Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3830687 A
Publication typeGrant
Publication dateAug 20, 1974
Filing dateAug 4, 1972
Priority dateAug 4, 1972
Publication numberUS 3830687 A, US 3830687A, US-A-3830687, US3830687 A, US3830687A
InventorsC Re, J Conrad, J Tasso
Original AssigneeDyna Shield Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flame retardant and fire resistant roofing material
US 3830687 A
Abstract
An improved flame retardant and fire resistant roofing product is provided which simulates wooden shake shingles, tiles, planking, panels, or the like. The roofing product to be described can be stained to a wood finish, and it can be nailed, sawn, or otherwise treated in the same manner as wooden shakes. The product provides a wood waterproof seal, and it is unaffected by wind, rain or snow. The roofing product of the invention comprises fiberglass and water-extended polyester mixed with a heat-proofing material, such as powdered or fibrous asbestos, or powdered glass; and it may be intermixed with other materials, such as vermiculite (processed mica), ceramic glass modules, or the like; or it may include a core composed, for example, of Hydrocol or other gypsum material with an enclosing web of the fiberglass and water-extended polyester mixed with the heat-proofing material.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Re et al.

[ Aug. 20, 1974 FLAME RETARDANT AND FIRE RESISTANT ROOFING MATERIAL [75] Inventors: Carlo Re, Glendale; Jack R.

Conrad, Costa Mesa; Joseph A. Tasso, Santa Ana, all of Calif.

[73] Assignee: Dyna-Shield, Inc., Santa Ana, Calif.

[22] Filed: Aug. 4, 1972 [211 Appl. No.: 277,896

[52] U.S. Cl 161/168, 52/309, 161/116,

161/169, 161/161, 161/403, 161/151, 52/555 [51] Int. Cl B321) 5/16, B32b 21/02 [58] Field of Search 161/168, 162, 169, 170,

l6l/43,194, 195, 205,151,164, DIG. 4; 52/554, 555, 309

3,692,682 9/1972 Re et al. 161/403 Primary Examiner--George F. Lesmes Assistant ExaminerWi1liam R. Dixon, Jr. Attorney, Agent, or Firm-Jessup & Beecher [57] ABSTRACT An improved flame retardant and fire resistant roofing product is provided which simulates wooden shake shingles, tiles, planking, panels, or the like. The roofing product to be described can be stained to a wood finish, and it can be nailed, sawn, or otherwise treated in the same manner as wooden shakes. The product provides a wood waterproof seal, and it is unaffected by wind, rain or snow. The roofing product of the invention comprises fiberglass and water-extended polyester mixed with a heat-proofing material, such as powdered or fibrous asbestos, or powdered glass; and it may be intermixed with other materials, such as vermiculite (processed mica), ceramic glass modules, or the like; or it may include a core composed, for example, of Hydrocol or other gypsum material with an enclosing web of the fiberglass and water-extended polyester mixed with the heat-proofing material.

8 Claims, 3 Drawing Figures F/Zer 6/00 lz/e MIA fare FLAME RETARDANT AND FIRE RESISTANT ROOFING MATERIAL RELATED PATENT APPLICATION Serial No. 886,075 filed Dec. 18, 1969 in the names of Carlo Re, Earl O. Conrad and Jack R. Conrad, and entitled Heat Barrier Material and Process which issued Sept. 19, 1972 as U.S. Pat. No. 3,692,682.

BACKGROUND OF THE INVENTION Shake roofs are extremely popular in the building trade, and especially for homes, principally because of their attractive and rich appearance. However, such roofs normally constitute a fire hazard. In the past, attempts to treat the individual wooden shake shingles so as to render them fire resistant have not been entirely successful; principally because of the expense involved, and because of the tendency for the treated shingles to dry out in time so as to nullify their fire resistant characteristics.

The roofing product of the present invention is in the form of synthetic shake shingles which, as mentioned above, closely simulate the wooden shakes, and which may be sawn, nailed, or otherwise handled, in much the same manner as the wooden shakes. However, the product of the present invention is flame retardant and fire resistant, and it retains such fireproof characteristics indefinitely.

Moreover, the product of the present invention is advantageous in that it is relatively inexpensive, and can be mounted on the roof to provide a waterproof finish without expensive preparation or additional structures.

The product of the present invention, as mentioned above, is formed of water-extended polyester mixed with a heat-proofing material, and it may include a core composed of gypsum, plaster, Hydrocal, or a mixture of Perlite and Hydrocal, or other suitable material. Such a core is advantageous in that it is relatively inexpensive, and also since it provides an appropriate heat barrier because of its heat resistant characteristics. The core is enclosed by a web which, as mentioned above, is formed of fiberglass intermixed with a heat barrier material composed of water-extended polyester and particles of appropriate heatproofing material, as described in the aforesaid copending application. As mentioned above, the heat barrier material is composed of a mixture of water-extended polyester (WEP) and particles of heatproofing material, such as powdered or fibrous asbestos, or powdered glass.

Water-extended polyester resins which are suitable for use in the heat barrier material are described, for example, in U.S. Pat No. 3,256,219. The resin plastic material described in the patent has a porous structure and a sponge-like consistency, and a liquid, such as water, is trapped in the pores of the material. In addition, the material of the web has a high strength.

As described in one specific example in the aforesaid patent, the water-extended polyester resin may be formed by adding 2g of Benzoylperoxide and 100 cc of water to a mixture consisting of 65g of an unsaturated polyester of an acid prepared from maleic acid, Phthalic acid and propylene gycol of a molar ratio of 21113.3 as one constituent, and 35g styrene as another constituent.

The resulting mixture isstirred at a temperature of 10 C, for example, until a water-in-oil emulsion is formed. The emulsion is mixed with 0.18g of dimethylp-toluidine and is subsequently polymerized and hardened by heating at 30 C for ten minutes. The water in the pores of the resulting resin material can subsequently be evaporated by heat at a temperature between C and C. Other examples of waterextended polyester resin material suitable for present purposes are also set out specifically in the patent.

A specific example of the consistency of the material which, in accordance with the present invention, is mixed with the fiberglass to constitute the synthetic shake, is as follows:

a. One part (by weight) water-extended polyester resin such as described in the patent. This material is availabe commerically and may be purchased, for example, from the Ashland Chemical Company of Los Angeles, California. The particular material is marketed by that company and is designated by them as WEP- 27.

b. 1/100th of a part (by weight) cobalt.

c. l/200th of a part (by weight) dimethylanaline (DMA).

d. 1 part (by weight) water.

e. 2/ 100,000 of a part (by weight) of an inhibitor such as a mixture of methyl celosolve (80 percent) and hydroquinone (20 percent).

f. l/l6th or a part (by weight) powdered or fibrous asbestos or powdered glass. g.

l/200th or a part (by weight) of a catalyst such as methyl ethyl ketone (MEK) peroxide.

The polyester resin, cobalt and the DMA and stabilizer are mixed together as one group which is desingated the carrier, as explained in the copending ap plicaton, and the asbestos (or powdered glass), water, inhibitor and catalyst are mixed as another group which is designated as the heat retarder. The two components form the material which is intermixed with the fiberglass to form the synthetic shake of the invention. The proportions of the various ingredients, as listed above, are not critical and may be varied considerably to meet specific requirements. I

For example, the various ingredients may be varied to meet specific requirements of handling, heat resistivity, rigidity, and in the time. That is, the catalyst and inhibitor percentages inthe total mix affect gel time, and are coordinated with the technical requirements of the process, and with the production requirements. For example, if a fast gel time is required, more catalyst and less inhibitor is used. However, if a slower gel time is required for any reason, more inhibitor and less catalyst is used.

If a lower heat transfer rate or coefficient is required, the quanitity of asbestos, or other retardants, is increased. Another available variable for specific needs is the availability of various grades of water-extended polyester resin, as described in the aforesaid patent, which can be selected to provide anything from a very rigid material to a resilient material.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a schematic representation of a press and mold which may be used in the fabrication of shakes in accordance with the invention; I

FIG. 2 is a perspective representation of a shake constructed in accordance with the invention; and

FIG. 3 is a section taken along the lines 3-3 of FIG. 2.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT As shown in FIG. 1, a mold is provided which has a bottom surface configured to correspond to the surface shape of the simulated shake. The mold, for example, may be formed of metal, epoxy, polyurethane, or other appropriate material, and the configuration of its lower surface may be formed by known techniques, and by the use, for example, of actual wooden shakes.

In the construction of the synthetic shake of one embodiment of the present invention, the plaster is first poured into the mold l0 and allowed to set, so as to form a core. The core may be formed, as mentioned above, of an appropriate gypsum product such as plaster, cement, Hydrocal, Perlite, or a mixture of the aforesaid materials. The purpose of the core is to provide bulk and thickness to the synthetic shake of the invention at low cost, and to seal in moisture. The plaster core also provides heat protection for the material.

After the plaster core has set, it is removed from the mold, and a fiberglass is sprayed or wrapped around it to form a matte. A quantity of the water-extended polyester (WEP) and the fire retardant material is then placed in the mold l0, and the fiberglass-wrapped core is placed in the mold. More of the mixture is then placed around the top of the wrapped core, so that the entire core is surrounded by fiberglass saturated with the (WEP) mixture. An appropriate press 12 is then moved into place firmly to press the composite body against the bottom of the mold, and the polyester mate rial is allowed to polymerize. The resulting product 14 is then removed from the mold.

It will be observed that the product simulates a group of shakes, and is composed of a core 16, as shown in FIG. 3, composed of plaster, and a web 18 which completely surrounds the core. The resulting product may be stained further to simulate the wooden shake, and it may be sawn, nailed, or otherwise handled in the same manner as the wooden shake, in order to mount it on the roof. The synthetic shake 14 has an advantage that it may be directly nailed onto the roof without expensive sub-bases and the like.

The resulting product 14 also has an advantage in that it has no tendency to warp, and it provides an excellent roofing material. The core of the synthetic shake of the invention is fire resistant, and the surrounding web is not only fire resistant, but also flame retardant, so that it protects the core from flames in the event of fire, so that the complete structure provides an excellent heat barrier.

In another embodiment, a mixture of fiberglass and the (WEP) and the fire retardant material is intermixed with an appropriate material, such as vermiculite and- /or ceramic glass modules, is placed in the aforesaid mold and the shake is formed by a single molding step. The vermiculite and/or ceramic glass modules migrate towards the center of the shake and replace the core of the previous embodiment.

While particular embodiments of the invention have been shown and described, modifications may be made. It is intended to cover all modifications in the following claims which come within the spirit and scope of the invention.

What is claimed is:

1. A fire resistant heat barrier member formed of fiberglass intermixed with a polyester resin and particles of a fireproofing material, and including a core of gyp sum material.

2. The heat barrier member defined in claim 1, in which said fireproofing material is powdered asbestos.

3. The heat barrier member defined in claim 1, in which said fireproofing material is fibrous asbestos.

4. The heat barrier member defined in claim 1, in which said fireproofing material is powdered glass.

5. The heat barrier member defined in claim 1, in which said polyester resin is of a water-extended type.

6. The heat barrier member defined in claim 1, in which said barrier member is formed of fiberglass, and a water-extenddd polyester resin intermixed particles of asbestos.

7. The heat barrier member defined in claim I, having a configuration simulating wooden shake shingles.

8. The heat barrier member defined in claim 1, and which includes vermiculite and ceramic glass modules intermixed with the ingredients.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2970127 *Dec 28, 1954Jan 31, 1961Owens Corning Fiberglass CorpGlass reinforced gypsum composition and process of preparation
US3203849 *Mar 31, 1961Aug 31, 1965Thiokol Chemical CorpComposite heat shield
US3336179 *Jan 3, 1966Aug 15, 1967Archilithic CoGlass reinforced roof system
US3350257 *Apr 5, 1960Oct 31, 1967Nat Gypsum CoPlastic-covered gypsum wallboard
US3493460 *Nov 21, 1966Feb 3, 1970Dow Chemical CoFire retardant laminate
US3639149 *Oct 28, 1970Feb 1, 1972American Cyanamid CoComposite laminate of water-extended unsaturated polyester
US3692682 *Dec 18, 1969Sep 19, 1972Dyna Shield IncHeat barrier material and process
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3908062 *Jan 21, 1974Sep 23, 1975United States Gypsum CoFire-resistant, composite panel and method of making same
US3969567 *Mar 8, 1974Jul 13, 1976Tac Construction Materials Ltd.Improvements in and relating to board products
US4201833 *Mar 22, 1978May 6, 1980Isovolta Osterreichische Isolierstoffwerke AktiengesellschaftSpraying vermiculite with resin mixture, fireproofing
US4210070 *Mar 6, 1978Jul 1, 1980Dayus Barry RCeiling fixture with thermal protection
US4242406 *Apr 30, 1979Dec 30, 1980Ppg Industries, Inc.Fiber reinforced composite structural laminate composed of two layers tied to one another by embedded fibers bridging both layers
US4308700 *Oct 10, 1979Jan 5, 1982Romig Jr Byron AFiberglass structural member of layer construction and method of making same
US4498267 *Nov 29, 1982Feb 12, 1985Ermon BeckSimulated clay tile roof construction and method of making same
US4647486 *Jun 11, 1985Mar 3, 1987United States Gypsum CompanyShrinkage inhibition, plaster
US4726881 *May 2, 1985Feb 23, 1988Masonite CorporationMethod of making wet process panels of composite wood material with semi-matching contoured pressure plates
US4756945 *Aug 25, 1986Jul 12, 1988Backer Rod Manufacturing And Supply CompanyNoncombustible inorganic film substrate, heat expandable fiber layer which expands during fire, adhesive binder
US4810569 *Mar 2, 1987Mar 7, 1989Georgia-Pacific CorporationFibrous mat-faced gypsum board
US4936064 *Feb 16, 1989Jun 26, 1990Backer Rod Manufacturing And Supply CompanyFor closing a structural opening through a wall of a building
US5307604 *Sep 8, 1992May 3, 1994Lewis AkmakjianSynthetic shake shingle
US5319900 *May 6, 1993Jun 14, 1994Georgia-Pacific CorporationFinishing and roof deck systems containing fibrous mat-faced gypsum boards
US5342680 *Oct 15, 1993Aug 30, 1994Georgia-Pacific CorporationGlass mat with reinforcing binder
US5371989 *Feb 19, 1992Dec 13, 1994Georgia-Pacific CorporationUse of fibrous mat-faced gypsum board in exterior finishing systems for buildings and shaft wall assemblies
US5435669 *Sep 11, 1992Jul 25, 1995Don Morin, Inc.Laggin members for excavation support and retaining walls
US5492562 *Feb 7, 1995Feb 20, 1996Pettinato; Dana M.Low freezing point roofing shingle containing a chloride salt
US5615523 *Apr 24, 1995Apr 1, 1997Owens-Corning Fiberglas Technology, Inc.Roof having resinous shingles
US5644880 *Jun 7, 1995Jul 8, 1997Georgia-Pacific CorporationGypsum core faced with a fibrous mat
US5704179 *Jan 26, 1994Jan 6, 1998Georgia-Pacific CorporationFinishing and roof deck systems containing fibrous mat-faced gypsum boards
US5711126 *May 13, 1996Jan 27, 1998Owens-Corning Fiberglass Technology, Inc.Resinous angled shingles for roof ridge lines
US5718785 *Aug 29, 1994Feb 17, 1998Georgia-Pacific CorporationGypsum board faced with fibrous mat
US5791109 *Nov 6, 1996Aug 11, 1998Georgia-Pacific CorporationGypsum board and finishing system containing same
US5981406 *Jan 23, 1998Nov 9, 1999G-P Gypsum CorporationCorrosion/heat/alkali resistance; used for wallboard for building construction
US6021611 *Jul 2, 1997Feb 8, 2000Wells; James R.Shingle having ribs and a cavity on its underside
US6112492 *Apr 30, 1998Sep 5, 2000Owens Corning Fiberglas Technology, Inc.Shingle having ribs and cavity on its underside
US6276107 *May 7, 1998Aug 21, 2001Pacific International Tool & Shear, Ltd.Unitary modular shake-siding panels, and methods for making and using such shake-siding panels
US6338230Oct 25, 1999Jan 15, 2002Davey John FSimulated shake shingle
US6776150Aug 7, 2001Aug 17, 2004Shear Technologies, Inc.Method and apparatus for cutting fiber-cement material along an arcuate path
US7028436Nov 5, 2002Apr 18, 2006Certainteed CorporationCementitious exterior sheathing product with rigid support member
US7049251Jan 21, 2003May 23, 2006Saint-Gobain Technical Fabrics Canada LtdFacing material with controlled porosity for construction boards
US7155866Jan 15, 2003Jan 2, 2007Certainteed CorporationCementitious exterior sheathing product having improved interlaminar bond strength
US7300515Nov 16, 2005Nov 27, 2007Saint-Gobain Technical Fabrics Canada, LtdFacing material with controlled porosity for construction boards
US7300892Nov 16, 2005Nov 27, 2007Saint-Gobain Technical Fabrics Canada, Ltd.Facing material with controlled porosity for construction boards
US7575701Feb 3, 2003Aug 18, 2009Shear Tech, Inc.Method of fabricating shake panels
US7712276Mar 30, 2005May 11, 2010Certainteed CorporationMoisture diverting insulated siding panel
US7726086 *Feb 5, 2007Jun 1, 2010Certainteed CorporationPanel of roofing shingles
US7827753 *Dec 30, 2006Nov 9, 2010Owens Corning Intellectual Capital, LlcLofted mat for shingles
US7846278Oct 29, 2003Dec 7, 2010Saint-Gobain Technical Fabrics America, Inc.Methods of making smooth reinforced cementitious boards
US7861476Sep 19, 2005Jan 4, 2011Certainteed CorporationCementitious exterior sheathing product with rigid support member
US8136322Aug 25, 2009Mar 20, 2012Tamko Building Products, Inc.Composite shingle
US8192658Nov 29, 2006Jun 5, 2012Certainteed CorporationCementitious exterior sheathing product having improved interlaminar bond strength
US8197952Jun 7, 2010Jun 12, 2012United States Gypsum CompanyHigh starch light weight gypsum wallboard
US8206539Mar 9, 2010Jun 26, 2012Certainteed CorporationPanel of roofing shingles
US8257489Feb 19, 2010Sep 4, 2012United States Gypsum CompanySlurries and methods of making light weight gypsum board
US8323785Feb 17, 2012Dec 4, 2012United States Gypsum CompanyLightweight, reduced density fire rated gypsum panels
US8443563 *Apr 7, 2011May 21, 2013Malcolm SchmidtBuilding block having the appearance of wood shake
US8470461Jun 11, 2012Jun 25, 2013United States Gypsum CompanyLight weight gypsum board
US8702881Nov 5, 2012Apr 22, 2014United States Gypsum CompanyMethod of making lightweight, reduced density fire rated gypsum panels
US20110247289 *Apr 7, 2011Oct 13, 2011Malcolm SchmidtBuilding Block Having The Appearance of Wood Shake
USRE44070Jun 15, 2012Mar 12, 2013United States Gypsum CompanyComposite light weight gypsum wallboard
EP0288287A2 *Apr 21, 1988Oct 26, 1988Minnesota Mining And Manufacturing CompanyWelding blanket
WO1994025237A2 *Apr 28, 1994Nov 10, 1994Redland Technology LtdReinforced concrete tiles and methods of making the same
WO1995030061A1 *May 3, 1994Nov 9, 1995Akmakjian LewisSynthetic shake shingle
Classifications
U.S. Classification428/70, 52/309.15, 52/309.17, 428/426, 428/920, 428/703, 52/555
International ClassificationB28B11/04, B29C70/86, E04D3/35, E04B1/94, E04D1/26, B29C70/02
Cooperative ClassificationE04D3/35, B29K2709/02, B29C70/025, B29K2309/12, B29K2709/08, B29K2309/08, B28B11/04, Y10S428/92, E04B1/94, E04D1/265, B29K2067/06, B29C70/865
European ClassificationE04D3/35, E04B1/94, B29C70/02A4, B28B11/04, B29C70/86A, E04D1/26A