Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3828547 A
Publication typeGrant
Publication dateAug 13, 1974
Filing dateFeb 4, 1972
Priority dateFeb 18, 1971
Also published asDE2206102A1, DE2206102C2
Publication numberUS 3828547 A, US 3828547A, US-A-3828547, US3828547 A, US3828547A
InventorsFujita K
Original AssigneeSuwa Seikosha Kk
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Quartz crystal timepiece
US 3828547 A
Abstract
A timepiece having a quartz crystal vibrator serving as a time standard, a liquid crystal display, and divider and driving circuits formed from COS/MOS transistors dividing the high frequency signal from the vibrator into low frequency timing signals for the direct driving of the liquid crystal display. The driving circuit includes a COS/MOS inverter directly coupled at its output to each liquid crystal display segment.
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

1451 Aug. 13, 1974 QUARTZ CRYSTAL TIMEPIECE [75] Inventor: Kinji Fujita, Nagano, Japan [73] Assignee: Kabushiki Kaisha Suwa Seikosha,

Tokyo, Japan 22 Filed: 1 611.4, 1972 21 Appl.No.: 223,666

[30] Foreign Application Priority Data 3,626,686 12/1971 Harris 58/23 R 3,664,] 18 5/1972 Walton 58/23 A 3,668,860 6/1972 Diersbock 58/23 BA 3,672,155 6/1972 Bergey et al. 58/50 R 3,715,881 2/1973 Girard 58/50 R Primary Examiner-Edith Simmons Jackmon Attorney, Agent, or Firm-Blum, Moscovitz, Friedman & Kaplan Feb. 18, 197] Japan 46-7161 [57] ABSTRACT A timepiece having a quartz crystal vibrator serving as 52 us. c1. 58/50 R, 340/336 9 time standard, a liquid crystal p y and divider 511 1m. (:1 G041) 19/30, H051) 39/00 and driving eireniis formed from C a ist s [58] Field of Search 58/23 R, 23 A, 50 R; dividing the high frequency signal from the vibrator 307 3 3 50 1 0 LC into low frequency timing signals for the direct driving of the liquid crystal display. The driving circuit in- [56] Refer n Cit d cludes a COS/MOS inverter directly coupled at its UNITED STATES PATENTS output to each liquid crystal display segment.

3,613,351 10/1971 Walton 58/23 R 4 Claim, 11 Drawing Figures Ll/ /,W l y D V/ DE R rmA/srwmfi PAIENIED we: 31914 SHEET 3 0F 4 FIG. 6

FIG. 7b

FIG. 7a

. 1 QUARTZ CRYSTAL TIMEPIECE BACKGROUND OF THE INVENTION this reason, means for stepping up the voltage of the 5 battery in the timepiece must also be provided.

I SUMMARY OF THE INVENTION Generally speaking, in accordance with the invention, a timepiece is provided having a'quartz crystal vibrator for producing a high .frequency time standard signal, divider circuit means coupled to said quartz crystal vibrator for producing low frequency timing signals from said high frequency time standard signal, drive circuit means coupled intermediate said divider means and a liquid crystal display means for directly driving said liquid crystal display means. Both said divider circuit means and said driving circuit means are formed from COS/MOS transistors. Said timepiece may be provided with a battery coupled to said vibrator, divider and driving circuit means, and liquid crystal display means. A DC. step-up transformer means may be provided intermediate said battery and said liquid crystal display means for increasing the voltage applied to said liquid crystal display means. All or a portion of said divider and driving circuit means may be powered from said step-up transformer means.

The driving circuit means includes a COS/MOS inverter directly connected to each of the liquid crystal display segments for directly driving said liquid crystal display segments.

Accordingly, the object of the invention is to provide a highly accurate electroniccrystal wrist watch having no moving parts.

Another object of the invention is to provide a practical electronic wrist watch driven by only one or two conventional button-type cells.

A further object of the invention is to provide means for driving liquid crystal displays so as to provide high contrast and stability.-

Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification and drawings.

The invention accordingly comprises the features of construction, combinations of elements, and arrangement of parts which will be exemplified in the constructions hereinafter set forth, and the scope of the invention will be indicated in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS For a fuller understandingof the invention, reference is had to the following description taken in connection with the accompanying drawings, in which:

FIG. 1 is a block diagram of a first embodiment of the quartz crystal timepiece'in accordance with the invention;

FIG. 2 is a block diagram of a second embodiment'of the quartz crystal timepiece in accordance with the invention;

FIG. 3a is a circuit diagram of a COS/MOS inverter according to the invention;

FIG. 3b is a timing chart depicting the waveforms of the inverter of FIG. 3a;

FIG. 4a is a circuit diagram of a binary divider formed from COS/MOS transistors;

F IG. 4b is a timing chart depicting the input and output waveforms of the binary divider of FIG. 4a;

FIG. 5 is a circuit diagram of one embodiment of a DC step-up transfomier inaccordance with the invention;

FIG. 6 is a circuit diagram of one possible method for driving a liquid crystal display device;

FIG. 7a depicts a circuit diagram of the preferred method of driving liquid crystal display devices in accordance with the invention;

FIG. 7b depicts an array of liquid crystal display segments and the driving circuits therefor in accordance with the invention; and

vFIG. 8 is a block diagram of still another embodiment of' the quartz crystal timepiece in accordance with the invention.

DESCRIPTION OF THE PREFERRED I EMBODIMENTS Referring now to FIG. 1, the quartz crystal timepiece depicted includes a pair of cells B such as would be used in conventional electronic wrist watches. Such cells could be of the mercury oxide, silver oxide, or NiCd type. One or two of such cells are customarily incorporated in electric wrist watches, but more than two cells may be incorporated in special wrist watches. The cells B supply a low voltage of between 1.2 and 3.5 volts to oscillator 1, divider means 2 and step-up transformer means 5 through line LV.

Oscillator 1 consists of a quartz crystal vibrator adapted to produce a high frequency time standard signal. Divider circuit 2 includes a binary divider chain for dividing the high frequency time standard signal into low frequency timing signals such as a 1 second signal or a 1 minute signal. In the embodiment of FIG. 1, where seconds are not displayed, it would be sufficient for the binary divider chain to reduce the high frequency signal to a 1 minute signal. Said 1 minute signal is applied to a series of dividers within divider circuit 2 for producing 10 minute, 1 hour and 24 hour signals. The liquid-crystal display panel 4 provides a digital display of the hour and minute by means of a segmented array of liquid crystal display segments. For example, each digit of the digital dispaly may consist of a seven bar display array, each number from 0 to 9 being displayed by various combinations of the seven bars. Divider circuit 2 also includes decoder circuits for producing suitable dispaly driving signals for driving the appropriate combinations of liquid crystal dispaly segments in response to each I minute, 10 minute and 1 hour signals.

The operative signals are transmitted in the circuit of FIG. 1 along the path defined by the heavy line from oscillator l, to divider circuit 2, to buffer amplifier 3 for amplifying the decoded signals for application to the associated liquid crystal display segments of liquid cyrstal display means 4. The high voltage of 10-30 volts required for driving the liquid crystal display device 4 is supplied to the buffer amplifiers 3 through a step-up transformer along line I-IV. By providing the DC. step-up transformer, it is unnecessary to incorporate special cells having higher voltages.

In the embodiment of the circuit in accordance with the invention of FIG. 2, the operative circuits function in the manner described in connection with like circuits of FIG. 1, but step-up transformer 5 is connected directly to the battery, and the power to each of oscillator l, divider circuit 2, and buffer amplifier 3 is provided from the high voltage output of the DC step-up transformer.

Referring now to FIG. 3, an inverter forming a fundamental unit of COS/MOS (metal oxide semiconductor transistors disposed in the complimentary symmetry configuration) integrated circuits. The inverter of FIG. 3a is formed from a P channel MOS transistor t of the enhancement type and a N channel MOS transistor T of the enhancement type. The source-drain paths of said two transistors are connected in series between power source V and ground. In the stabilized state, the COS/MOS inverter of FIG. 3a consumes only leakage current. For this reason, COS/MOS integrated circuits formed from such inverters may form micropower circuits particularly effective for application in timepieces where power consumption must be very limited, such as wrist watches. A timing chart of the input voltage and the output voltage of the inverter of FIG. 3a is depicted in FIG. 3b. Said inverter consumes extremely small leakage current and has a charging loss equal to k CV f. Since the capacitance C is very small, and

- since the frequency f of a electric timepiece is relatively low, it is possible to substantially reduce the power consumption of the inverter circuit.

A master-slave type binary divider formed from COS/MOS integrated circuits is depicted in FIG. 4a, wherein each of the triangular symobls represents a COS/MOS inverter. The divider circuit 2 of FIGS. 1 and 2 would be formed from a chain of su c h binary divider circuits, wherein the output Q and Q define the inputs :1) and d) of the nextstage of the binary divider chain. A timing chart of the input and output voltages of the binary divider of FIG. 4a is depicted in FIG. 4b, from which it is apparent that each such binary divider circuit produces an output signal of a frequency equal to one-half the frequency of the input signal applied thereto. The frequency divider circuit of FIG. 4a is particularly advantageous when applied to timepieces such as watches, since said circuit consumes only several aw in normal operation.

Referring now to FIG. 5, a DC. step-up transformer corresponding to the transformer 5 of the embodiments of FIGS. 1 and 2 is depicted. Said transformer consists of a series loop formed from inverters I and I and a capacitor C,. A resistor R is connected in parallel with inverter I said circuit defining an astable multivibrator. The output of said multivibrator is amplified by the inverter I for application to the center tap of a step-up transformer winding T. The output pulse voltage of transformer winding T is rectified by diode D and filtered by capacitor C to produce a DC. voltage of a value higher than the input voltage applied to inverter by an amount determined by the turns ratio of transformer winding T. The output signal of the oscillator or of a divider stage could be utilized as depicted in FIG. 8 as the input signal to transformer winding T in place of the output signal of the multivibrator if desired.

FIG. 6 shows one possible driving method for liquid crystal display devices wherein an enhancement type MOS transistor is connected with its source-drain path connected in series with a liquid crystal display segment represented by the equivalent circuit thereof. Said equivalent circuit consists of the parallel combination of a capacitor C and a resistor R. Said series connection is connected between a source of voltage HV (the high driving voltage output from a step-up transformer) and ground. The arrangement of FIG. 6 has proved difficult to precisely switch on and off. This results from the fact that the liquid crystal display segments incorporated in electric timepieces have extremely high impedance (for example, R z 500 M ohms) and the MOS transistor permits little leakage current.

On the other hand, the driving method depicted in FIG. 7a avoids these defects through utilization of the characteristics of COS/MOS integrated circuit. Said arrangement consists of connecting said liquid crystal display segments between the output of a COS/MOS inverter and ground. The output impedance of a COS/- MOS inverter is low at all times, since one MOS transistor is on, and the other is off at all times. Further, the power consumption of the COS/MOS inverter is extremelylow. For this reason, the leakage current required for switching each driving MOS transistor on and off is not as critical, while on the whole, if the power consumption of the COS/ MOS integrated circuit is limited, such leakage current may be sufficient. The arrangement of FIG. 7a permits the switching of high impedance liquid crystal display segments and insures a clear contrast in said display segments.

A seven bar segmented display formed from liquid crystal display segments is depicted in FIG. 7b. The liquid crystal device would consist of a pair of plates, the seven segmented bars being deposited as electrodes on the inner surface of one of said plates while a common electrode is deposited on the inner surface of the other of said plates. Liquid crystal material would be retained in the space between said plates. In the embodiment of FIG. 7b, at least the upper plate bearing the segmented electrodes and said segmented electrodes would be formed of transparent mate rial. The common electrode is connected to ground, while each of the seven segments are connected to the output of a COS/MOS inverter. When a signal is applied to a particular inverter, the region of the liquid crystal material intermediate the segment associated therewith and the common electrode is rendered visible by the action of the applied voltage on the liquid crystal material to provide a visible display. The high voltage is applied to the seven driving inverters, the segmented electrodes being connected directly to the output terminals of their respective inverters.

The arrangement according to the invention as described above provides an electronic step-up voltage transformer permitting the use of the conventional lowvoltage cells in electric timepieces and further providing a COS/MOS direct driving circuit for liquid crystal display segments which permit certain switching of the high impedance liquid crystal elements. These features contribute to the provision of a practical and highly reliable quartz crystal watch unavailable from conventional watch constructions.

It will thus be seen that the objects set forth above, and those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above constructions without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.

What is claimed is:

1. A timepiece comprising quartz crystal vibrator means for producing a high frequency time standard signal; divider circuit means for producing low frequency timing signals in response to said high frequency time standard signal; liquid crystal display means for the digital display of time; driving circuit means intermediate said divider circuit means and said liquid crystal display means for producing driving signals in response to said timing signals for driving said liquid crystal display means, said divider circuit means and said driving circuit means being formed from COS/MOS integrated circuits; voltage source means for producing a low voltage; and DC. step-up transformer means for producing a high voltage from said low voltage for application to said driving circuit means including transformer winding means having a high voltage output and a low voltage input, rectifier means connected to said high voltage output for producing said D.C. high voltage, and means for applying an oscillatory low voltage signal to said low voltage input including an astable multivibrator formed from first and second COS/MOS inverter means each having an input and an output, the output of said first inverter means being connected to the input of said second inverter means, a resistor means connected between the input and output of said first inverter means and a capacitor means connected between the output of said second inverter and the input of said first inverter means, said astable multivibrator having an output at the output of said second inverter means for connection to the low voltage input of said transformer winding means.

2. A timepiece as recited in claim 1, including a third inverter means connected intermediate the output of said astable multivibrator and said low voltage input of said transformer winding means.

3. A timepiece as recited in claim 1, wherein said driving circuit means includes COS/MOS inverter means having outputs directly connected to said liquid crystal driving means for driving said liquid crystal driving means.

4. A timepiece as recited in claim 3, wherein said liquid crystal driving means includes a plurality of segmented digital arrays, one of said COS/MOS inverters being associated with each segment of each array for application of a driving signal thereto.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3613351 *May 13, 1969Oct 19, 1971Hamilton Watch CoWristwatch with liquid crystal display
US3626686 *Jun 18, 1970Dec 14, 1971Sperry Rand CanadaCrystal controlled electric clock
US3664118 *Sep 9, 1970May 23, 1972Hamilton Watch CoElectronically controlled timepiece using low power mos transistor circuitry
US3668860 *Nov 5, 1970Jun 13, 1972Timex CorpHigh voltage watch power supply
US3672155 *May 6, 1970Jun 27, 1972Hamilton Watch CoSolid state watch
US3715881 *May 11, 1971Feb 13, 1973Mfg Des Montres Rolex Sa BiennDisplay control device for timepieces
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3983690 *May 19, 1975Oct 5, 1976Mcsohmer CorporationDigital timepiece having chronometric display
US4014165 *Jul 14, 1975Mar 29, 1977Texas Instruments IncorporatedDC-DC converter in watch system
US4057739 *Jun 1, 1976Nov 8, 1977Kabushiki Kaisha Suwa SeikoshaElectro-chromic display driving circuit
US4123671 *Apr 21, 1977Oct 31, 1978Tokyo Shibaura Electric Co., Ltd.Integrated driver circuit for display device
US4129983 *Nov 20, 1975Dec 19, 1978Kabushiki Kaisha Suwa SeikoshaLiquid crystal digital display electronic wristwatch
US4208869 *Jul 27, 1977Jun 24, 1980Citizen Watch Co., Ltd.Illumination device for electronic timepiece
US4374332 *Sep 16, 1980Feb 15, 1983Kabushiki Kaisha Daini SeikoshaCascade type CMOS semiconductor device
US4593279 *Dec 27, 1984Jun 3, 1986Texas Instruments IncorporatedLow power liquid crystal display driver circuit
US4607176 *Aug 22, 1984Aug 19, 1986The United States Of America As Represented By The Secretary Of The Air ForceTally cell circuit
US4866430 *Oct 3, 1988Sep 12, 1989Motorola, Inc.Low voltage LED driver circuit
EP0000616A1 *Jun 21, 1978Feb 7, 1979International Business Machines CorporationMatrix addressable electrochromic display device
Classifications
U.S. Classification368/84, 326/121, 968/933, 368/85, 345/51, 327/291, 327/115
International ClassificationG04G9/00
Cooperative ClassificationG04G9/0047
European ClassificationG04G9/00D1C