Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3832219 A
Publication typeGrant
Publication dateAug 27, 1974
Filing dateMar 27, 1972
Priority dateApr 7, 1971
Also published asDE2216628A1, DE2216628C2
Publication numberUS 3832219 A, US 3832219A, US-A-3832219, US3832219 A, US3832219A
InventorsJ Hudson, D Mazey, R Nelson
Original AssigneeAtomic Energy Authority Uk
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods of treating steel surfaces to modify their structure
US 3832219 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent ()flice 3,832,219 Patented Aug. 27, 1 9 74 US. a. 117-93.: 3 Claims ABSTRACT OF THE DISCLOSURE A method of treating a steel surface to modify the surface to improve its hardness or resistance to corrosion characterised in that the 'surace is subjected to the implantation of selected ions adapted so to modify the surface structure as to improve its hardness or corrosion resistance.

The present invention relates to methods of treating steel surfaces to modify their structure.

It is well known that steel articles may be case hardened; in known methods of carrying out this process, a hard, resistant surface'may be produced on a low carbon (tough) steel core by subjecting a low carbon steel article, maintained at elevated temperatures (about 910 C.), to an atmosphere rich in carbon. This may be achieved by use of a hydrocarbon gas or by packing in charcoal. The carbon diffuses into the surface of the steel to a depth of about 0.05 in., forming a high carbon content surface which is subsequently quenched to martensite for maximum hardness and wear resistance. The hardness is dependent on the carbon content and increases as the carbon content increases.

The thermal hardening process, as mentioned above, involves subjecting the articles to be treated to relatively high temperatures; in some circumstances, for example with stainless steel, this may be undesirable and it is one object of the present invention to provide a method of hardening stainless steel which does not involve the use of high temperatures.

According to one aspect of the present invention, there is provided a method of treating a stainless steel surface to modify the structure of the surface, wherein the surface is hardened by subjecting the surface to bombardment of carbon ions to implant carbon in the surface and thereby to' modify its structure.

It will be appreciated that in introducing ions into the suface of a metal the composition of the surface will be modified in addition to the structure of the surface.

According to another aspect ofthe invention, a somewhat similar technique may be applied to modifying the surface structure of mild steel by ion implantation, in the surface, of chromium ions.

In treating a suface in accordance with the invention, the depths of penetration of ions may be greater than is measured as Angstroms and can be such that a hardened structure is formed within a body rather than right at the surface. Thus, a hardened surface may be produced at a depth of say 0.001 in. A body can thus be formed in which a soft outer region is provided on a harder inner region. A body so treated to have a buried layer may have its outer region removed, down to the hardened surface, by abrading, grinding, etc.

Such treatments are within the scope of the present invention.

The depth to which ions are implanted depends on the energy of the ions, high energy giving rise to buried layers.

It is also possible to implant at different energies so as to build up a series of implanted regions to give a layer of the required thickness.

Implantation may be carried out from low energies up to energies of several thousand kev. A typical working range is from l-200 kev. with energies in the range 50- kev. being practically convenient.

In the case of ion implantation of stainless steel surfaces, the introduction of carbon into the surfaces by this ion implantation method, which may be carried out at relatively low temperatures, offers advantages over methods involving the use of high temperatures and carbon rich atmospheres. The term low temperature is used in this specification to indicate temperatures of approximately room temperature. The implantation process may cause the temperature of the specimen undergoing implantation to rise slightly, say 1 or 2 0.; however, this is insignificant. By use of the present invention it is possible, for example, to produce hardened regions on stainless steel articles which have been previously fabricated to high precision standards because the risk of distortion and the resulting loss of dimensional precision arising from subjecting the articles to high temperatures is obviated. Thus, surface hardened ball bearings, watch bearings and similar articles may be produced after they have been fabricated to the required tolerances in stainless steel; a hardened edge may be produced on a stainless steel razor blade. The cost of such a hardening process would be very small per item in the case of watch bearings, where, by virtue of their size, it would be possible to treat a multiplicity (perhaps several hundred) articles in one implantation operation.

It is also possible to select, quite precisely, the regions of the surface to be treated by appropriate control of the ion beam, which may be typically a few millimetres in width; alternatively a mask may be used which permits the ion beam to contact only the exposed regions of the surface to be treated.

It is to be understood that the foregoing statements regarding the treatment of a multiplicity of articles and the way in which areas may be treated selectively will also apply to the implantation of chromium into mild steel.

Several methods of carrying out the invention will now be described byway of example.

In the first example, regions of 316 stainless steel surfaces were treated with a beam of carbon ions. A sample of 316 stainless steel was mounted in the sample chamber of a linear accelerator and the chamber was evacuated. The linear accelerator was switched on and run-up in accordance with normal linear accelerator operating procedures until a beam of ions impinged on the target. The ions in this implantation operation had energies in the 100 kev. range. A carbon dioxide gas source was used and magnetic analysis was utilised to separate and select, from the ions produced by the source, carbon ions for implantation. The treated regions, where carbon ions had been implanted to a depth of a few thousand Angstroms, were found to be completely resistant to vibratory polishing, whilst the untreated regions of the surfaces were removed rather easily.

In the second example, regions of 18-8 stainless steel surfaces were treated with a beam of carbon ions according to a procedure essentially similar to that described above. Results were obtained which were similar to those in the case of the 316 stainless steel in the first example.

In the third example, mild steel surfaces were treated with a beam of chromium ions having energies in the 100 kev. range, using a linear acceleratorin a manner similar to that described above. A sputtering source with a'chromium strip was used as a source of chromium ions and magnetic analysis was used to select chromium ions for im- 515513111055 Chromium was-i155 anted to a depth of a few thousand Angstrorns -in"-the treated-regions and=i=t wasmild steeiz found that the corrosion resistance (for example, to rusting) was greatly improved inE-these regions.

, Carburising of metal .by hitherto knowntechnigues is carried out. at high temperatures, about 900-1000 (l 311i depends on carbon diffusing into the metal as hereinbefore mentioned. Thus, if the present invention is utilised to implant carbon at a high temperaturethere is a risk that carbon may ditfuse into the metal and that the hardening effect at or near the surface will be lost. Therefore,.the present invention is conveniently used to implant carbon at temperatures below about 600 C.

A similar situation exists in relation to chromium ions. 4 What is claimed is:

1. A method of treating a mild steel surface to modify the structure of the surface whereby the corrosion resistance of the surface is increased, comprising the steps of producing chromium ions, forming the chromium ions into a beam of predetermined energy such that the ions can penetrate the mild steel surface to be treated and directing the beam of chromium ions at the region to be treated thereby to cause chromium ions to be implanted into the 2. A method according to claim 1, wherein the implanted ions are implanted- 1o a depth of a few thousand Angstroms.

3. A method according toclaim 1, wherein the implantationis carried-out withl'ions thaving,energies such that a buried laye'r'is'f ormed- ,1, ,f I

g Refer ces giit' edj UNITED STATES ru in r 3,232,853 '2/1966- cob'g g 2,915,409 12/1959 cek1 .a t 2o4 29s 1X 3,127,283 3/1964 Chadwick 117-106 R 3,177,134 4/1965 Gartner et al'. 204-192 3,645,710 2/1972 Plumat et al. 20 1-492X JOHN H. MACK, PrimaryErzarninen

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3988955 *Sep 11, 1974Nov 2, 1976Engel Niels NCoated steel product and process of producing the same
US4105443 *Jan 25, 1977Aug 8, 1978United Kingdom Atomic Energy AuthorityMetal-forming dies
US4486247 *Jun 21, 1982Dec 4, 1984Westinghouse Electric Corp.Wear resistant steel articles with carbon, oxygen and nitrogen implanted in the surface thereof
US4565710 *Jun 6, 1984Jan 21, 1986The United States Of America As Represented By The Secretary Of The NavyProcess for producing carbide coatings
US4629631 *Sep 9, 1985Dec 16, 1986United Kingdom Atomic Energy AuthorityHardening substrates
US4640169 *Mar 28, 1985Feb 3, 1987Westinghouse Electric Corp.Cemented carbide cutting tools and processes for making and using
US4645715 *Mar 17, 1982Feb 24, 1987Energy Conversion Devices, Inc.Oxide, boride, carbide or nitride of one or more transition metals
US4704168 *Jan 29, 1986Nov 3, 1987The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationIon-beam nitriding of steels
US4764394 *Jan 20, 1987Aug 16, 1988Wisconsin Alumni Research FoundationMethod and apparatus for plasma source ion implantation
US4915746 *Aug 15, 1988Apr 10, 1990Welsch Gerhard EMethod of forming high temperature barriers in structural metals to make such metals creep resistant at high homologous temperatures
US5985742 *Feb 19, 1998Nov 16, 1999Silicon Genesis CorporationControlled cleavage process and device for patterned films
US5994207 *Feb 19, 1998Nov 30, 1999Silicon Genesis CorporationControlled cleavage process using pressurized fluid
US6010579 *Feb 19, 1998Jan 4, 2000Silicon Genesis CorporationReusable substrate for thin film separation
US6013563 *Feb 19, 1998Jan 11, 2000Silicon Genesis CorporationControlled cleaning process
US6027988 *Aug 20, 1997Feb 22, 2000The Regents Of The University Of CaliforniaMethod of separating films from bulk substrates by plasma immersion ion implantation
US6048411 *Feb 19, 1998Apr 11, 2000Silicon Genesis CorporationSilicon-on-silicon hybrid wafer assembly
US6098655 *Dec 3, 1996Aug 8, 2000Carolina Power & Light CompanyAlleviating sticking of normally closed valves in nuclear reactor plants
US6146979 *Feb 19, 1998Nov 14, 2000Silicon Genesis CorporationPressurized microbubble thin film separation process using a reusable substrate
US6155909 *Feb 19, 1998Dec 5, 2000Silicon Genesis CorporationControlled cleavage system using pressurized fluid
US6159824 *Feb 19, 1998Dec 12, 2000Silicon Genesis CorporationLow-temperature bonding process maintains the integrity of a layer of microbubbles; high-temperature annealing process finishes the bonding process of the thin film to the target wafer
US6159825 *Feb 19, 1998Dec 12, 2000Silicon Genesis CorporationControlled cleavage thin film separation process using a reusable substrate
US6162705 *Feb 19, 1998Dec 19, 2000Silicon Genesis CorporationControlled cleavage process and resulting device using beta annealing
US6187110May 21, 1999Feb 13, 2001Silicon Genesis CorporationPrepared by introducing energetic particles in a selected manner through a surface of a donor substrate to a selected depth underneath the surface, where the particles have a relatively high concentration to define a donor substrate
US6221740Aug 10, 1999Apr 24, 2001Silicon Genesis CorporationSubstrate cleaving tool and method
US6245161Feb 19, 1998Jun 12, 2001Silicon Genesis CorporationEconomical silicon-on-silicon hybrid wafer assembly
US6263941Aug 10, 1999Jul 24, 2001Silicon Genesis CorporationNozzle for cleaving substrates
US6284631Jan 10, 2000Sep 4, 2001Silicon Genesis CorporationMethod and device for controlled cleaving process
US6291313May 18, 1999Sep 18, 2001Silicon Genesis CorporationMethod and device for controlled cleaving process
US6291326Jun 17, 1999Sep 18, 2001Silicon Genesis CorporationPre-semiconductor process implant and post-process film separation
US6294814Aug 24, 1999Sep 25, 2001Silicon Genesis CorporationCleaved silicon thin film with rough surface
US6391740Apr 28, 1999May 21, 2002Silicon Genesis CorporationGeneric layer transfer methodology by controlled cleavage process
US6458672Nov 2, 2000Oct 1, 2002Silicon Genesis CorporationControlled cleavage process and resulting device using beta annealing
US6486041Feb 20, 2001Nov 26, 2002Silicon Genesis CorporationMethod and device for controlled cleaving process
US6500732Jul 27, 2000Dec 31, 2002Silicon Genesis CorporationCleaving process to fabricate multilayered substrates using low implantation doses
US6511899May 6, 1999Jan 28, 2003Silicon Genesis CorporationControlled cleavage process using pressurized fluid
US6513564Mar 14, 2001Feb 4, 2003Silicon Genesis CorporationNozzle for cleaving substrates
US6528391May 21, 1999Mar 4, 2003Silicon Genesis, CorporationControlled cleavage process and device for patterned films
US6548382Aug 4, 2000Apr 15, 2003Silicon Genesis CorporationGettering technique for wafers made using a controlled cleaving process
US6554046Nov 27, 2000Apr 29, 2003Silicon Genesis CorporationSubstrate cleaving tool and method
US6558802Feb 29, 2000May 6, 2003Silicon Genesis CorporationSilicon-on-silicon hybrid wafer assembly
US6632724Jan 13, 2000Oct 14, 2003Silicon Genesis CorporationControlled cleaving process
US6790747Oct 9, 2002Sep 14, 2004Silicon Genesis CorporationMethod and device for controlled cleaving process
US6890838Mar 26, 2003May 10, 2005Silicon Genesis CorporationGettering technique for wafers made using a controlled cleaving process
US7056808Nov 20, 2002Jun 6, 2006Silicon Genesis CorporationCleaving process to fabricate multilayered substrates using low implantation doses
US7160790Aug 19, 2003Jan 9, 2007Silicon Genesis CorporationControlled cleaving process
US7348258Aug 6, 2004Mar 25, 2008Silicon Genesis CorporationMethod and device for controlled cleaving process
US7371660Nov 16, 2005May 13, 2008Silicon Genesis CorporationControlled cleaving process
US7410887Jan 26, 2007Aug 12, 2008Silicon Genesis CorporationControlled process and resulting device
US7759217Jan 26, 2007Jul 20, 2010Silicon Genesis CorporationControlled process and resulting device
US7776717Aug 20, 2007Aug 17, 2010Silicon Genesis CorporationControlled process and resulting device
US7811900Sep 7, 2007Oct 12, 2010Silicon Genesis CorporationMethod and structure for fabricating solar cells using a thick layer transfer process
US7846818Jul 10, 2008Dec 7, 2010Silicon Genesis CorporationControlled process and resulting device
US8187377Oct 4, 2002May 29, 2012Silicon Genesis CorporationNon-contact etch annealing of strained layers
US8293619Jul 24, 2009Oct 23, 2012Silicon Genesis CorporationLayer transfer of films utilizing controlled propagation
US8329557May 12, 2010Dec 11, 2012Silicon Genesis CorporationTechniques for forming thin films by implantation with reduced channeling
US8330126Jul 29, 2009Dec 11, 2012Silicon Genesis CorporationRace track configuration and method for wafering silicon solar substrates
US20100323113 *Jun 18, 2009Dec 23, 2010Ramappa Deepak AMethod to Synthesize Graphene
DE2703392A1 *Jan 27, 1977Aug 4, 1977Atomic Energy Authority UkVerfahren zur behandlung von metallbearbeitungswerkzeugen, diese werkzeuge und ihre verwendung
DE4238784C1 *Nov 17, 1992Jan 20, 1994Multi Arc OberflaechentechnikCorrosion susceptibility redn. and increasing wear resistance of components made of low-alloy steels - by cleaning component surface and forming diffusive layer by chrome on bombardment in vacuum on diffusion layer
Classifications
U.S. Classification427/528, 427/531
International ClassificationC23C14/48, C23C8/00
Cooperative ClassificationC23C8/00, C23C14/48
European ClassificationC23C8/00, C23C14/48