Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3828766 A
Publication typeGrant
Publication dateAug 13, 1974
Filing dateAug 14, 1972
Priority dateAug 14, 1972
Publication numberUS 3828766 A, US 3828766A, US-A-3828766, US3828766 A, US3828766A
InventorsKrasnow D
Original AssigneeJet Medical Prod Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Disposable medical electrode
US 3828766 A
Abstract
A disposable medical electrode comprising a support member made of a closed cell plastic material having an adhesive surface. A centrally located contact element is embedded therein so as to leave an exposed portion thereof at the adhesive side of the support member. A smaller pad member made up of an open cell plastic material is adhered to the adhesive surface of the support member at a position opposite to and in contact with the exposed portion of the contact element. In use, the pad member has a conductive gel dispersed throughout so that when the electrode is placed against the skin of a patient a good conductive path is present from the skin through the gelled pad to the contact element.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

ilnited States Patent 191 Krasnow [451 Aug. 13, 1974 [73] Assignee: Jet Medical Products Inc., Braintree,

Mass.

[22] Filed: Aug. 14, 1972 [21] Appl. No.: 280,350

[52] US. Cl. 128/21. E, 128/417, l28/D1G. 4 [51] Int. Cl A61b 5/04 [58] Field of Search 128/206 E, 2.1 E, DIG. 4,

[56] References Cited UNITED STATES PATENTS Karnofsky 128/417 X 3,701,346 10/1972 Patrick et a1 128/206 E Primary Examiner-Richard A. Gaudet Assistant Examiner-Lee S. Cohen Attorney, Agent, or Firm-Dike, Bronstein, Roberts & Cushman [5 7] ABSTRACT A disposable medical electrode comprising a support member made of a closed cell plastic material having an adhesive surface. A centrally located contact element is embedded therein so as to leave an exposed portion thereof at the adhesive side of the support member. A smaller pad member made up of an open cell plastic material is adhered to the adhesive surface of the support member at a position opposite to and in contact with the exposed portion of the contact element. In use, the pad member has a conductive gel dispersed throughout so that when the electrode is placed against the skin of a patient a good conductive path is present from the skin through the gelled pad to the contact element.

11 Claims, 6 Drawing Figures PATENTEDMIBI 3 14 3.828.766

llgifllllll&

FIG!

FIG. IA 25 DISPOSABLE MEDICAL ELECTRODE DISCLOSURE OF THE INVENTION ble between the skin area which is being monitored and the metallic contact element of the electrode so that a maximum electrical signal can be obtained for use in the monitoring equipment. An improtant further characteristic of such electrodes is that they be so designed as to minimize the discomfort which a patient will suffer, especially when such electrode may be required to be used over a prolonged period of time, sometimes for several days.

It is particularly desirable that such electrodes provide maximum signal strength with minimal discomfort for more sensitive patients, such as adults with sensitive skin and children or infants whose skin is apt to be more tender than that of adults. The comfort factor may be particularly important when used with extremely small infants, less than 30 days old, in the growing field of neo-natalogy.

DESCRIPTION OF THE PRIOR ART A conventionally structured electrode presently available for use in the medical field is a type which utilizes a conductive gel between the skin area which is being contacted and the metallic contact element of the electrode to which the monitoring circuit is connected. In such presently used electrodes the metal contact element is normally affixed to a rigid plastic base member of the electrode, the contact element being in the form of a snap fastener assembly having a first side to which a monitoring circuit is snap connected and a second oppositely disposed side which is in contact with a pad member made of an open cell plastic material permeated with a conductive gel. The pad is in turn in pressure contact with the skin, the conductive gel thereby assuring that a good conductive path is present from the skin to the metal contact element for the signal which is being monitored.

In such prior art electrodes the gel pad is freely nested in a recessed region of the electrode which is formed by a solid ridged portion of the rigid plastic body member, the outer surface of the'ridge coming into pressure contact with the skin adjacent the outer perimeterof the gel pad when the electrode is in use. The ridged body member containing the snap fastener contact element is attached to a circularly shaped open cell plastic foam material one side of which has an adhesive thereon so that the electrode can adhere to the skin. The protruding ridge is thereby between the open cell adhesive foam material and the open cell-gel pad foam material to form a barrier therebetween so as to prevent the conductive gel in the gel pad from being .2 absorbed'by and dispersed throughout the open cell adhesive foam portion of the overall electrode. Unfortunately, however, the presence of the ridge tends to cause excessive discomfort'to the patient on whom the electrode is being used since the ridge which digs into the skin of the patient can become extremely irritating.

Moreover, since the gel pad itself is held within the recessed portion of the electrode only by means of the surface tension created between the gel material and the surface of the solid ridged member of the electrode,

the gel pad can often fall out of its recessed nest during handling and must be replaced by hand or other means, all of which tends to cause the gel pad to become less sanitary in use than is desired.

SUMMARY OF THE INVENTION In the monitoring electrode of the invention the need for a ridged barrier between a conductor gel pad and an adhesive portion of the electrode is eliminated so that a relatively smooth surface is presented to the skin of the patient and any irritation and discomfort caused by the presence of a ridge is completely avoided. In the structure of the invention, the adhesive base member of the electrode to which a snap fastener contact element is attached is made of a plastic foam material having a closed cell configuration. A gel pad made of a plastic foam material having an open cell configuration is then adhered to the underside of the closed cell foam material opposite the underside of the snap fastener contact element.

In one preferred embodiment of the invention a thin vinyl plastic strip is adhered to the upper side of the closed cell body member to provide some rigidity thereto. Because of the closed cell nature of the adhesive base member of the electrode, substantially none of the conductive gel which is dispersed throughout the open cell gel pad can be absorbed by or dispersed within the closed cell material and the gel is adequately retained within the open cell gel pad during manufacture, shipment and use. Moreover, because no solid plastic ridged member is used, the surface of the electrode which comes into contact with the skin of the patient is essentially soft and relatively smooth with no protruding ridges so that it can be readily placed on the patients skin for good adherence without discomfort even with prolonged use.

In the preferred embodiment of the invention the lower surface of the contact element which is in contact with the gel pad may be coated with silver so that, in reacting with the gel substance a silver/silver chloride conductive coating is formed which enhances the signal carrying properties of the electrode.

The elimination of the need for a ridged barrier also permits the formation of a relatively smaller electrode than that of presently available electrodes and permits their use with regions of the body where the larger electrodes have not-been readily useable. A smaller size also makes the electrode more convenient for use with child and infant patients.

The invention is described in more detail with reference to the attached drawings wherein FIG. 1 shows a view in cross-section of a monitoring electrode of the prior art;

FIG. 1A shows a plan view of the electrode of FIG.

FIG. 2 shows a view in cross-section of a preferred embodiment of the electrode in accordance with the invention;

FIG. 2A shows a plan view of the electrode of FIG.

FIG. 3 shows a view in cross-section of a portion of the electrode of FIG. 2; and

FIG. 4 shows a view in cross-section of a preferred embodiment for packaging one or more of the electrodes of FIG. 2.

FIG. 1 depicts a conventional monitoring electrode of the prior art which has found relatively widespread use in the medical field at the present time. As can be seen therein the electrode comprises a solid plastic ridged body member having an upper portion 11A and a lower portion 11B, each of a circular configuration, which portions each include flat body portions 12A and 128 respectively, and ridged portions 13A and 13B, respectively, forming the outer peripheries thereof. A contact element 14 is positioned within apertures at the centers of solid portions 11A and 118, the contact element being in the form of a conventional male snap fastener having a first upper portion 14A with a protruding snap at the center thereof and a lower portion 148 which nests within the upper portion so that the overall element can be attached to and retained in the solid ridged member. The snap fastener 14 provides a snap contact to a corresponding female snap fastener (not shown) which is in turn connected to an appropriate lead for connection to suitable monitoring equipment (also not shown). The upper and lower solid portions 11A and 118 may be made of any appropriately chosen plastic material and are arranged to enclose an adhesive pad member 16 also of substantially circular configuration, as shown. One side of foam pad 16 has a layer 17 of double faced adhesive material placed thereon and extending from ridge 138 to the periphery thereof so as to provide an adhesion surface which permits the electrode to be placed in an adhering manner on the skin of a patient. A circular pad 19 of foam plastic material is nested within the recess 18 formed by ridge 13B, pad 19 being substantially permeated with a conductive gel substance forming a gel pad for providing a good conductive path from the skin which contacts the outer exposed surface thereof and the lower portion 148 of contact element 14, which is in contact with the inner surface of gel pad 19. Gel pad 19 is retained within the recess 18 by the surface tension action of the gel on the underside of solid plastic portion 12B,

In the prior art structure shown both of the plastic pad materials forming the adhesive pad 16 and the gel pad 19 are made of an open cellular plastic foam material which is readily absorbent to liquids and gels which can thereby penetrate into and become dispersed throughout such materials. In order to permit dispersion of conductive gel throughout gel pad 19 without permitting a similar dispersionin the adhesive pad 16, the ridge 13B and body portion 128 form a barrier so that none of the gel in gel pad 19 comes into contact with the adhesive pad 16. Were the conductive gel to become dispersed throughout adhesive pad 16 as well as gel pad 19, the conductivity of the path through pad 19 would be greatly reduced and the effectiveness of the electrode would become diminished. Further, when the prior art electrode 10 is placed on the skin of a patient for any prolonged period of time, ridge 13B tends to dig into the skin and become so irritating that a high degree of discomfort may result, particularly with patients having relatively tender skin.

Moreover, when the electrode has been placed on the skin the presence of ridge 13B tends to cause the adhesive surfaces in the regions adjacent the ridges to be raised out of contact with the skin so that the area of adhesive contact with the skin is reduced. In order to assure that the surface area of adhesive contact is sufficient, the diameter of the overall electrode must be made relatively large and the electrode becomes less useful for some applications.

A preferred embodiment of the monitoring electrode of the invention is depicted in FIGS. 2 and 2A and shows the contrast between the structure thereof and that of the prior art electrode shown in FIGS. 1 and 1A.

As can be seen in FIGS. 2 and 2A, the electrode 20 of the invention comprises an adhesive foam pad portion 21 which forms the main body of the electrode and has on one surface thereof a layer 22 of double-faced adhesive which effectively covers the entire surface. In a preferred embodiment adhesive foam pad 21 has a substantially circular configuration and at the central region of the surface 24 opposite to the adhesive surface thereof a paper thin circular piece 23 of vinyl plastic material is positioned. Vinyl piece 23 imparts a slightly greater degree of rigidity for the surface 24 of the electrode than to the adhesive surface thereof and, further, can be used as an appropriate label for identifying the electrode and the manufacturer thereof.

A snap fastener contact element 25 is machine fastened at the center of adhesive foam pad 21 as shown. After the fastening process the presence of fastener 25 forms slight depressions at both the upper and the lower surfaces of foam pad 21, as shown. The peripheral region of a gel pad 26 is caused to adhere to the adhesive surface of pad 21 so that the pad 26 is placed at a position opposite the lower contact surface 25A of contact element 25 as shown in enlarged detail in FIG. 3.

Adhesive foam pad 21 is made of a closed cell plastic material, such as a closed cell polyethylene or polyurethane plastic material, while gel pad 26 is made of an open cell material, such as polyurethane foam material. The use of a closed cell material for pad 21 effectively prevents any penetration through the pad 21 of any conductive gel which is present in gel pad 26 within which it is in contact. One such closed cell plastic successfully used in the electrode of the invention is a polyethylene plastic sold under the name Volara" by the Voltech Company of Lawrence, Massachusetts. One such open cell gel pad material which has been successfully used to provide the necessary gel dispersion action is a polyurethane foam material sold by Rogers Foam Company, Somerville, Massachusetts.

Further, the double sided adhesive layer 22 is selected so as to avoid causing any irritation to the skin, to which it adheres. One such adhesive which has been successfully used and which has been approved for such use by the Federal Drug Administration of the United States Government is identified as Adhesive No. 1524, made by 3M Company, Minneapolis, Minnesota.

The cellular density of open cell material 26 is such as to be sufficiently dense to hold a conductive gel within the material and at the same time sufficiently porous to allow the gel to penetrate throughout the material so that a good electrical contact is made between the skin of the patient and the lower surface 25A of contact element 25. Conductive gels for this purpose are readily available to those in the art and any convenient gel such as that identified as Spectra 360 as sold by Parker Laboratories, lrvington, New Jersey, may be used in the electrode of the invention.

in order to enhance the conductive path from the skin to the contact element 25, the bottom surface 25A thereof is coated with silver. When the conductive gel comes into contact with the silver coated surface thereof it forms a combination silver/silver chloride coating which enhances the conductive properties therebetween. In using conventional snap fasteners which have chrome plated surfaces, for example, contact with electrode conductive gels often causes the formation of an acid coating which may be injurious to the skin against which the electrode is pressed. The silver/silver chloride coating not only has been found to increase the conductivity of the overall electrode, it has also been found to be essentially harmless to the skin of the patient. It can also be seen that when the electrode is applied to the skin of a patient, gel pad.26 is effectively compressed and the lower surface of the electrode forms an effectively soft and smooth contact with the skin over its entire area and little or no discomfort is felt by the patient.

With reference to the dimensions of the various.ele ments of the electrode of the invention, it has been found that the thickness of the adhesive foam pad 21 preferably lies within a range of from 1/ 32nd of an inch to about 3/ l6ths of an inch, with a thickness of about 1/ 1 6th of an inch being successfully used in a preferred embodiment of the electrode. The thickness is primarily selected so as toretain sufficient flexibility for the overall electrode to permit it to be used in various skin areas, even those having a relatively deep curvature. Moreover, it has been found that if the adhesive foam pad portion is at least l/32nd of aninch thick, it becomes much easier to remove the electrode both from the card on which it is shipped, as described below, and

from the skin after use.

The vinyl label 23 has been found preferably to have a diameter lying 0etween about 0.75 inches to up to the diameter of the foam pad 16. The latter preferably has a diameter of from about 1 inch to 2 /4 inches and in a preferred embodiment a diameter of 1% inches hasbeen found to be satisfactory for use not only on adult patients but also on child and infant patients.

The diameter of gel pad 26 is preferably between about ll/l6 inch and l3/l6 inch with a diameter of about /1 inch being successfully used in a preferred embodiment. Thus, the gel pad must be sufficiently large to cover the bottom contact element surface and yet have enough surface area in contact with the adhesive layer 22 to permit the gel pad to be adequately. attached to the foam pad 21 about its entire periphery. Since the gel pad 26 is retained on foam'pad 21'by the adhesive layer 22 it doesnot depend for its retention upon the surface tension ofthe gel itself. Accordingly, in shipping the overall electrode the electrode can be shipped either in a dry form, that is, a form wherein the gel is not applied to the open cell pad 26 until just prior to use, or in a wet" form, that is, where the gel is applied when the electrode is packaged so that it arrives for use in a pre-gelled" state. Such a construction is in contrast with that of theprior art where the V gel must'beshipped in a wet state so as to be retained gel pads are further protected by applying a clear plastic cover-member 32 having relatively rigid raised portions 33 positioned above each gel pad 26, as shown. Cover member 32 may be appropriately fastened with adhesive material, such as a suitable glue, at appropriate pointson the lower surface of the card.

Each card may be inserted into an hermetically sealed bag 35 which also has a light opaque inner surface. If the, electrode is of a pre-gelled form, the hermetically sealedbag prevents theescapeof any mois ture from-the gel and keeps the gel pad 26 in an appropriately wet conductive state. The use of a light opaque bag'prevents the penetration into the interior of the bagof ultraviolet rays which may cause a deterioration of the adhesive, layer 22. Accordingly, when-the electrode-is ready for use it will adhere firmly to the skin-without any problems. The semi-rigid cover 32 prevents the gel pad from being inadvertently squeezed during shipment which action would cause an irretrievable loss of the gel material.

In manufacturing the electrodes of the, inventioma sheetof closedcell plastic foam material is coveredon one surface thereof with a double sided layer of adhesive material. A plurality of vinyl labelsare then adhered at various regions to the opposite side thereof andthe snap fasteners 25 are machine installed at the centerof 'each vinyl label. A pluralityof open cell foam plastic pads are thenadhered to the adhesive layer of the closed cell material at positions opposite'each snap fastener. The open cell pads can be so applied ina dry. state and the electrodes then appropriately punched out from the closed cell plastic sheet. If ltilS desired to ship the electrodes in a wet state, a conductive gel is applied to each of the gel pads before packag-, mg.

Whether in a wet or in a dry state, one or more of the punchedelectrodes are mounted on a card having one ormore circular apertures each having a diameter the sameas that of the open cell gel pads and the relatively rigid plastic cover is then glued to thsurface of the card through which the open cell gel pad protrudes. Thecards are then placed into hermetically scalable and light opaque. bags and appropriately sealed for storage and/or shipment.

What is claimed is: l. A monitoring electrode comprising a substantially flat support member formed of plastic foam material having a closed cellular configuration throughout, one surface of which is adhesive;

a contact element embedded in said support member, a first contact portion thereof being exposed atsaid one surface and a second contact portion thereof protruding from the opposite surface of said support member;

a pad member formed of plastic foam material having an open cellular configuration adhered to said adhesive surface of said support member at a position such that the inner surface of said pad member is in contact with and substantially covers said exposed portion of said contact element, the outer surface thereof being capable of contacting a surface to be monitored.

2. A monitoring electrode in accordance with claim 1 and further including a conductive gel being dispersed throughout said pad member when said monitoring electrode is in use to provide a conductive path from said outer surface of said pad member to said second contact portion.

3. A monitoring electrode in accordance with claim 2 and further including a plastic strip adhered to a portion of said opposite surface of said support member to impart greater rigidity to said opposite surface than to said one surface thereof.

4. A monitoring electrode in accordance with claim 2 wherein the thickness of said support member is in a range from about 1/32 inch to about 3/16 inches.

5. A monitoring electrode in accordance with claim 4 wherein the thickness of said support member is about l/l6 inch.

8 wherein said support member is substantially circular in configuration and has a diameter of about l% inches.

10. A monitoring electrode in accordance with claim 8 wherein said pad member is substantially circular in configuration and has a diameter in a range from about 1 H16 inches to about 13/16 inches. 11. A monitoring electrode in accordance with claim 10 wherein said pad member is substantially circular in configuration and has a diameter of about inches.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2055540 *Dec 18, 1933Sep 29, 1936Gen Therapeutics CorpProcess and apparatus for treating pathological conditions
US3340868 *Mar 5, 1965Sep 12, 1967Gen ElectricBody signal pickup electrode
US3534727 *Mar 24, 1967Oct 20, 1970NasaBiomedical electrode arrangement
US3545432 *Jul 24, 1967Dec 8, 1970Gulton Ind IncBody electrode assembly
US3581736 *Dec 20, 1968Jun 1, 1971Zenkich IliasElectrocardiograph electrode
US3587565 *Aug 25, 1969Jun 28, 1971Cardiac Electronics IncDisposable electrode
US3696807 *Feb 13, 1970Oct 10, 1972Mdm CorpMedical electrode with relatively rigid electrolyte cup
US3701346 *Jan 4, 1971Oct 31, 1972Bionetics IncMedical electrode
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3923042 *Sep 30, 1974Dec 2, 1975Medicor MuevekElectrical detector/transducer/applicable on the skin surface for biometrical observations
US3961623 *Jan 17, 1975Jun 8, 1976Medical Research Laboratories, Inc.Method of using a disposable electrode pad
US3964469 *Apr 21, 1975Jun 22, 1976Eastprint, Inc.Disposable electrode
US3972329 *Nov 25, 1974Aug 3, 1976Kaufman John GeorgeBody electrode for electro-medical use
US3973557 *Apr 21, 1975Aug 10, 1976Allison Kenneth CElectrode
US3976055 *Nov 27, 1974Aug 24, 1976Ndm CorporationElectrode and conductor therefor
US3977392 *Apr 21, 1975Aug 31, 1976Eastprint, Inc.Medical electrode
US3989035 *Aug 4, 1975Nov 2, 1976Stemmen Laboratory, Inc.Disposable medical electrode
US3993049 *Dec 26, 1974Nov 23, 1976Kater John A RElectrodes and materials therefor
US4029086 *Aug 11, 1975Jun 14, 1977Consolidated Medical Equipment, Inc.Electrode arrangement
US4034854 *Jul 16, 1976Jul 12, 1977M I Systems, Inc.Electrode package
US4040412 *Feb 3, 1976Aug 9, 1977Sato Takuya RBioelectrodes
US4050453 *Feb 3, 1976Sep 27, 1977Concept, Inc.Radiotransparent electrode
US4063352 *Dec 20, 1976Dec 20, 1977M I Systems, Inc.Method of making electrode package
US4067322 *Jan 28, 1976Jan 10, 1978Johnson Joseph HDisposable, pre-gel body electrodes
US4077397 *Mar 25, 1976Mar 7, 1978Baxter Travenol Laboratories, Inc.Diagnostic electrode assembly
US4077398 *Mar 25, 1976Mar 7, 1978Baxter Travenol Laboratories, Inc.Diagnostic electrode assembly
US4092985 *Aug 2, 1976Jun 6, 1978John George KaufmanBody electrode for electro-medical use
US4161174 *Jul 7, 1978Jul 17, 1979Mercuri Albert RBiomedical electrode assembly
US4166456 *Oct 6, 1977Sep 4, 1979Vaughn CorporationCarrier release sheet
US4177817 *Feb 1, 1978Dec 11, 1979C. R. Bard, Inc.Dual terminal transcutaneous electrode
US4196737 *Apr 21, 1978Apr 8, 1980C. R. Bard, Inc.Transcutaneous electrode construction
US4319579 *Dec 11, 1980Mar 16, 1982Ndm CorporationReusable medical electrode having disposable electrolyte carrier
US4327737 *May 15, 1980May 4, 1982Roman SzpurMedical electrode assembly
US4353373 *Apr 17, 1980Oct 12, 1982Ferris Manufacturing Corp.EKG Electrode and package
US4393584 *Oct 9, 1981Jul 19, 1983C. R. Bard, Inc.Method of manufacture of electrode construction
US4441500 *Mar 25, 1981Apr 10, 1984Ferris Manufacturing Corp.EKG Electrode
US4522211 *Oct 9, 1981Jun 11, 1985C. R. Bard, Inc.Medical electrode construction
US4524775 *Feb 14, 1983Jun 25, 1985Jan RasmussenMedical electrode and a method of manufacturing same
US4543958 *Dec 6, 1982Oct 1, 1985Ndm CorporationMedical electrode assembly
US4584962 *Nov 15, 1984Apr 29, 1986Ndm CorporationMedical electrodes and dispensing conditioner therefor
US4590089 *Nov 15, 1984May 20, 1986Ndm CorporationMedical electrodes and dispensing conditioner therefor
US4669479 *Aug 21, 1985Jun 2, 1987Spring Creek Institute, Inc.Dry electrode system for detection of biopotentials
US4674511 *May 9, 1984Jun 23, 1987American Hospital Supply CorporationMedical electrode
US4685467 *Jul 10, 1985Aug 11, 1987American Hospital Supply CorporationX-ray transparent medical electrodes and lead wires and assemblies thereof
US4832036 *May 13, 1985May 23, 1989Baxter International Inc.Medical electrode
US4838273 *Jun 22, 1987Jun 13, 1989Baxter International Inc.Medical electrode
US4852585 *Feb 9, 1988Aug 1, 1989Darox CorporationElectrocardiology
US5305746 *Sep 29, 1992Apr 26, 1994Aspect Medical Systems, Inc.Disposable, pre-gelled, self-prepping electrode
US5326272 *Jan 2, 1991Jul 5, 1994Medtronic, Inc.Low profile electrode connector
US5431166 *Jan 22, 1993Jul 11, 1995Ludlow CorporationLow profile medical electrode
US5660177 *Oct 17, 1994Aug 26, 1997Biofield Corp.Detects electromagnetic field present between reference and several test points on living organisms, therfore provides an accurate measurement of gradient of an electrical activity which occures as function of biological activity
US5823957 *Jul 27, 1995Oct 20, 1998Biofield CorpD.C. biopotential sensing electrode and electroconductive medium for use therein
US6254614 *Oct 18, 1999Jul 3, 2001Jerry M. JessephDevice and method for improved diagnosis and treatment of cancer
US6569176Jan 22, 2001May 27, 2003Jerry M. JessephDevice and method for improved diagnosis and treatment of cancer
US6711427Feb 13, 2002Mar 23, 2004Milwaukee Electronics CorporationSkin abrading medical electrode mounting and packaging system
US7065410 *Nov 5, 2001Jun 20, 2006Cameron Health, Inc.Subcutaneous electrode with improved contact shape for transthorasic conduction
US7364440Jan 17, 2007Apr 29, 2008Lifesync CorporationMulti-lead keyhole connector
US7616980Sep 28, 2006Nov 10, 2009Tyco Healthcare Group LpRadial electrode array
US7657322May 5, 2006Feb 2, 2010Cameron Health, Inc.Subcutaneous electrode with improved contact shape for transthoracic conduction
US7925323Oct 1, 2009Apr 12, 2011Tyco Healthcare Group LpRadial electrode array
US7978064Sep 21, 2009Jul 12, 2011Proteus Biomedical, Inc.Communication system with partial power source
US8036748Nov 13, 2009Oct 11, 2011Proteus Biomedical, Inc.Ingestible therapy activator system and method
US8054140Oct 17, 2007Nov 8, 2011Proteus Biomedical, Inc.Low voltage oscillator for medical devices
US8055334Dec 10, 2009Nov 8, 2011Proteus Biomedical, Inc.Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8109883Sep 28, 2006Feb 7, 2012Tyco Healthcare Group LpCable monitoring apparatus
US8114021Dec 15, 2009Feb 14, 2012Proteus Biomedical, Inc.Body-associated receiver and method
US8115618May 23, 2008Feb 14, 2012Proteus Biomedical, Inc.RFID antenna for in-body device
US8180425Dec 5, 2007May 15, 2012Tyco Healthcare Group LpECG lead wire organizer and dispenser
US8238996Dec 5, 2007Aug 7, 2012Tyco Healthcare Group LpElectrode array
US8258962Mar 5, 2009Sep 4, 2012Proteus Biomedical, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US8540632May 23, 2008Sep 24, 2013Proteus Digital Health, Inc.Low profile antenna for in body device
US8540633Aug 13, 2009Sep 24, 2013Proteus Digital Health, Inc.Identifier circuits for generating unique identifiable indicators and techniques for producing same
US8540664Mar 24, 2010Sep 24, 2013Proteus Digital Health, Inc.Probablistic pharmacokinetic and pharmacodynamic modeling
US8542123Aug 1, 2012Sep 24, 2013Proteus Digital Health, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US8545402Apr 27, 2010Oct 1, 2013Proteus Digital Health, Inc.Highly reliable ingestible event markers and methods for using the same
US8545436Dec 23, 2011Oct 1, 2013Proteus Digital Health, Inc.Body-associated receiver and method
US8547248Sep 1, 2006Oct 1, 2013Proteus Digital Health, Inc.Implantable zero-wire communications system
US8558563Aug 23, 2010Oct 15, 2013Proteus Digital Health, Inc.Apparatus and method for measuring biochemical parameters
US8560043May 14, 2012Oct 15, 2013Covidien LpECG lead wire organizer and dispenser
US8568160Jul 27, 2011Oct 29, 2013Covidien LpECG adapter system and method
US8571627May 14, 2012Oct 29, 2013Covidien LpECG lead wire organizer and dispenser
US8583227Sep 23, 2011Nov 12, 2013Proteus Digital Health, Inc.Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8597186Jan 5, 2010Dec 3, 2013Proteus Digital Health, Inc.Pharmaceutical dosages delivery system
US8668651Dec 5, 2006Mar 11, 2014Covidien LpECG lead set and ECG adapter system
US8674825Mar 13, 2009Mar 18, 2014Proteus Digital Health, Inc.Pharma-informatics system
US8690611Mar 5, 2013Apr 8, 2014Covidien LpECG electrode connector
US8694080Sep 7, 2010Apr 8, 2014Covidien LpECG lead system
US8706217Mar 30, 2012Apr 22, 2014Cameron HealthCardioverter-defibrillator having a focused shocking area and orientation thereof
US8708926 *Mar 31, 2010Apr 29, 2014Drägerwerk AG & Co. KGaADouble temperature sensor
US8718193Nov 19, 2007May 6, 2014Proteus Digital Health, Inc.Active signal processing personal health signal receivers
US8721540Nov 18, 2010May 13, 2014Proteus Digital Health, Inc.Ingestible circuitry
US8730031Jul 11, 2011May 20, 2014Proteus Digital Health, Inc.Communication system using an implantable device
US8784308Dec 2, 2010Jul 22, 2014Proteus Digital Health, Inc.Integrated ingestible event marker system with pharmaceutical product
US8795004Sep 30, 2013Aug 5, 2014Covidien, LPECG electrode connector
US8798708Mar 20, 2012Aug 5, 2014Covidien LpPhysiological sensor placement and signal transmission device
US8802183Jul 11, 2011Aug 12, 2014Proteus Digital Health, Inc.Communication system with enhanced partial power source and method of manufacturing same
US8810409May 6, 2013Aug 19, 2014Proteus Digital Health, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US8814574 *Mar 15, 2013Aug 26, 2014Suunto OyMale end of a telemetric transceiver
US8816847Jun 3, 2011Aug 26, 2014Proteus Digital Health, Inc.Communication system with partial power source
US8821405Jan 5, 2012Sep 2, 2014Covidien LpCable monitoring apparatus
US8831720Oct 25, 2013Sep 9, 2014Cameron Health, Inc.Method of implanting and using a subcutaneous defibrillator
US8836513Jul 11, 2011Sep 16, 2014Proteus Digital Health, Inc.Communication system incorporated in an ingestible product
US20090227856 *Dec 19, 2008Sep 10, 2009Brian Keith RussellElectrocardiogram sensor
US20100292605 *Mar 31, 2010Nov 18, 2010Dragerwerk AG & Co. KGaADouble temperature sensor
US20140187063 *Mar 15, 2013Jul 3, 2014Suunto OyMale end of a telemetric transceiver
USRE32724 *Oct 11, 1985Aug 2, 1988American Hospital Supply CorporationReusable medical electrode having disposable electrolyte carrier
DE2735050A1 *Aug 3, 1977Feb 8, 1979Siemens AgElektrode
EP0000759A1 *Jul 31, 1978Feb 21, 1979Siemens AktiengesellschaftElectrode
WO1979000042A1 *Jul 7, 1978Feb 8, 1979A MercuriBiomedical electrode assembly
WO1996011631A1 *Oct 16, 1995Apr 25, 1996Biofield CorpDc biopotential sensing electrode and electroconductive medium for use therein
Classifications
U.S. Classification600/391
International ClassificationA61B5/0408
Cooperative ClassificationA61B5/0408
European ClassificationA61B5/0408