Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3832776 A
Publication typeGrant
Publication dateSep 3, 1974
Filing dateNov 24, 1972
Priority dateNov 24, 1972
Publication numberUS 3832776 A, US 3832776A, US-A-3832776, US3832776 A, US3832776A
InventorsH Sawyer
Original AssigneeH Sawyer
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electronically powered knife
US 3832776 A
Abstract
A single blade electronically powered knife has a cylindrical case in which is located a solenoid having a centrally mounted longitudinally oscillating rod. The inner end of the rod is slidably retained in a bearing which has a resilient isolation mounting within the case. On the outer end of the rod is secured a mounting block which carries the knife blade and the mounting block is isolated from the case by a resilient bearing. An electric power source acting through an electronic circuit housed in the case causes the solenoid to reciprocate the mounting block in a longitudinal direction and impart sinusoidal elastic longitudinal wave energy to the knife blade which translates into a cutting and parting knife blade action.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Sawyer ELECTRONICALLY POWERED KNIFE [76] Inventor: Harold T. Sawyer, 845 Via de la Paz, Pacific Palisades, Calif. 90272 22 Filed: Nov. 24, I972 211 App]. No.: 308,952

[52] U.S. Cl 30/272, 30/D1G. 1, 128/305, 310/30 [51] Int. Cl 1326b 7/00 [58] Field of Search 30/272, DIG. 1, 45; 310/28, 29, 30, 34; 128/303.14, 305

[56] References Cited UNITED STATES PATENTS 7 1,111,038 9/1914 Smith 30/45 2,753,470 7/1956 Armstrong..... 30/272 A 2,845,072 7/1958 Shafer 128/303.14 2,972,069 2/1961 Sproule 30/45 X 3,183,538 5/1965 Hubner 30/DlG. 1 3,484,629 12/1969 Kunz 310/30 X 3,491,279 1/1970 Rodaway 30/272 R FOREIGN PATENTS OR APPLICATIONS 1,141,564 3/1957 France 30/272 A [4 1 Sept. 3, 1974 Primary ExaminerAl Lawrence Smith Assistant Examiner-J. C. Peters 5 7 1 ABSTRACT A single blade electronically powered knife has a cylindrical case in which is located a solenoid having a centrally mounted longitudinally oscillating rod. The inner end of the rod is slidably retained in a bearing which has a resilient isolation mounting within the case. On the outer end of the rod is secured a mounting block which carries the knife blade and the mounting block is isolated from the case by a resilient bearing. An electric power source acting through an electronic circuit housed in the case causes the solenoid to reciprocate the mounting block in a longitudinal direction and impart sinusoidal elastic longitudinal wave energy to the knife blade which translates into a cutting and parting knife blade action.

11 Claims, 10 Drawing Figures PATENIEnsm I974 sum 10F 2 my M saw an; 2

PAremmsePs m4 ELECTRONICALLY POWERED KNIFE SPECIFICATION Electrically powered knives heretofore available have invariably consisted of two blades mounted side by side in a handle with one or both blades so manipulated that they reciprocate longitudinally with respect to each other and produce a sawing action the nature of which is similar to that of clippers. Such blades have the disadvantage of always needing to be removed from the handle after use in order to be cleaned separately and thereafter reinserted in the handle when they are to be used again. Electric knives of this description have been relatively large knives suited mainly for carving meats and cutting bread. Although single blade knives have been employed for cutting multiple layers of textiles in the garment industry, such commercial type knives all need special accessories and special handling in order to be useful.

Heretofore there has been little or no interest in making use of electric or electronically powered knives for extremely fine and precise cutting such as may be required, for example, in surgery. Surgical knives currently in use, commonly known as scalpels, both large and small, are hand manipulated single blades in one or another of the great many forms, often involving detachable blades on a special handle for specific applications. Such blades generally have microscopic saw type teeth machined into the cutting edge of the blade. Incisions and cutting are performed by oscillating the blade in a motion which is in line with the center line of the blade. For extremely precise work disadvantages attend blades of this kind as for example there is invariably some indentation of the skin or tissue during the cutting process which is undesirable, such being particularly noticable in delicate operations involving plastic surgery, eye operations, nerve operations and such operations where delicate tissues are involved. Since the scalpel is used in a slow back and forth motion the tissue to be cut is minutely shreaded and this is undesir' able. Further still, the scalpel blade in itself has no parting'action, that is to say parting the tissues on opposite sides of the incision, and this being necessary, it is done by hand manipulation dependent on the skill of the surgeon.

It is therefore among the objects of the invention to provide a new and improved single blade electrically powered knife which may, if desired, be permanently mounted in the handle, and which is essentially easy to clean or sterilize.

Another object of the invention is to provide a new and improved electrically powered single blade knife which can be self contained with the power supply compactly housed in a small handle and which is capable of making an extremely precise incision virtually without indentation of the material to be cut and which is gently parted during the cutting operation by action of the knife blade itself.

Still another object of the invention is to provide a new and improved single blade electronically powered knife, capable of being constructed in any one of a number of different sizes and which is suitable for precise cutting operations such as those encountered in surgery.

Still further among the objects of the invention is to provide a new and improved single blade electronically powered knife which is simple, positive and compact to the extent that a serviceable cutting tool of high precision cutting ability can be made and assembled without the use of complicated technique and which requires virtually a negligible amount of service, the device moreover being such that it can be powered either by a battery contained in the knife handle or by an extension to a conventional power supply.

With these and other objects in view,the invention consists of the construction, arrangement, and combination of the various parts of the device, whereby the objects contemplated are attained, as hereinafter set forth, pointed out in the appended claims and illustrated in the accompanying drawings. 7

FIG. 1 is a longitudinal sectional view of the electronically powered assembly complete with blade.

FIG. 2 is a fragmentary plan view of the blade and the mounting.

FIG. 3 is-a cross-sectional view on the line 3-3 of FIG. 1. g

FIG. 4 is a cross-sectional view on the line 44 of FIG. 1.

FIG. 5 is a cross-sectional view on the line 55 of FIG. 1.

FIG. 6 is a fragmentary longitudinal sectional view of a second form of internal construction of the device.

FIG.'7 is a wiring diagram of a DC. power source usable with'the device.

FIG. 8 is a wiring diagram for an A.C. power source.

FIG. 9 is a schematic view of a sinusoidal elastic longitudinal wave motion withinthe solid material of the rod, the blade and blade mounting.

FIG. 10 is a schematic view of ellipsoid force motions of the blade when activated.

In an embodiment of the invention chosen for the purpose of illustration there is shown a drive assembly indicated generally by the reference character 10 at one end of which is a blade mount 11 which carries a blade 12. The blade 12 may be any one of a number of different blade types depending upon the size and power of the drive assembly, the blade illustrated being a scalpel. The action imparted to the blade will, however, be the same whether it chances to be a scalpel, a utility knife, a carving blade, or other comparable single blade knife or chisel.

Located within a chamber 13 of a case 14 is a solenoid 15. The'solenoid is constructed with a cylindrical outer jacket 16 of magnetic material and an inner sleeve 17 of magnetic material spaced apart at one end by use of an annular spacer block 18 of magnetic material and at the other end by use of a washer 19 of nonmagnetic material. The structure thus defined forms an annular space 20 substantially occupied by a coil 21. Screws 22 extending through the case into the solenoid hold it in position where it has a snug sliding fit within the chamber 13.

The sleeve 17 provides a central bore 25 through which extends a relatively long rod 26, the rod being of non-magnetic material as for example, stainless steel. A clapper 27 which is of magnetic material is anchored to the rod 26 by an appropriate weldment 28, the clapper extending transversely over adjacent annular edges 29 and 30 respectively of the jacket 16 and sleeve 17.

To properly support an inside end 31 of the rod 26 use is made of an annular inner section 32 of a tubular joint 33, therebeing a bore 34 through the inner section which amply accommodates the rod 26. A bearing of non-magnetic material is provided with a central bore 36 forming a snug and freely sliding fit for the rod 26. An annular resilient spring isolation mount 37 is bonded to the intersection 32 in a recess 38. The isolation mount 37 is likewise bonded to the bearing 35 in a recess 39.

The opposite outer end 40 of the shaft 26 is provided with threads 41 which threadedly engage a recess 42 thereby to secure the blade mount 11 in threaded engagement with the outer end of the rod. Once in proper adjustment the set screw 43 anchors the parts together. Separating the blade mount 11 from the case 14 is an annular resilient spring isolation bearing 45. The isolation bearing is bonded to the blade mount in a recess 46 and bonded to a plug 47 in a recess 48. The plug, as shown, has a threaded engagement 49 in the adjacent end of the case 14. In the chosen embodiment there is at the base of the knife blade 12 a mass from which the blade extends, the mass being connectedto the blade 'mount 11 by a neck 51 of substantially rectangular cross-sectional configuration, the long dimension being transverse to the flat dimensionof the knife blade and the short dimension being 90 degrees removed.

For varying the amplitude of endwise motion of the rod 26 the blade mount 1 1 can be adjusted with respect to the outside end 40 of the rod whereby to change the spacing of the clapper 27 from the adjacent edges 29 and 30 of the solenoid.

The form of device of FIG. 6 shows another adjustment embodied in a lock nut 55 engaging threads 56 at the inner end 31' of the rod 26. By making use of the lock nut 55 adjustment of pressure on both the isolation mount 37 and the spring isolation bearing 45 are made use of in an opposing manner to alter the resonant frequency, depending on the direction of adjustment.

When the drive assembly is to be self contained an annular housing 60 providing a chamber 61 may be attached to the adjacent end of the case 10. The chamber 61 provides room for electric circuitry and may be made large enough to contain an appropriate conventional battery. A wire 62 from the solenoid 15 passes through a wire channel 63 thence through a passage 64 into the chamber 61. A cap 65 closes the outside end of the chamber and when electrical energy is to be supplied by an outside source the cap is provided with an opening 66 through which wires from the power supply may pass.

A DC. power circuit is shown in FIG. 7 supplied by a battery 70 from which a negative lead 71 is connected to a tap 72 at one end of a coil 73 and a positive lead 74 is connected to a tap 75 at the opposite end of the coil 73. A transistoroscillator 76 connects to the positive lead 74 and from it a lead 77 connects to an intermediate coil tap 78 to provide a trigger voltage, there being a resistor 68 in the line. A switch 79 in the negative lead is made use of to start and stop the operation. In the oscillator circuit is a capacitor 69 connected across the coil 73 to form a tank circuit.

When an A.C. power supply is to be made use of there is provided an A.C. coil 80 accommodating a push-pull solenoid, the coil being supplied by one lead 81 in which is a start/stop switch 82. A second lead 83 supplies the opposite end of the coil 80.

When, for example, the DC. circuit is used for operation of the device, the switch 79 is activated causing a magnetic field to be set up in the solenoid 15 through the outer jacket 16, the inner jacket 17, the spacer block 18 and the clapper 27. This causes the clapper to be attracted toward the solenoid imparting a corresponding endwise motion to the rod 26 in a direction from left to right as viewed in FIG. 1. When the excitation is momentarily released, the attraction of the clapper 27 is likewise momentarily released and the reversal of current in the coil effects an opposite endwise motion in the rod 26 in a direction from right to left as viewed in FIG. 1. These reversals of motion occur at a specified frequency depending upon the design of the device. Acting in the manner described a sinusoidal elastic longitudinal wave energy pattern is generated represented by the nodal points 89 and anti-nodal points 85 in FIG. 9. This wave pattern exists in the rod 26 and is conveyed by the rod to the blade mount 11 and mass 50 to the blade 12 where a comparable wave pattern is set up. The result of this wave pattern is the ellipsoid force motions schematically shown in FIG. 10, there being an ellipsoid motion 86 in a direction toward and away from the cutting edge of the blade, an ellipsoid motion 87 in a direction transverse to the cutting edge of the blade and an ellipsoid motion 88 diagonal with respect thereto. The motion in the direction in alignment with the cutting edge of the blade promotes the cutting force and the motion 87 in a direction transverse to the cutting edge causes a parting motion in whatever the material may be which is being cut.

When the electronically powered knife is to be made in a size suited to surgery, where the knife is comparable to that of the conventional scalpel, a low energy source employing a small DC. 9 to 12 volt battery is found acceptable. The blade 12, the rod 26, the blade mount 11 and mass 50, comprise a spring mass system which is excited into an oscillating motion in line with the blade structure by means of the solenoid and its associated circuitry. The sinusoidal frequency of the oscillation represents the natural frequency of the structure and its spring mass system which is always in phase with the electronic sinusoidal frequency of the system. The nodal natural frequency of the structure may be conveniently chosen by design for a specific value over a range from 300 to 1,000 cycles per second.

The back and forth, sinusoidal oscillation, frequency of the spring mass longitudinal structure which is excited by the solenoid oscillator in turn excites the free longitudinal rod and blade into their own natural frequency which transmits throughout the extremity and including the blade itself, thus to create an elastic longitudinal sinusoidal wave motion within the metallic structure material and which corresponds to the natural frequency.

A structure which is excited into its own natural frequency releases force motion ellipsoid patterns in three planes as made reference to in connection with FIG. 10, this being a significant feature of the invention. For example, the sinusoidal longitudinal wave energy which travels and is released to the blade causes the blade to release ellipsoid wave energy motions within its own structure and of minute motional extent in the three planes indicated.

The oscillating motion of the blade causes high speed delicate cutting without causing indentation of the tissue or material to be cut, the transverse ellipsoid force motion of the blade creating its own minute parting action during incision.

Depending on the ultimate use to be made of the device an acceptable operating frequency range can be set up between 60 and 1,000 cycles per second. A typical D.C. circuit can be made to operate satisfactorily on either a 6 volt or 12 volt D.C. battery applied across the DC. coil.

In the setup described for DC. operation, the feedback voltage of the coil 73 causes the cricuit to go into oscillation at a frequency determined by the resonant frequency of the rod, blade mount and blade assembly which is in effect a free-free spring mass system. It is therefore a self excited oscillator. The oscillator circuit will automatically follow one of the nodes of natural frequency of the rod and blade assembly and its inherent spring mass structure by means of its own feedback nature.

The design of the coil is matched specifically to the characteristics of the oscillator circuit and to the resonant, frequency structure. The resonant frequency of the electrical circuit therefore is in resonance and in phase with the natural frequency of the mechanical structure. The total or combined electromechanical system therefore flows into electromechanical resonance thus only utilizing a minimum amount of power which is a significant aspect of the invention and work to be accomplished. The frequency generated is therefore the natural frequency of the circuit and is the frequency at which it will oscillate and in phase with the natural and resonant frequency of the rod and blade assembly which comprises the spring mass structure.

When an A.C. coil like the A.C. coil 80 is made use of on a l volt 60 cycle power supply the resonant rod and blade assembly is designed for a fixed frequency of 60 cycles per second. The resonant rod and blade assembly in such a design is designed for one of its modes of natural frequency which is excited by the fundamental frequency of 60 cycles per second. A desirable structure frequency in this case has been found to be within one of the modes of natural frequency by design, which may be chosen within an acceptable range of from 120 to 300 cycles per second.

While the invention has herein been shown and described in what is conceived to be a practical and effective embodiment, it is recognized that departures may be made therefrom within the scope of the invention.

Having described the invention, what is claimed as new in support of Letters Patent is:

l. A drive assembly for a single blade electronically powered knife, said drive assembly comprising: a case, longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a transversely and longitudinally acting resilient isolation means secured between said blade mount, said rod and the case, whereby to inhibit direct contact, and a sinusoidally oscillating electric power source acting between the case and the rod, which, when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to setup a sinusoidal elastic wave motion in the blade.

2. A drive assembly as in claim 1 wherein there is a blade on the blade mount, said blade having flat sides 6 and a longitudinally extending cutting edge intermediate said sides, and a spring mass structure comprising the combination of blade, blade mount, and rod, said spring mass structure having an oscillation rate at or near resonant frequency and in phase with said power.

source.

3. A drive assembly as in claim 1 wherein the power source is a solenoid having a central bore therethrough and the rod extends through said central bore.

4. A drive assembly as in claim 3 wherein there is a transversely mounted clapper of magnetic material attached to the rod at a location adjacent to and spaced from one end of the solenoid forming part of a magnetic path .through the solenoid when the solenoid is energized.

5. A drive assembly as in claim 4 wherein there is a means acting between the rod and the blade mount to adjust the distance between the clapper and the blade mount whereby to vary the amplitude of the sinusoidal motion.

6. A drive assembly as in claim 1 wherein there is a bearing block in the case having a bearing bore therethrough reciprocatably receiving the end of the rod which is in the case, there being a transversely and longitudinally acting resilient isolation mount secured between the bearing and the case.

7. A drive assembly as in claim 6 wherein there is a lock nut in engagement with the bearing block and in threaded engagement with the the rod end which is in the case whereby to selectively set the assembly at a different resonant frequency.

8. A drive assembly for a single blade electronically powered knife, said drive assembly comprising: a case, a longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a resilient isolation bearing secured between the blade mount and the case, and a sinusoidally oscillating electric power source acting between the case and the rod which when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to set up a sinusoidal elastic wave motion in the blade, the power source being a solenoid having a central bore therethrough and the rod having a position extending through said central bore, the power source being a DC. battery driven circuit comprising a coil for the solenoid, and a transistor oscillator having leads connected respectively to opposite ends of the coil and to the coil at an intermediate location, whereby to periodically pulse said solenoid.

9. A drive assembly as in claim 8 wherein the frequency is between about 300 and 1,000 cycles per second.

10. A drive assembly as in claim 3 wherein the power source is an AC. push pull coil for the solenoid in communication with an A.C. electric power source operating at a per second cycle rate of between about 60 and 1,000 cycles per second.

11. A drive assembly as in claim 2 wherein there is a neck of rectangular cross sectional shape forming an interconnection between the blade mount and the blade, the long axis of said neck lying in a direction transverse to the fiat sides of the blade.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1111038 *Nov 28, 1911Sep 22, 1914Frank V SmithMagnetic vibrator.
US2753470 *Jul 29, 1953Jul 3, 1956Ogden ArmstrongVibrating apparatus
US2845072 *Jun 21, 1955Jul 29, 1958William A ShaferSurgical knife
US2972069 *Mar 3, 1958Feb 14, 1961Glass Developments LtdUltrasonic flaw detecting apparatus
US3183538 *Nov 23, 1962May 18, 1965Hubner OttoPortable electric toilet apparatus
US3484629 *Mar 1, 1968Dec 16, 1969Emissa SaReciprocating motor structure
US3491279 *Oct 25, 1967Jan 20, 1970Rodaway Keith SElectromechanical oscillating device
FR1141564A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4200106 *Oct 11, 1977Apr 29, 1980Dinkelkamp Henry TFixed arc cyclic ophthalmic surgical instrument
US4637393 *Jun 21, 1984Jan 20, 1987Microsurgical Equipment LimitedSurgical instrument
US4644653 *Jul 30, 1985Feb 24, 1987Bacon Donald VReciprocating knife
US4644952 *Feb 19, 1985Feb 24, 1987Palm Beach Medical Engineering, Inc.Surgical operating instrument
US4832683 *Jul 15, 1986May 23, 1989Sumitomo Bakellite Company LimitedSurgical instrument
US4852261 *Mar 8, 1988Aug 1, 1989Chicago Pneumatic Tool CompanyKnife insert
US4856718 *Dec 4, 1987Aug 15, 1989Better Mousetraps Inc.Food processor and food cutting devices therefor
US4922614 *Apr 29, 1988May 8, 1990Kai Cutlery Center Co., Ltd.Cutter
US5042592 *Apr 10, 1990Aug 27, 1991Fisher Hugh EPower tool
US5211646 *Sep 19, 1991May 18, 1993Alperovich Boris ICryogenic scalpel
US5275607 *Sep 23, 1991Jan 4, 1994Visionary Medical, Inc.For cutting tissue of an eye
US5423838 *Jun 25, 1993Jun 13, 1995Scimed Life Systems, Inc.Atherectomy catheter and related components
US5513709 *May 21, 1991May 7, 1996Fisher; Hugh E.Power tool
US6051011 *Aug 28, 1997Apr 18, 2000Bausch & Lomb Surgical, Inc.Surgical handpiece
US6089235 *Feb 26, 1999Jul 18, 2000Scimed Life Systems, Inc.Method of using an in vivo mechanical energy source
US6364889 *Nov 17, 1999Apr 2, 2002Bayer CorporationElectronic lancing device
US6379371 *Nov 15, 1999Apr 30, 2002Misonix, IncorporatedUltrasonic cutting blade with cooling
US6443969Aug 15, 2000Sep 3, 2002Misonix, Inc.Ultrasonic cutting blade with cooling
US6988996Jun 7, 2002Jan 24, 2006Roche Diagnostics Operatons, Inc.Test media cassette for bodily fluid testing device
US7001344Jun 12, 2002Feb 21, 2006Pelikan Technologies, Inc.Blood sampling device with diaphragm actuated lancet
US7025774Apr 19, 2002Apr 11, 2006Pelikan Technologies, Inc.Tissue penetration device
US7033371Jun 12, 2002Apr 25, 2006Pelikan Technologies, Inc.Electric lancet actuator
US7041068Apr 19, 2002May 9, 2006Pelikan Technologies, Inc.Sampling module device and method
US7175642Sep 5, 2002Feb 13, 2007Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US7178244Sep 12, 2005Feb 20, 2007Avello LlcPowered utility knife
US7226461Dec 18, 2002Jun 5, 2007Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7229458Dec 31, 2002Jun 12, 2007Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7232451Dec 31, 2002Jun 19, 2007Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7244265Dec 31, 2002Jul 17, 2007Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7247144Jul 3, 2003Jul 24, 2007Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US7258693Apr 21, 2003Aug 21, 2007Pelikan Technologies, Inc.Device and method for variable speed lancet
US7264627Aug 29, 2002Sep 4, 2007Roche Diagnostics Operations, Inc.Wicking methods and structures for use in sampling bodily fluids
US7291117Dec 31, 2002Nov 6, 2007Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7297122Dec 31, 2002Nov 20, 2007Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7316700Jun 12, 2002Jan 8, 2008Pelikan Technologies, Inc.Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7331931Dec 31, 2002Feb 19, 2008Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7371247Dec 31, 2002May 13, 2008Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US7374544Dec 31, 2002May 20, 2008Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7410468Dec 31, 2002Aug 12, 2008Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7547287Dec 31, 2002Jun 16, 2009Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7563232Dec 31, 2002Jul 21, 2009Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7582099Dec 31, 2002Sep 1, 2009Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US7582258Jun 23, 2005Sep 1, 2009Roche Diagnostics Operations, Inc.Body fluid testing device
US7604592Jun 14, 2004Oct 20, 2009Pelikan Technologies, Inc.Method and apparatus for a point of care device
US7648468Dec 31, 2002Jan 19, 2010Pelikon Technologies, Inc.Method and apparatus for penetrating tissue
US7648469Jan 31, 2008Jan 19, 2010Pelikan Technologies Inc.Method and apparatus for penetrating tissue
US7666149Oct 28, 2002Feb 23, 2010Peliken Technologies, Inc.Cassette of lancet cartridges for sampling blood
US7666150Apr 29, 2004Feb 23, 2010Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US7674232Dec 31, 2002Mar 9, 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7682318Jun 12, 2002Mar 23, 2010Pelikan Technologies, Inc.Blood sampling apparatus and method
US7699791Jun 12, 2002Apr 20, 2010Pelikan Technologies, Inc.Method and apparatus for improving success rate of blood yield from a fingerstick
US7713214Dec 18, 2002May 11, 2010Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7717863Dec 31, 2002May 18, 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7727168Jun 19, 2007Jun 1, 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US7731668Jul 16, 2007Jun 8, 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US7731729Feb 13, 2007Jun 8, 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7731900May 6, 2005Jun 8, 2010Roche Diagnostics Operations, Inc.Body fluid testing device
US7749174Jun 12, 2002Jul 6, 2010Pelikan Technologies, Inc.Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7758516Feb 14, 2006Jul 20, 2010Roche Diagnostics Operations, Inc.Method and apparatus for sampling bodily fluid
US7780631Nov 6, 2001Aug 24, 2010Pelikan Technologies, Inc.Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7785272Nov 18, 2005Aug 31, 2010Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US7803123Apr 30, 2004Sep 28, 2010Roche Diagnostics Operations, Inc.Lancet device having capillary action
US7822454Jan 3, 2005Oct 26, 2010Pelikan Technologies, Inc.Fluid sampling device with improved analyte detecting member configuration
US7828749Nov 22, 2006Nov 9, 2010Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US7833171Feb 13, 2007Nov 16, 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7841991Jun 26, 2003Nov 30, 2010Roche Diagnostics Operations, Inc.Methods and apparatus for expressing body fluid from an incision
US7841992Dec 22, 2005Nov 30, 2010Pelikan Technologies, Inc.Tissue penetration device
US7850621Jun 7, 2004Dec 14, 2010Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US7850622Dec 22, 2005Dec 14, 2010Pelikan Technologies, Inc.Tissue penetration device
US7874994Oct 16, 2006Jan 25, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7875047Jan 25, 2007Jan 25, 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7892183Jul 3, 2003Feb 22, 2011Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US7901362Dec 31, 2002Mar 8, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7901363Jan 8, 2004Mar 8, 2011Roche Diagnostics Operations, Inc.Body fluid sampling device and methods of use
US7901365Mar 21, 2007Mar 8, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7909774Feb 13, 2007Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7909775Jun 26, 2007Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7909777Sep 29, 2006Mar 22, 2011Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US7909778Apr 20, 2007Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7914465Feb 8, 2007Mar 29, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7938787Sep 29, 2006May 10, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7959582Mar 21, 2007Jun 14, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7976476Mar 16, 2007Jul 12, 2011Pelikan Technologies, Inc.Device and method for variable speed lancet
US7981055Dec 22, 2005Jul 19, 2011Pelikan Technologies, Inc.Tissue penetration device
US7981056Jun 18, 2007Jul 19, 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US7988644Mar 21, 2007Aug 2, 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7988645May 3, 2007Aug 2, 2011Pelikan Technologies, Inc.Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446Oct 19, 2006Aug 30, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8016774Dec 22, 2005Sep 13, 2011Pelikan Technologies, Inc.Tissue penetration device
US8021631Jul 20, 2009Sep 20, 2011Roche Diagnostics Operations, Inc.Body fluid testing device
US8043317Oct 30, 2001Oct 25, 2011Roche Diagnostics Operations, Inc.System for withdrawing blood
US8062231Oct 11, 2006Nov 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8079960Oct 10, 2006Dec 20, 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US8123700Jun 26, 2007Feb 28, 2012Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8123701May 13, 2010Feb 28, 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US8157748Jan 10, 2008Apr 17, 2012Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US8162853Dec 22, 2005Apr 24, 2012Pelikan Technologies, Inc.Tissue penetration device
US8192372Jul 21, 2010Jun 5, 2012Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US8197421Jul 16, 2007Jun 12, 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8197423Dec 14, 2010Jun 12, 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8202231Apr 23, 2007Jun 19, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8206317Dec 22, 2005Jun 26, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8206319Aug 26, 2010Jun 26, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8211037Dec 22, 2005Jul 3, 2012Pelikan Technologies, Inc.Tissue penetration device
US8216154Dec 23, 2005Jul 10, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8221334Dec 22, 2010Jul 17, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8231549May 13, 2010Jul 31, 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US8235915Dec 18, 2008Aug 7, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8251921Jun 10, 2010Aug 28, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US8257276Feb 18, 2010Sep 4, 2012Roche Diagnostics Operations, Inc.Lancet device having capillary action
US8257277Aug 2, 2010Sep 4, 2012Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US8262614Jun 1, 2004Sep 11, 2012Pelikan Technologies, Inc.Method and apparatus for fluid injection
US8267870May 30, 2003Sep 18, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling with hybrid actuation
US8282576Sep 29, 2004Oct 9, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US8282577Jun 15, 2007Oct 9, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8296918Aug 23, 2010Oct 30, 2012Sanofi-Aventis Deutschland GmbhMethod of manufacturing a fluid sampling device with improved analyte detecting member configuration
US8333710Oct 5, 2005Dec 18, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337419Oct 4, 2005Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337420Mar 24, 2006Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337421Dec 16, 2008Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8343075Dec 23, 2005Jan 1, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8343178Aug 2, 2005Jan 1, 2013Misonix, IncorporatedMethod for ultrasonic tissue excision with tissue selectivity
US8360991Dec 23, 2005Jan 29, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8360992Nov 25, 2008Jan 29, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8366637Dec 3, 2008Feb 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8372016Sep 30, 2008Feb 12, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US8382682Feb 6, 2007Feb 26, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8382683Mar 7, 2012Feb 26, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8383041Sep 7, 2011Feb 26, 2013Roche Diagnostics Operations, Inc.Body fluid testing device
US8388551May 27, 2008Mar 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for multi-use body fluid sampling device with sterility barrier release
US8403864May 1, 2006Mar 26, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8414503Mar 16, 2007Apr 9, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8430828Jan 26, 2007Apr 30, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190Jan 19, 2007May 7, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8439872Apr 26, 2010May 14, 2013Sanofi-Aventis Deutschland GmbhApparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8491500Apr 16, 2007Jul 23, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8496601Apr 16, 2007Jul 30, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8523784Apr 30, 2004Sep 3, 2013Roche Diagnostics Operations, Inc.Analytical device with lancet and test element
US8556829Jan 27, 2009Oct 15, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8562545Dec 16, 2008Oct 22, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8574168Mar 26, 2007Nov 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with analyte sensing
US8574496Jan 17, 2013Nov 5, 2013Roche Diagnostics Operations, Inc.Body fluid testing device
US8574895Dec 30, 2003Nov 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US8579831Oct 6, 2006Nov 12, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8622930Jul 18, 2011Jan 7, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8636673Dec 1, 2008Jan 28, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8636758Oct 11, 2011Jan 28, 2014Roche Diagnostics Operations, Inc.System for withdrawing blood
US8641643Apr 27, 2006Feb 4, 2014Sanofi-Aventis Deutschland GmbhSampling module device and method
US8641644Apr 23, 2008Feb 4, 2014Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831Mar 26, 2008Feb 18, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte measurement test time
US8668656Dec 31, 2004Mar 11, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US8672963 *Jan 11, 2008Mar 18, 2014Roche Diagnostics Operations, Inc.Lancet device
US8679033Jun 16, 2011Mar 25, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8690796Sep 29, 2006Apr 8, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8690798May 3, 2012Apr 8, 2014Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US8696596Dec 22, 2009Apr 15, 2014Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US8702624Jan 29, 2010Apr 22, 2014Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US8721671 *Jul 6, 2005May 13, 2014Sanofi-Aventis Deutschland GmbhElectric lancet actuator
US8740813Jul 30, 2012Jun 3, 2014Roche Diagnostics Operations, Inc.Methods and apparatus for expressing body fluid from an incision
US8784335Jul 25, 2008Jul 22, 2014Sanofi-Aventis Deutschland GmbhBody fluid sampling device with a capacitive sensor
US8808201Jan 15, 2008Aug 19, 2014Sanofi-Aventis Deutschland GmbhMethods and apparatus for penetrating tissue
US8828203May 20, 2005Sep 9, 2014Sanofi-Aventis Deutschland GmbhPrintable hydrogels for biosensors
US20080188883 *Jan 11, 2008Aug 7, 2008Roche Diagnostics Operations, Inc.Lancet device
DE8800867U1 *Jan 26, 1988Jun 9, 1988Jakoubek, Franz, 7201 Emmingen-Liptingen, DeTitle not available
EP0949881A1 *Aug 28, 1997Oct 20, 1999Bausch & Lomb Surgical, Inc.Surgical handpiece
EP1395185A2 *Jun 12, 2002Mar 10, 2004Pelikan Technologies Inc.Electric lancet actuator
WO1993005718A1 *Sep 22, 1992Apr 1, 1993Visionary Medical IncIntraocular surgical scissors
WO2002100460A2Jun 12, 2002Dec 19, 2002Don AldenElectric lancet actuator
Classifications
U.S. Classification30/272.1, 30/DIG.100, 310/30, 606/169
International ClassificationA61B17/32
Cooperative ClassificationY10S30/01, A61B17/3211
European ClassificationA61B17/3211