Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3834846 A
Publication typeGrant
Publication dateSep 10, 1974
Filing dateMay 11, 1973
Priority dateMay 12, 1972
Also published asDE2223087A1, DE2223087C2
Publication numberUS 3834846 A, US 3834846A, US-A-3834846, US3834846 A, US3834846A
InventorsAdalbert G, Hess J, Linder E
Original AssigneeBosch Gmbh Robert
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Rotor supporting arrangement for a compressor
US 3834846 A
Abstract
A stationary pintle projects from one side of a housing into a housing cavity, and has two axially spaced bearing supporting a rotor which has a pot-shaped portion including an endless wall surrounding the pintle and closed by a bottom part to which a drive shaft portion of the rotor is secured. The bearings are either provided between the endless wall and the outer surface of the pintle, or between the drive shaft portion and the inner surface of a tubular pintle. Preferably, the center of gravity of the rotor is located between the bearings.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Linder et al.

ROTOR SUPPORTING ARRANGEMENT FOR A COMPRESSOR Inventors: Ernst Linder, Muhlacker; Gerhard Adalbert; Jiirgen Hess, both of Markgroningen, all of Germany Assignee: Robert Bosch Gmbl-l, Stuttgart,

Germany Filed: May 11, 1973 Appl. No.: 359,560

Foreign Application Priority Data May 12, 1972 Germany 2223087 US. Cl. 418/255, 418/133 Int. Cl. F0lc l/00 Field of Search 418/133, 259, 260, 255,

References Cited UNITED STATES PATENTS 7/1936 Garrison 418/255 r 1 Sept. 10, 1974 2,702,509 2/1955 Garnier 418/133 2,857,150 10/1958 2,861,517 11/1958 Nefi 418/267 3,276,388 10/1966 Schimkat 418/133 3,728,046 4/1973 Clark et al 418/133 Primary Examiner-C. J. Husar Attorney, Agent, or Firm-Michael S. Strike ABSTRACT A stationary pintle projects from one side of a housing into a housing cavity, and has two axially spaced bearing supporting a rotor which has a pot-shaped portion including an endless wall surrounding the pintle and closed by a bottom part to which a drive shaft portion of the rotor is secured. The bearings are either provided between the endless wall and the outer surface of the pintle, or between the drive shaft portion and the inner surface of a tubular pintle. Preferably, the center of gravity of the rotor is located between the bearings.

10 Claims, 3 Drawing Figures PAIENIEDSEH @1914 3,834,846

sum 1 or 3 PAIENTEBSEPIOIBH 7 3,834,846

SHEET 2 [1F 3 ROTOR SUPPORTING ARRANGEMENT FOR A COMPRESSOR BACKGROUND OF THE INVENTION The present invention relates to an improvement in compressors, particularly a compressor of the type in which vanes are slidable in substantial radial slots of a rotor and have outer ends engaging an endless cam surface so that expanding and contracting intervane soac'es are formed.

The.U.S. Pat. No. 2,046,873 discloses a machine of this type in which the rotor is supported on a pintle on one side of its housing so that a comparatively long bearing is required for the rotor. causing large size of the machine. The machine of the prior art, which operates satisfactorily as a pump when low sealing requirements are made, but cannot be used as a compressor without great disadvantages. In a vane compressor, the tolerances between the rotor and the inner surface of the housing must be exactly observed, and during operation of the compressor, the adjusted play must not change, since otherwise the efficiency of the compressor is unduly reduced. The machine of the prior art is of the one flow type which causes a one-sided load on the bearings. On the other end, great inertia forces of the heavy rotor cannot be prevented at very high rotary speed. This is particularly important if the compressor is to be used in an automobile, and as has been shown by tests, the one sided support of the rotor is hardly capable of resisting the forces produced by the moving masses when oscillation accelerations up to 40g occur during the operation of a motor car provided with the compressor.

SUMMARY OF THE INVENTION It is the object of the invention to provide a compressor which can be economically manufactured, but has great resistance to wear and a long span of life, even if subjected to high acceleration.

Another object of the invention is to support the rotor of a compressor on two axially spaced bearings on a supporting pintle or trunnion which is located only on one side of the rotor and housing.

In accordance with the invention, the rotor of the compressor is mounted on two bearings on a pintle which at least partly projects into an inner housing cavity, and which supports by the two bearings, a potshaped rotor portion whose endless wall surrounds the pintle, and whose bottom part is secured to, or integral with, a drive shaft portion of the rotor which projects on one side of the rotor out of the housing.

The arrangement of the invention has the advantage that the rotor is mounted on a pintle on one side of the housing, but is supported on two axially spaced bearings. Due to the one-sided support, easy adjustability of the gap between the rotor and the inner endless housing surface is obtained, and on the other hand, the bearing support is capable of withstanding even very high loads.

It is particularly advantageous to support the pintle on one side wall of the housing which closes the cavity of the housing at one axial end, and to mount the side wall on a pivot supported in the housing and permitting angular adjustment of the side wall with the pintle and the rotor relative to the inner endless cam face of the housing.

The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is an axial sectional view illustrating a first embodiment of the invention;

FIG. 2 is a cross sectional view of the embodiment of FIG. 1; and

FIG. 3 is an axial sectional view of a second embodiment.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to FIGS. 1 and 2, a vane compressor has a housing with five parts. An annular central housing part 1 forms together with two. side walls 2 and 4 an inner cavity. The side walls 2 and 4 are covered by outer covers 3 and 5 which are held together by threaded bolts 28 and nuts 30. The annular central housing wall 1 is double-walled and includes an outer wall 6a and an inner wall 6 connected by ribs 6b in such a manner that chambers are formed between the inner wall 6 and the outer wall 6a.

The inner endless wall 6 has an inner endless cam ming surface 60 of elipsoid shape which is the outer boundary of the housing cavity 7.. A rotor t8 isarranged in cavity 7, and has a diameter which, with small play, has a length corresponding to the length of the small axis of the elipsoid inner camming surface 6c. Between the outer surface of rotor 8, and the inner elipsoid surface 60 of the endless inner wall 6, two crescent working spaces are'formed which are divided into suction chambers 7a and pressure chambers 7b by radial vanes 11 mounted in radial slots formed by inner ribs 10 of the rotor 8. As best seen in FIG. 1, rotor 8 has a potshaped portion including an endless wall 8a and a bottom 12. The rotor has a drive shaft portion 13 which is secured to the bottom part 12 of the pot-shaped portion 8. The endless wall 8a surrounds a tubular pintle 14 mounted on side wall 2 and having a portion projecting into the cavity 7, and an axially outer portion projecting into the space between the cover 3 and side wall 2.

The drive shaft portion 13 of the rotor passes through the inner bore of tubular pintle 1.4, and is supported in two axially spaced bearings 15 and 16 mounted in the inner bore of pintle 14 at the ends of the pintle.

The radial outer ends of the vanes 11 slidingly engage the inner elipsoid camming surface 6c and divide the crescent-shaped spaces between the rotor and the camming surface 60, into expanding suction chambers 7a and pressure chambers 7b. The region of the suction chambers is connected by openings 17 in the inner wall 6 with suction chambers 18 formed between the inner wall6 and the outer wall 6a of the central housing portion 1. The pressure chambers 7b communicate with pressure chambers 21 between housing walls I and 6 through outlets 19. Check valve means 20 including springs 32 and abutment members '33 close the outlet 19, but are opened by pressurefluid entering the chamber 21 through outlets l9. Part-cylindrical springs 34 urge a base plate 35 of the check valve means 31 against the outside of the inner wall 6. The check valve arrangement is not an object of the present invention.

On the right side of FIG. 1, the side wall 4 and the cover wall 5 close the inner cavity within the endless wall 6. The cover 5 forms an annular channel 22 which interconnects the pressure chambers 21 in the central housing part 1 with the outlet 23. An annular channel 25 between the cover 3 and the side wall 2 connects the suction chambers 18 with the inlet 26. A bore in cover 3 through which the drive shaft portion 13 of rotor 8 passes, is sealed by an axial sealing means 27.

When the rotor 8 is rotated by operation of the drive shaft portion 13, the vanes 11 move along the endless inner camming surface 6c of the inner endless wall 6 which bounds the housing cavity 7. The intervane spaces 7a expand, and draw the fluid through the opening 17. During further rotation, the intervane spaces 7b contract, so that the compressed medium is discharged through the opening 19 and the check valve means out of outlet 23.

Due to the construction of the compressor permitting two flows of the fluid, the rotor 8 is completely relieved of fluid pressure, so that the rotor can be mounted on the one-sided pintle 14. The one-sided support of the rotor permits easy adjustment of the play between the outer surface of the rotor and the inner surface 60 of planar wall 6. The pivot pin 24, secured to the central housing portion 1, supports the pintle 14 for angular adjusting movement with rotor 8 relative to the inner surface 6c. It is particularly advantageous for the load on bearings 15 and 16 if the center of gravity of the rotor is located between the bearings 15 and 16 and preferably if a vertical line from the center of gravity passes through the axis of the rotor shaft 13 and of the bearings 15 and 16.

The arrangement of the invention shown in FIG. 1 permits the mounting of the rotor 8, and more particularly of its drive shaft portion 13, on two axially spaced bearings 15 and 16 supported on the side wall 2 by pintle 16, without requiring one of the bearings to be located outside of the other side wall 4.

FIG. 3 shows another embodiment of the invention whose general construction is similar to the construction of the embodiment of FIGS. 1 and 2, but the rotor is differently constructed. The housing consists of five parts, a central housing portion 41, two side walls 42 and 44, and two covers 43 and 45. A pintle 54 is supported on the side wall 42 projecting into the cavity 7 formed by the inner endless camming surface 47. As in the embodiment of FIG. 1, the free end of the pintle 54 is spaced from the side wall 42, and the rotor 48 has a pot-shaped portion with an endless wall 48 surrounding pintle 54 and the bottom part 48b located adjacent side wall 42. The bottom part 48b is integral with the drive shaft portion 53 which is mounted in the cover wall 43, sealed by sealing means 67. The endless wall of the potshaped rotor portion 48 surrounds the pintle 54,and

between theinner cylindrical surface of the endless wall 48a and the outer surface of the pintle 54, axially spaced bearings 55, 56 are provided so that the rotor ment of side wall 44 with pintle 54 and rotor 48 relative to the inner endless camming surface 47 on which the outer ends of the vanes slide.

The embodiment of FIG. 3 has the advantage that the drive shaft portion 53 isshort. In the embodiment of FIGS. 1 and 2, the drive shaft portion 13, which passes through the interior of the pot-shaped rotor portion, is much longer so that resonance oscillations are possible which are avoided by the embodiment of FIG. 3.

In both embodiments, the bottom part 12 or 48b of the pot-shaped rotor portion, is located between the free end of pintle 14 or 54 and the respective side wall 4 or 44.

Generally speaking, the arrangement of the present invention comprises housing means including first and second side wall means 2, 3, 4, 5 or 42, 43, 44, 45 and forming a cavity 7; a stationary supporting pintle 14 or 54 secured at one end to one of said side wall means and projecting therefrom into said cavity, the other end of said pintle being spaced from the respective other side wall means; rotor means 8 or 48 having an axis and located in said cavity 7, said rotor means including a pot-shaped portion having an endless wall or 48c surrounding said pintle 14 or 54, and a bottom part 12 or 48a located between said other end of said pintle and said other side wall means, said rotor means 8 or 48 further including a drive shaft portion 13 or 53 projecting from said bottom part 12 or 48a through said first side wall means 2, 3 or 42, 43 out of said cavity; and two bearings 15, 16 or 55, 56 located spaced along the length of said pintle 14 or 54 and supporting said rotor means on said pintle for rotation about said axis.

It will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of rotor supporting arrangements for compressors differing from the type described above.

While the invention has been illustrated and described as embodied in a compressor in which the rotor is supported on two bearings axially spaced along a pintle, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.

Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.

What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.

We claim:

1. Rotor supporting arrangement for a compressor, comprising housing means including first and second side wall means, and forming a cavity; a stationary supporting pintle projecting from one of said side wall means into said cavity and having a free end spaced from the respective other side wall means; rotor means having an axis, and located in said cavity, said rotor means including a pot-shaped portion having an endless wall surrounding said pintle, and a bottom part located between said free end of said pintle and said other side wall means, said rotor means further including a drive shaft portion projecting from said bottom part through said first side wall means out of said cavity; and two bearings mounted on said pintle spaced from each other and supporting said drive shaft on said pintle for rotation about said axis.

2. Arrangement as claimed in claim 1, wherein said axis of said rotor means and of said bearings is horizontal; and wherein a vertical line through the center of gravity of said rotor means passes between said bearings.

3. Arrangement as claimed in claim 2, wherein said vertical line and said horizontal axis intersect in a common plane.

4. Arrangement as claimed in claim 1, wherein said one side wall means include an outer cover, and a planar end wall bounding one axial end of said cavity and supporting said pintle.

5. Arrangement as claimed in claim 4, wherein said housing means includes a central annular housing part on which said first and second side wall means abut, and a pivot pin secured to said annular central housing part and mounting said end wall for angular adjustment with said pintle.

6. Arrangement as claimed in claim 1, wherein said one side wall means is said first side wall means and said other side wall means is said second side wall means; wherein said pintle is tubular and has an inner cylindrical bore; wherein said bearings are mounted in said cylindrical bore; and wherein said drive shaft portion is located in said cylindrical bore supported on said bearings and passes through said endless wall of said pot-shaped part, said drive shaft portion being secured to said bottom part so that said pot-shaped portion of said rotor means is supported by said drive shaft portion on said tubular pintle.

7. Arrangement as claimed in claim 6, wherein said tubular pintle includes a tubular portion projecting axially outward from said first side wall means; and wherein one of said bearing is located in said tubular portion.

8. Arrangement as claimed in claim 1, wherein said one side wall means is said second side wall means; wherein said bottom part is located adjacent said first side wall means; wherein said drive shaft portion is secured to the outside of said bottom part and projects out of said cavity through said first side wall means;.and wherein said bearings are located between the outer surface of said pintle and the inner surface of said endless wall of said pot-shaped portion of said rotor means.

9. Arrangement as claimed in claim 8, wherein said bottom part is integral with said drive shaft portion.

10. Arrangement as claimed in claim 1, wherein said bottom part has a slide face slidingly engaging said free end of said pintle.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2046873 *Nov 28, 1934Jul 7, 1936Garrison Harry ARotary pump
US2702509 *Jan 24, 1952Feb 22, 1955Air EquipmentRotary pump
US2857150 *Jun 14, 1954Oct 21, 1958Shell DevCentrifugal pump for control systems and method of establishing a fluid pressure
US2861517 *Sep 9, 1955Nov 25, 1958American Brake Shoe CoVane pump
US3276388 *Dec 7, 1964Oct 4, 1966Franz Schimkat GerhardRotary piston pump
US3728046 *Oct 6, 1971Apr 17, 1973Trw IncPower steering pump
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4265603 *Apr 10, 1979May 5, 1981Diesel Kiki Co., Ltd.Refrigerant compressor for air conditioning of vehicles
US4395203 *Mar 26, 1981Jul 26, 1983Diesel Kiki Co., Ltd.Vane compressor having a discharge rate control
US4494917 *Aug 5, 1983Jan 22, 1985Seiko Seiki Kabushiki KaishaBearing structure for an air compressor
US4505653 *May 27, 1983Mar 19, 1985Borg-Warner CorporationCapacity control for rotary vane compressor
US4545747 *Dec 7, 1983Oct 8, 1985Hitachi, Ltd.Scroll-type compressor
US4711620 *May 28, 1985Dec 8, 1987Hitachi, Ltd.Moving vane type compressor
US4755115 *Jun 22, 1987Jul 5, 1988Atsugi Motor Parts Company, LimitedShaft seal assembly for compressor
US5201878 *Oct 8, 1991Apr 13, 1993Toyoda Koki Kabushiki KaishaVane pump with pressure chambers at the outlet to reduce noise
US5496160 *Jul 3, 1995Mar 5, 1996Tecumseh Products CompanyScroll compressor having a suction check valve
US5642991 *Mar 11, 1996Jul 1, 1997Procon ProductsSliding vane pump with plastic housing
US5924856 *Nov 22, 1996Jul 20, 1999Zexel CorporationVane compressor having a movable pressure plate and a unitary front head and cam ring
US6050796 *May 18, 1998Apr 18, 2000General Motors CorporationVane pump
US6095777 *Mar 17, 1998Aug 1, 2000Matsushita Electric Industrial Co., Ltd.Hermetic compressor having an inlet port and/or an outlet port with a sealed connecting member
US6227816 *Jun 23, 1999May 8, 2001Luk Fahrzeug-Hydraulik Gmbh & Co. KgHydraulic delivery device
US6666670May 22, 2003Dec 23, 2003Visteon Global Technologies, Inc.Power steering pump
US6935854May 22, 2003Aug 30, 2005Calsonic Compressors Manufacturing Inc.Gas compressor
US8419384 *Oct 14, 2008Apr 16, 2013Standex International CorporationSliding vane pump
US8672658 *Apr 21, 2010Mar 18, 2014Slw Automotive Inc.Vane pump with improved rotor and vane extension ring
US20090104049 *Oct 14, 2008Apr 23, 2009Jie JangSliding Vane Pump
US20120034125 *Apr 21, 2010Feb 9, 2012Slw Automotive Inc.Vane pump with improved rotor and vane extension ring
CN100385121CMay 26, 2003Apr 30, 2008康奈可压缩机株式会社Air compressor
CN101709700BNov 12, 2009Feb 1, 2012浙江万安科技股份有限公司一种汽车用湿式旋片电动真空泵
EP1365153A1 *May 19, 2003Nov 26, 2003Seiko Instruments Inc.Gas compressor
Classifications
U.S. Classification418/270, 418/133
International ClassificationF04C29/00, F04C18/34, F01C1/00, F01C1/344, F04C18/344
Cooperative ClassificationF04C18/3441, F04C29/0078
European ClassificationF04C29/00D4