Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3827217 A
Publication typeGrant
Publication dateAug 6, 1974
Filing dateDec 19, 1972
Priority dateDec 31, 1971
Also published asDE2264036A1, DE2264036B2
Publication numberUS 3827217 A, US 3827217A, US-A-3827217, US3827217 A, US3827217A
InventorsVolsy R
Original AssigneeCommissariat Energie Atomique
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrostatic precipitator for the collection of particles contained in a gas
US 3827217 A
Abstract
Particles suspended in polluted gas or atmospheric air to be analyzed and purified are charged and precipitated in a single unit comprising a leak-tight chamber of substantial length, an admission duct for the gas to be analyzed and a "clean" gas supply duct which are parallel and open into one end of the chamber, at least one outlet duct being located opposite to the admission duct at the other end of the chamber. The chamber contains at least two electrodes, one of which is a conductive plate adjacent to the admission and outlet ducts, the other being at least one electrode such as a conductive wire which produces a corona discharge in the gas.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

nited States Patent [191 Volsy Aug. 6, 1974 ELECTROSTATIC PRECIPITATOR FOR THE COLLECTION OF PARTICLES CONTAINED IN A GAS [30] Foreign Application Priority Data Dec. 31, 1971 France 71.47801 [52] U.S. Cl 55/121, 55/128, 55/146, 55/151, 55/152, 55/270, 73/28, 324/71 CP [51] Int. Cl. B03c 3/04 [58] Field of Search 55/146, 150, 151, 152, 55/128, 129, 120, 121, 270; 324/32, 33, 71

R, 71 CP; 73/23 R, 28; 310/81, 317/3, 4

[56] References Cited UNITED STATES PATENTS 2,097,233 10/1937 Meston 55/152 X 2,868,318 1/1959 Perkins et a1. 55/151 3,331,192 7/1967 Peterson 55/107 3,413,545 11/1968 Whitby 317/3 X 3,516,608 6/1970 Bowen et al. 239/3 X 3,520,172 7/1970 Liu et al. 55/138 X 3,526,828 9/1970 Whitby 324/71 CP X 3,561,253 2/1971 Dorman 310/8.1 X 3,656,440 4/1972 Grey 110/8 R 3,718,029 2/1973 Gourdine et a1 73/28 FOREIGN PATENTS OR APPLICATIONS 833,798 3/1952 Germany 55/D1G. 38

Primary Examiner-Dennis E. Talbert, Jr. Attorney, Agent, or FirmCameron, Kerkam, Sutton, Stowell & Stowell [57] ABSTRACT Particles suspended in polluted gas or atmospheric air to be analyzed and purified are charged and precipitated in a single unit comprising a leak-tight chamber of substantial length, an admission duct for the gas to be analyzed and a clean gas supply duct which are parallel and open into one end of the chamber, at least one outlet duct being located opposite to the admission duct at the other end of the chamber. The chamber contains at least two electrodes, one of which is a conductive plate adjacent to the admission and outlet ducts, the other being at least one electrode such as a conductive wire which produces a corona discharge in the gas.

8 Claims, 1 Drawing Figure ELECTROSTATIC PRECIPITATOR FOR THE COLLECTION OF PARTICLES CONTAINED IN A GAS This invention relates to an electrostatic precipitator for the collection of particles in a gas such as air.

More precisely, the present invention is concerned with a device for the collection of polluting particles contained in a sample of atmospheric air. The device also permits the removal of dust from a gas and consequently the purification of this latter. By collecting the impurities contained in the atmosphere or in any other gas, it is possible to carry out both a qualitative and quantitative analysis of said impurities or in other words to determine the concentration of impurities and to perform a chemical analysis of said impurities.

Control of air pollution, especially in large urban areas, constitutes a problem of considerable importance. Many types of particle collection equipment are already in use and among these can be mentioned:

systems of filtration through porous fabrics; by means of these systems, the pores choke at a very high rate and the device rapidly becomes inoperative;

inertial systems based on gravity settling, particle impact or centrifugal force; the disadvantage of these systems lies in their low collection efficiency in the case of particles which have a small mass (for example particles smaller than 1 micron in'diameter);

the thermal precipitation systems (bombardment of photons); on the contrary, these systems permit retention only of particles which have a very small mass;

electrostatic precipitation devices; as a rule, these devices consist of a pin or a wire which serves as an ion source and is placed along the axis of a cylinder of revolution, the particles being precipitated on the cylinder walls. Recovery of the deposits thus obtained is a difficult operation and the efficiency of this type of apparatus decreases very rapidly in time as the particle deposits are formed on the wire; moreover, the design concept of these devices precludes any automatic adaptation to the measurement of particle concentration.

The precise object of the present invention is to provide an electrostatic precipitator for the collection of particles contained in a gas which overcomes the disadvantages attached to the techniques of the prior art which were mentioned in the foregoing.

The electrostatic precipitator for the collection of particles contained in a gas essentially comprises:

a leak-tight chamber of substantial length, a first inlet duct for the admission of gas to be analyzed and a second inlet duct for the supply of clean gas which are located in parallel relation and have their openings at one end of said chamber, at least one outlet duct located opposite to the first inlet duct at the other end of said chamber, at least two electrodes having different functions being placed within the interior of said chamber, one electrode being a conductive plate located close to that wall of said chamber which is adjacent to the first and third ducts, the geometry of the other electrode or electrodes being such as to produce in conjunction with the conductive plate a corona discharge in the gas which is present within said chamber;

deflectors which provide a separation both at the inlet and at the outlet between the gas streams of the ducts while ensuring relative independence between the polluted gas stream which is admitted through the first duct and discharged through the third duct, and

the clean gas stream which is admitted through the second duct;

a generator which serves to deliver direct or modulated current and applies a direct-current potential difference between the electrodes. The electrode which produces the corona discharge can be, for example, either a conductive wire which is parallel to said plate or a conductive pin which is located at right angles to said plate.

The gases are introduced through the first and second ducts. In a preferred embodiment, provision is made for a suction device within the third duct. In another preferred embodiment, the electrode which produces the corona discharge is placed in the line of extension of the second duct.

By means of the device in accordance with the invention, the same system formed by the electrodes therefore serves to carry out both the charging of the particles contained in the polluted gas to be analyzed and to cause precipitation of said particles.

Charging of the particles is produced by the ionized molecules of air resulting from corona discharge by applying a potential difference between the electrodes.

The particles which are thus ionized are received by the plate under the action of the electrostatic field applied between the plate and the electrode which produces the corona discharge. Vortices arising from the electric wind are eliminated while ensuring a flow of clean gas between the electrodes, which prevents any loss of aerosols on the walls of the collection chamber. This result is obtained under very good conditions by placing the corona discharge electrode in the axis of the clean gas supply duct or in an extreme position corresponding to the inlet of the two ducts for the admission of clean gas and polluted gas.

A clearer understanding of the invention will in any case be gained from the following description of one embodiment of the invention which is given by way of non-limitative example. Reference is made in the description to the single accompanying FIGURE in which the device according to the invention is shown in longitudinal cross-section.

The electrostatic device for collecting particles in a gas as shown in FIG. 1 essentially comprises a leak-tight chamber 2 of substantial length and having a parallelepipedal shape, for example, said chamber being connected at one end to the inlet ducts 4 and 6 and at the other end to the outlet duct 8. The chamber 2 is provided internally with a conductive metallic plate 10 which is fixed on the bottom wall of said chamber 2 and electrically insulated from said wall. Provision is also made within the chamber 2 for a conductive wire 12 which is parallel to the axis of this latter and placed in the line of extension of the inlet duct 6. Said wire is maintained in position by means of two insulating supports 14 and 14'. An electric current generator 16 serves to apply between the conductive wire 12 and the plate 10 a direct-current potential difference V In this example, the duct 8 is connected to a suction device 17 of known type. Within the chamber 2, the gas streams corresponding to the inlet ,ducts 4 and 6 are partially separated by the deflectors l8 and 18'. In this example, the chamber 2 is provided with an outlet duct 20 which is located in the line of extension of the inlet duct 6.

In one alternative form of construction, the duct 20 is fitted with an adjustable closure system 22.

in the precipitator shown in the FIGURE, the electric conductor which produces the corona discharge in conjunction with the conductive plate is a conductive wire 12 located parallel to the axis of the chamber 2 but, as has been stated earlier, the electric conductor can consist of a conductive pin placed at right angles to the conductive plate 10.

The operation of the device is immediately apparent from the foregoing description. The polluted gas which is introduced into the chamber 2 through the inlet duct 4 is ionized by virtue of the assembly consisting of the conductive wire 12 and the plate 10. The wire 12 behaves as a charge emitter since it is subjected to the corona effect and applies a potential difference V between the wire 12 and the plate 10. The gas is accordingly ionized and the ion space charge confers a charge on the particles in suspension in the gas. These charged particles are then attracted by the plate 10 which has the same effect as a collecting plate and thus collects the particles contained in the polluted gas. The gas which is introduced through the duct 6 and can be either a clean gas or the gas which is withdrawn from the duct 8 compensates for the electric wind produced by the corona discharge. This prevents any formation of vortices and any deposition of particles on the walls of the chamber 2 other than the plate 10. The rate of flow of the gas injected into the duct 6 can advantageously represent to 30 percent of the throughput of polluted gas.

By way of indication, the rate of flow of the gas within the chamber 2 under the action of the suction device 17 can advantageously be within the range of 10 to 400 cm/second; the direct-current potential difference V applied between the plate 10 and the conductive wire 12 can be within the range of 2 to 40 kV whereas, in a preferred embodiment, the length of the chamber 2 can range from 3 to 30 cm according to the voltage applied, the rate of propagation of the gas and the percentage content of impurities.

In order to perform automatic measurement of the particle concentration of the polluted gas, the collecting plate 10 can be adapted to an automatic measuring device which can be constituted by an electrometer, by a piezo-electric strip or by a moving film and the quantity of polluted gas introduced into the apparatus can be measured by means of a flowmeter.

Should it be desired to remove dust from a gas, means can be provided for cleaning the plate 10 by scraping or sweeping said plate, for example.

Tests carried out with a device of this type on the basis of polluted and opaque gas of a smoke-producing charge have shown that the polluted air delivered at the discharge end was wholly transparent and undetectable by the naked eye. All the particles were precipitated tional design, is therefore inexpensive to produce and also has very high reliability of operation; by virtue of the fact that the particles are collected on a single flat plate, removal of said particles for subsequent chemical analysis presents no difficulty.

It can readily be understood that the present invention is not limited to the example which has been more especially described with reference to the accompanying drawing; on the contrary, all variants are included within its scope, especially the alternative form of construction in which the bottom wall of the chamber 2 is replaced by the plate 10.

What we claim is:

1. An electrostatic precipitator for the collection of particles contained in a gas, wherein said precipitator comprises:

a leak-tight chamber of substantial length, a first inlet duct for the admission of gas to be analyzed and a second inlet duct for the supply of clean gas which are located in parallel relation and have their openings at one end of said chamber, at least one outlet duct or third duct located opposite to said first inlet duct at the other end of said chamber, at least two electrodes having different functions being placed within the interior of said chamber, at least one other of said electrodes being a conductive plate located close to that wall of said chamber which is adjacent to the first and third ducts, the geometry of at least one other of said electrodes being such as to produce in conjunction with the conductive plate a corona discharge in the gas which is present within said chamber;

deflectors which provide a separation both at the inlet and at the outlet between the gas streams of the ducts while ensuring relative independence between the polluted gas stream which is admitted through the first duct and discharged through the third duct, and the clean gas stream which is admitted through the second duct;

a direct-current generator which applies a directcurrent potential difference between the electrodes.

2. A precipitator according to claim 1, wherein the corona-discharge electrode is located in the line of extension of the second duct.

3. A precipitator according to claim 1, wherein the electrode which produces the corona discharge is a conductive wire in substantially parallel relation to the conductive plate.

4. A precipitator according to claim 1, wherein the electrode which produces the corona discharge is a conductive pin located at right angles to the conductive plate.

5. A precipitator according to claim 1 wherein, the third duct includes a suction device.

6. A precipitator according to claim 1, including a fourth duct opposite to the second duct and said fourth duct having a device for varying the opening of said duct.

7. A precipitator according to claim 1 wherein said conductive plate is connected to a measuring apparatus.

8. A precipitator according to claim 1 including a cleaning system for said conductive plate.

l l l

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2097233 *Mar 31, 1934Oct 26, 1937Research CorpElectrical deposition in pattern form
US2868318 *Jun 23, 1955Jan 13, 1959Grinnell Stuart WCollection of airborne material by electrostatic precipitation
US3331192 *Mar 30, 1966Jul 18, 1967Peterson Floyd VElectrical precipitator apparatus of the liquid spray type
US3413545 *Jun 23, 1965Nov 26, 1968Univ MinnesotaApparatus and method for determining aerosol particle concentration and particle size distribution
US3516608 *Jul 10, 1968Jun 23, 1970Bowen Henry DElectrostatic nozzle
US3520172 *May 29, 1967Jul 14, 1970Univ MinnesotaAerosol sampler
US3526828 *Aug 7, 1967Sep 1, 1970Univ MinnesotaMethod and apparatus for measuring particle concentration
US3561253 *Mar 26, 1969Feb 9, 1971Thermo Systems IncApparatus and method of measurement of particulate mass
US3656440 *Oct 26, 1970Apr 18, 1972Morse Boulger IncIncinerator having means for treating combustion gases
US3718029 *Jan 25, 1971Feb 27, 1973Gourdine Syst IncElectrostatic mass per unit volume dust monitor
*DE833798A Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3986111 *Dec 24, 1974Oct 12, 1976The United States Of America As Represented By The Secretary Of The NavyInverted voltage Gerdien Condenser
US4338568 *Mar 28, 1980Jul 6, 1982NasaMethod and device for detection of a substance
US4376637 *Oct 14, 1980Mar 15, 1983California Institute Of TechnologyApparatus and method for destructive removal of particles contained in flowing fluid
US4693733 *Sep 9, 1986Sep 15, 1987Kankyo Company LimitedAir cleaner
US5439513 *May 31, 1994Aug 8, 1995Research Triangle InstituteDevice for focussing particles suspended in a gas stream
US6752003 *May 1, 2001Jun 22, 2004Dr. Foedisch Umweltmesstechnik GmbhMethod and device for the extractive triboelectric measurements of dust and aerosols in streaming gases
US6773674 *Jan 31, 2002Aug 10, 2004University Of MassachusettsThermal analysis for detection and identification of explosives and other controlled substances
US6964189Feb 25, 2004Nov 15, 2005Westinghouse Savannah River Company, LlcPortable aerosol contaminant extractor
US7145320 *Jan 23, 2004Dec 5, 2006Matsushita Electric Industrial Co., Ltd.Particle counting method and particle counter
US8056395Dec 1, 2010Nov 15, 2011Panasonic CorporationMethod for detecting a chemical substance
US8756034 *Nov 2, 2009Jun 17, 2014Siemens AktiengesellschaftTest installation for electrical filters
US20110238348 *Nov 2, 2009Sep 29, 2011Michael KlocknerTest installation for electrical filters
USRE33927 *Sep 15, 1989May 19, 1992Kankyo Company LimitedAir cleaner
Classifications
U.S. Classification96/51, 324/71.4, 96/26, 73/28.2
International ClassificationG01N27/68, G01N1/02, B03C3/36
Cooperative ClassificationB03C3/36
European ClassificationB03C3/36