usually searches for and writes out, using a pen recorder and paper strip, those samples he deems important to include in the summary record.

The desirability of automatically monitoring and printing out appropriate sample records is generally recognized. The continual 24-hour observation of an oscilloscope by highly trained persons is expensive and limits such monitoring to the very high risk patients. Vi-

2 sual monitoring is also usually less than perfect due to lapses of attention and fatigue effect. This is particularly true with the common practice of having one observer simultaneously monitor four to eight oscilloscope displays. When reviewing tape recorded data during high speed playback (usually 60 times normal speed) only very competent persons are able to spot short intervals of waveforms representing heart arrhythmia, which intervals may be displayed for only a fraction of a second.

An automatic sample read-out system should not give an overabundance of samples of the same thing or run continuously. A number of circuits have been proposed to detect ectopic (premature) heart beats based on beat-to-beat (R-R interval) timing or which operate on waveform morphology. An ectopic beat detector can signal a recorder to turn on and if the recorder is fed with the delayed ECG waveform the record of the ectopic beat will be automatically captured. However, that system has the disadvantage that in some persons ectopics occur frequently six to 15 occurrences a minute is not uncommon, so that the recorder would run almost continuously.

. OBJECTIVES OF THE INVENTION The objectives of the present invention in which the beat-to-beat intervals of the patient are compared to a set of such stored intervals so that only novel intervals will operate the recorder for a short fixed time, are:

a. to provide an instrument and method which will detect arrhythmic heart beats in a patient and which will initiate the ECG recording of the patient upon such detection;

b. to provide such an instrument and method that will not initiate an overabundance of ECG recordings on frequent premature heartbeats;

c. to provide such an instrument and method which does not need constant attention by trained or other personnel but will operate entirely automatically;

d. to provide such an instrument and method which will provide a set of samples initiated by arrhythmic heart activity, which samples are likely to provide information of interest to medical personnel;

e. to provide such an instrument and method which provides a permanent record, which may be retained as part of the patients record, and which is relatively small in size and yet likely to be a history of those portions of heart activity of particular interest.

SUMMARY OF THE INVENTION The instrument of the present invention works with the conventional electrodes to detect heart activity. The voltages are amplified and the intervals between successive beats that have occurred area measured, that is, the R-R interval is measured. The set of intervals that have occurred is stored in a memory unit. The value of each incoming interval is compared to th stored set.

When an interval occurs which is not yet included in the stored set, for example, too long an interval due to a missed heartbeat, the instrument initiates the operation of a conventional ECG recorder which then runs for a predetermined time period. The ECG to the recorder is appropriately delayed so that the inscribed record includes the novel R-R interval. The new R-R interval value is then added to the stored set so that future occurences of the value will not initiate the recorder operation.

BRIEF DESCRIPTION OF THE DRAWINGS I FIGS. la-le and FIGS. 4a and 4b are ECG waveforms showing the intervals between heart beats, and the range of intervals resulting from those waveforms;

FIGS. 2a and 2c are block diagrams of the circuit of the instrument of the present invention;

FIG. 2b is a timing diagram illustrating the comparison function which takes place to either activate or not activate the ECG recorder; and

FIGS. 3a-3e depict the state of the storage device; and

FIGS. 5a and 5b are histograms of heart activity.

DESCRIPTION OF THE PREFERRED EMBODIMENT In conventional medical terminology, the first small deflection of the-waveform associated with the depolarization of the auricles of the heart, is commonly referred to as the P wave. This deflection is followed by a complex of deflections, associated with the depolarization of the ventricles, commonly referred to as the QRS complex. The complex of deflections is followed by a longer deflection, associated with the depolarization of the ventricles, commonly referred to as the T wave. One set of each of the P, QRS and T deflections occurs with each heart beat. The time period between QRS complexesor between R deflections is denoted the R-R intervaland is shown in the figures as a line with arrows at both its ends. This interval is generally not less than .2 seconds and seldom exceeds 2.0' seconds.

Non-normal rhythms of the heart are generally referred to as arrhythmias. For the normal person the RR intervals vary somewhat about an average value. An absolutely constant heart rate (a fixed RR interval) is not typical of a normal heart, and in this sense is an arrhythmia; a very high heart rate (a short RR interval) and a very low heart rate (along RR interval) are also usually referred to as arrhythmias. Detecting the presence and the type of an arrhythmia is of great value in the diagnosis and management of cardiac patients.

Of particular interest in cardiac diagnosis and management, and of significant clinical importance, is arrhythmia that is due to premature beats, ecoptic beats or premature ventricular contractions (PVCs). RR intervals are so labeled and the beats are unlabeled. The RR interval from the QRS complex of the normal beat to the QRS complex of the premature beat is less than the R-R interval between normal beats; this interval is the coupling time. For single PVCs the RR interval between it and the following normal beat is usually longer than the RR interval between normal beats. This interval is called the compensatory pause.

As shown in FIG. la, the RR intervals are taken between the peaks of the QRS complex. The instrument then places that measurement in digital form, using a scale of a second divided into 25 parts (subintervals), the scale being shown in FIG. lb. The RR intervals will be from .2 to 2 seconds long, i.e., 5 to 50 subintervals.

In FIG. 10 a normal RR interval, i.e., a heartbeat of a normal'patient at the highest rate, is designated A and the RR interval at the lowest normal rate is designated B. The range of intervals, on the scale, is A-B.

In contrast, as shown in FIG. 1d, in the samples from a PVC subject, i.e., one having premature beats, the normal beat interval is A, the shortest coupling time is C, the longest coupling time is D and the interval for the compensatory pause is E. FIG. 1e shows the chart with samples from a patient having a heart with AV blockage (the entire QRS complex is missing). The sample produced will show the block. As shown, the missed beat interval F falls outside the range of normal intervals A.

The block diagram of the circuit of the present invention of FIG. 2 shows electrodes 10, 11 and 12 which are adapted to be connected to a patient. The electrodes 10, 11 and 12' are connected to differential amplifier 13. The output of amplifier 13 is to a delay device 14 and to a QRS detector 15, for example, a peak detecting circuit. The QRS detector produces a sharp trigger pulse at each QRS peak and screens out other portions of the ECG waveform such as P waves, T waves, muscle artifacts, electrode movement artifacts, etc. The delay device may be a magnetic recording device or an electronic delay line.

The QRS detector 15 is connected to an interval timer 16 which measures the intervals between the output pulses of the QRS detector. The measurement is in .04 second subintervals. The interval timer 16 is connected to a set of memory cells 17, which may be a set of flipflop circuits connected in a register. Each memory cell is either in a state 0 or a state 1. The record samples are obtained over a period, forexample, a 1- hour period. At the beginning of each period all memory cells are reset to state 0. The memory cells are combined with the RR interval measuring circuit such that the occurrence of a given value of RR interval will set the corresponding memory cell to state 1. Once a cell is l it'remains 1 until reset (new period). All further occurrences of the same RR interval will thus have no effect. I

The memory cells (storage device) establish a set of intervals which have already occurred. The inhibitor 18 is connected to QRS detector 15 and to the storage device 17. Each trigger from the QRS detector 15 tries to turn the recorder 19 on. As shown in the comparison function diagram of FIG. 2b, if that particular subinterval has occurred previously in the period (i.e., memory cell is 1) it is inhibited and has no effect. However, if that subinterval has not occurred before in the period, for example, because it is either too long or too short, it triggers a conventional monostable circuit whose output turns on the ECG recorder 19 for a period of several (preferably 2.6) seconds. Preferably the ECG recorder 19 is a conventional single pen moving paper strip graph recorder. The stylus drive 20 of the recorder 19 is operated from the delay device 14. The preferred speed of the ECG record is 25mm/sec so that each .04 subinterval of the interval timer l6 corresponds to 1 mm of paper movement of the ECG recorder.

The operation of the circuits of FIGS. 2a and 2c is shown in connection with FIGS. 3a-3e. In FIG. 3a all the memory cells are at zero at the beginning of a data period.

Assuming the first few beats have normal RR intervals some of the boxes (corresponding to memory cells) in the normal range become 1, see FIG. 3b. FIGS. 30 and 3d show the result of a premature beat, the short RR interval from the premature to the preceding normal beat (coupling time) causing an early memory cell to go to l. The following long RR interval (compensatory pause) between premature and succeeding normal beats causes a late memory cell to go to 1. By the end of the data period all memory cells corresponding to the RR intervals that have occurred are 1, see FIG. 3e.

Each trigger from the QRS detector tries to turn the recorder 19 on. If the memory cell for the R-R interval just measured (i.e., interval from the trigger to its predecessor) is not yet I, it succeeds. If the memory cell is 1, it is inhibited. Thus the recorder will only be turned on when a novel RR interval appears. The maximum number of records cannot exceed the number of quantisized R--R intervals, about 45, and one sample record will be produced for each RR interval which does occur.

The signal to the recorder stylus is the output of the ECG amplifier I3 delayed in time by delay device 14. Preferably the delay time is 2 seconds, although longer times are equally feasible. A suitable period for the recorder to remain on is 2.6 seconds. As shown in FIG. 4a the last beat of the pair whose RR interval caused the sample will be .6 seconds or 15 mm from the end of the record (the extra .6 second insuring that the T wave will be recorded).

The number of samples cannot exceed the number of RR intervals that actually occurred and will often be less since a new RR interval can occur while the recorder is still running due to a previous new RR interval. The preferred mode of operation of the recorder is to haveit run for, say, 2.6 seconds as measured from the last of the turn on signals. This will result in some records lasting over 2.6 seconds, see FIG. 4b so that the record will contain all the beat pairs giving rise to new RR intervals.

The sampling technique of the present invention is most valuable when combined with an RR interval histogram. The height of the bars in the histogram, tells the number of occurrences of a given RR interval, and the sample record, described above, tells what type of beats caused this bar. Use of a proper mounting form can make it easy to reconstruct which sample goes with which bar. FIG. 5a shows an example of an RR interval histogram which is characteristic of isolated PVCs. The center clusters are the RR intervals between normal beats, and the early and late clusters are due to the premature beats. Adding the bar heights in either gives the total number of PVCs that occurred. The ECG samples would include specimens of normal beats and PVCs.

Much of the circuitry shown in FIG. 2a is common with that needed to produce the histogram. The memory cells previously described would be the least sign ificant digit controlling the bar height. A simple point of view is that a sample is taken when, and only when, a bar starts, i.e., goes from a count of O to a count of 1. FIG. 5b depicts some variations on the sampling scheme. One could take a sample only when the count reaches, say, 5. This might be advantageous to avoid records due to a few artifacts just starting a bar. If desired, it would also be easy to arrange for multiple samples on a bar, say at counts 1, 5, 50, I00 and 200. FIG. 5b shows a switching arrangement that permits this type of flexibility.

I claim:

1. The method of automatically recording arrhythmic heartbeats in a patient, comprising attaching electrodes to the patient to a monitor his heartbeat, amplifying the electrical wave signals received on the electrodes, measuring the time intervals between similar portions of the said electrical wave signals, converting said timed intervals into quantified interval and, by the employment of an electronic circuit, storing the set of said quantified intervals, comparing subsequent intervals with said set of stored intervals and commencing the recording of an electrocardiogram and storing of said subsequent interval upon the comparison of an interval which does not match any of said set of stored intervals.

2. The method of claim 1 wherein the said similar portions of the signals are the peaks of the QRS complex.

3. The method of claim 1 and including the step of operating the recorder after the said commencement for a short predetermined time period.

4. An instrument for the detection of arrhythmic heartbeats, including electrodes adapted to be connected to a patient, an amplifier connected to said electrodes, a detector of a selected portion of the wave signal and a signal delay device both connected to said amplifier, an interval timer to time the interval between heartbeats connected to said detector, a memory device connected to said timer to store a set of said inter vals, each one of which is different from the others of the set, a comparison device connected with said detector and to said storage device to compare intervals with said set of stored intervals and to produce an operating pulse and to store said composed interval only upon a finding of non-identity, an ECG recorder connected to said delay device and connected in series with said comparison device, and a period timer connected to said recorder, whereby upon receipt of said operating pulse said recorder records the signals from said delay device for the period set by said period timer.

5. An instrument as in claim 4 wherein said detector is a detector of the peaks of the QRS complex and pro duces a trigger pulse only at each said peak.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3144019 *Aug 8, 1960Aug 11, 1964Edgar HaberCardiac monitoring device
US3517662 *May 17, 1968Jun 30, 1970Birtcher CorpPatient identification marker apparatus
US3542442 *Dec 6, 1968Nov 24, 1970Borg WarnerVented mechanical device
US3616791 *Apr 30, 1969Nov 2, 1971American Optical CorpElectrocardiographic morphology recognition system
US3646930 *Nov 3, 1969Mar 7, 1972Johnnie Walker Medical ElectroAutomatic physiological recording and alarm system for hospitals
US3648689 *Sep 5, 1968Mar 14, 1972Burdick CorpCardiac monitoring apparatus for a plurality of patients
US3658055 *Apr 11, 1969Apr 25, 1972Hitachi LtdAutomatic arrhythmia diagnosing system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3946744 *Aug 23, 1974Mar 30, 1976Medalert CorporationElectrocardiography signal transmission-reception method including method of measuring pacemaker signal frequency
US3958563 *Nov 6, 1974May 25, 1976Heriberto FernandezTwo speed system for EEG recording
US3978856 *Mar 20, 1975Sep 7, 1976Michel Walter AHeart beat waveform monitoring apparatus
US4066069 *May 18, 1976Jan 3, 1978Volker DolchHeart rate change sensor
US4090505 *Jun 1, 1976May 23, 1978Marquette Electronics, Inc.Electrocardiographic recording method and means
US4316249 *Nov 9, 1979Feb 16, 1982Hittman CorporationAutomatic high speed Holter scanning system
US4331157 *Jul 9, 1980May 25, 1982Stimtech, Inc.Mutually noninterfering transcutaneous nerve stimulation and patient monitoring
US4339800 *Oct 24, 1979Jul 13, 1982Del Mar AvionicsValidator for electrocardial data processing system
US4457315 *Oct 22, 1979Jul 3, 1984Arvin BennishCardiac arrhythmia detection and recording
US4510944 *Dec 30, 1982Apr 16, 1985Porges Stephen WMethod and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems
US4622979 *Mar 2, 1984Nov 18, 1986Cardiac Monitoring, Inc.User-worn apparatus for monitoring and recording electrocardiographic data and method of operation
US5033475 *Jun 1, 1989Jul 23, 1991Medical Instrument Japan Co., Ltd.Portable electrocardiographic recording analyzer for monitoring discontinuous time periods of waveforms
US5056527 *Jul 26, 1990Oct 15, 1991Terumo Kabushiki KaishaApparatus for analyzing vital signals based upon a feature selected from a plurality of vital signal features
US5305202 *Nov 12, 1991Apr 19, 1994Quinton Instrument CompanyAmbulatory ECG analysis system
US5433209 *Apr 5, 1994Jul 18, 1995Quinton Instrument CompanyRecorder unit for ambulatory ECG monitoring system
DE2604460A1 *Feb 5, 1976Aug 11, 1977Michael S Dipl Ing LampadiusExtended time cardiac action display - has shift register to store sequentially measured cardiac potentials
DE2627427A1 *Jun 18, 1976Dec 29, 1977Joachim A MaassMonitor for pathological deviations in cardiac activity voltage - has two delay circuits and non-transitory store released to record cardiac activity voltage signal
WO1981000806A1 *Sep 26, 1980Apr 2, 1981Hittman CorpAutomatic high speed holter scanning system
WO1984002641A1 *Dec 27, 1983Jul 19, 1984Stephen W PorgesMethod and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems
U.S. Classification600/515
International ClassificationA61B5/024, A61B5/0245, A61B5/0436, A61B5/0432
Cooperative ClassificationA61B5/0245, A61B5/04365, A61B5/0432
European ClassificationA61B5/0432, A61B5/0436B, A61B5/0245