Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3834963 A
Publication typeGrant
Publication dateSep 10, 1974
Filing dateFeb 14, 1972
Priority dateJan 23, 1970
Publication numberUS 3834963 A, US 3834963A, US-A-3834963, US3834963 A, US3834963A
InventorsHoffman W
Original AssigneeB & J Mfg Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for applying labels to containers
US 3834963 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Sept. 10, 1974 w, HOFFMAN- $834,963-

METHOD FOR APPLYING LABELS TO CONTAINERS Filed Feb. 14, 1972 5 Sheets-Sheet 1 5 Sheets-Sheet 2' Sept. 10, 1974 w. HOFFMAN METHOD FOR APPLYING LABEL S TO CONTAINERS Filed Feb. 14. 1972 Sept. 10, 1914 METHOD FOR APPLYING LABELS T0 coumnmns Filed Feb. 14. '1972 5 Sheets-Sheet 5 Fig.4

w. HOFFMAN 3,834,963

w. HOFFMAN I 3,834,963 METHOD FOR APPLYING LABELS TO CONTAINERS Filed Feb. 14 1972 Sept. 10, 1914 SSheets-Sheet 4 Sept. 10, 1014 METHOD FOR APPLYING LABELS 'IO CONTAINERS Filed Feb. 14. 1972. 5 sheets sheet 5 Fig.14 Fig.15 LOCATION c Y .LQCATION D LOCATION t-:

- w. HOFFMAN 3,834,963

United States Patent Office 3,834,963 Patented Sept. 10, 1974 3,834,963 METHOD FOR APPLYING LABELS TO CONTAINERS Wolfgang Hoffman, Modesto, Calif., assignor to B & H Manufacturing Company, Inc., Modesto, Calif.

Continuation-impart of application Ser. No. 5,187, Jan. 23, 1970, now Patent No. 3,765,991. This application Feb. 14, 1972, Ser. No. 226,064

Int. Cl. B65c 3/08, 3/12 US. Cl. l56215 8 Claims ABSTRACT OF THE DISCLOSURE BACKGROUND OF INVENTION This is a continuation-in-part of my prior copending patent application Ser. No. 5,187, filed Jan. 23, 1970 in the US. Patent Office, now Pat. No. 3,765,991, dated Oct. 16, 1973.

It is conventional in the application of labels to containers such as cans or the like for rather complicated and cumbersome equipment to be employed. Conventional equipment in this general field usually includes automatic label feeding magazines with glue applying means and can rotating means.

The commercial labeling of cans employed in commerce as containers for vegetables, fruit, soup and the like, must necessarily be accomplished at high speed. This imposes rather stringent requirements upon equipment employed and problems of label registry are oftentimes encountered. Additionally difiiculties in label feed and the necessity of refilling magazines of pre-cut labels pose problems, particularly in relation to high speed operation.

A further difiiculty existing in this general field is the high degree of complexity of labeling apparatus. Such apparatus may require substantial maintenance and is subject to highly undesirable down time for such maintenance and possible repair.

The present invention provides a truly continuous high speed method and apparatus for application of labels to containers while at the same time minimizing the complexity of the apparatus.

SUMMARY OF INVENTION The method and apparatus of the present invention is applicable to the attachment of labels to a wide variety of different types of containers. The invention is, however, described in connection with the application of printed paper labels to cylindrical cans of the type commonly employed in the retail sals of canned goods.

Individual cans are fed to an input station where they are fixably clamped on the periphery of a rotating drum. The cans are successively moved past a first station where an adhesive is applied to each can at a predetermined location thereon and the cans are then moved onto a labeling station.

Labels are herein provided as a continuous strip of paper or the like upon which there may be previously or at-the time of application printed labeling information. A rotary mounted vacuum disc or drum is employed to grip the tape and move labels cut therefrom into position for engagement with the can. After the tape is gripped it is then cut by cutting means including tape return means to ensure a continuous feed of tape onto the drum. The vacuum drum is additionally provided with a particular peripheral configuration including recessed and raised portions for cooperation with an adhesive wheel applying an adhesive to the trailing edge of each label passed thereover by the drum and located at a raised portion of the vacuum drum. Each label is rotated into position for engagement with a can at the location of adhesive on the can at the labeling station.

Both can and label are moving in substantially the same direction at the same speed at the time of engagement of label and can and provision is made for releasing the vacuum holding the label so engaged with the can so that the can moves away from the labeling station with the leading edge of the label adhered thereto. The rotating container drum then moves the can or the like to a wrapping station or discharge station whereat the can is released from the drum and is rolled along a track by a gripping conveyor belt. This then wraps the label about the can and adhesively secures the trailing edge of the label either to the can or in overlapping relation to the leading edge so as to be secured to the label thereat.

DESCRIPTION OF DRAWINGS The present invention is illustrated as to steps in the method of labeling hereof and as to particular preferred embodiments of the apparatus of the present invention in the accompanying drawings wherein:

FIG. 1 is a schematic illustration of steps in the method of the present invention;

FIG. 2 is a schematic illustration in side elevation of labeling apparatus in accordance with the present invention;

FIG. 3 is a schematic illustration of tape feed apparatus employed with the labeling apparatus of FIG. 2;

FIG. 4 is a partial sectional view taken in the plane 4-4 of FIG. 2, and illustrating can gripping means on the rotary turret or drum of the apparatus of the present invention;

FIG. 5 is a partial sectional view in the plane 55 of FIG. 2 illustrating can rotating means in the wrapping station of the present invention;

FIGS. 6, 7 and 8 are schematic illustrations of label cutting means and various positions of operation thereof;

FIG. 9 is an enlarged partial view of the labeling station, also showing cutting means and means for applying adhesive to labels;

FIG. 10 is a partial sectional view of the vacuum drum of the labeling station of the present invention taken in the plane 10-10 of FIG. 9;

FIGS. 11, 12, 13, 14 and 15 are schematic illustrations of operations performed at successive positions A, B, C, D and E of FIG. 2; and

FIG. 16 is an isometric schematic illustration of drive means for apparatus of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENT There is first set forth herein a brief description of the improved method of the present invention followed by a description of a preferred embodiment of the apparatus of this invention.

It is provided hereby that a large number of containers such as cylindrical cans shall be rapidly operated upon to apply labels thereto. In this respect, labels applied to containers in accordance with the present invention may, for example, wrap entirely about the container or, alternatively extend only a portion of the circumference thereabout. In the following description it is assumed that the label shall be wrapped entirely about a cylindrical container; however, it is understood that those skilled in the art may make such minor modifications or variations in the present invention as will then naturally apply the invention to alternatives as noted above and including other shaped containers.

Considering first the method of the present invention as schematically illustrated in FIG. 1, cylindrical cans 51 are fed successively from a supply thereof for labeling. Each can 51 is moved along a predetermined path which is preferably an arc of a circle as indicated at 52 while retaining the can against rotation about its axis. At an intermediate point along this path 52 adhesive may be applied to a predetermined location on each can, as indicated at 53. The can is then moved further on to a labeling station, as indicated at 54, whereat the label is attached to the can.

Individual labels 56 are provided from an elongated tape or strip 57 which may be mounted upon a reel or the like 58 for continuous supply. Labels are held or mounted as by vacuum to move in an are into contact with the can at the leading edge of the label at the labeling station 54. The can and label move in substantially the same direction and at the same speed at the time of contact therebetween. Individual labels are cut from the tape or strip 57 as indicated at 59 and after separation from the strip an adhesive is applied to the label at predetermined portions thereof as indicated at 61.

The method of the present invention preferably provides for application of adhesive only to the trailing edge of the label 56 with the leading edge of the label then being attached to the can by adhesive previously applied to the can 53. As soon as the label and can come into contact the label is released as by termination of vacuum gripping of the label so that further movement of the can along its path 52 draws the label with the can.

The can 51 with the label 56 afiixed thereto at the leading edge of the label is then released from the restraint from axial rotation and the label is wrapped about the can 51 by rotating the can, as generally indicated at 63. This may be accomplished by placing the can upon a track or the like and forcing the can to roll along the track as by means of a conveyor belt 64 engaging the can. This then causes the label to be wrapped about the can so that the trailing edge of the label having an adhesive on the under side thereof engages the can or the leading edge of the label to secure the label about the can.

It will be appreciated that the above briefly described method of the present invention provides a simple but highly effective manner of applying labels to cans. In particular this method is adapted to very high speed operation as, for example, a labeling rate of 750 cans per minute. It is also to be noted that the method incorporates certain alternatives. Thus, application ofan adhesive to the can may be excluded from the process and adhesive applied to the label both at the leading and trailing edge thereof and possibly even in between if such is desired. It is also possible in accordance with the present invention to provide for printing of labels immediately prior to their application to a can so that the tape 57 might thus comprise only a strip of paper or the like. The manner of cutting the labels is also subject to certain variations as, for example, by the provision of a moving knife pass ing a stationary knife and preferably with provision to ensure that the cut end of the tape then proceeds on along the intended path of the label. Arrows in FIG. 1 indicate such operations. The manner of gripping individual labels and of applying an adhesive thereto is also susceptible to various modifications and reference is made to the following description of an advantageous embodiment of apparatus of this invention in this respect.

Considering now such advantageous embodiment of the apparatus and referring to FIG. '2, an inclined track 81 is provided, down which there is fed a plurality of cylindrical cans 51 for labeling. Feed means are provided for moving the cans 51 from the lower end of the track and such may, for example, take the form of a helical screw 82. This screw feed mechanism 82 includes a central shaft 86 journalled in bearing mounts 87, and havingat the free shaft end a pinion gear 88 engaging a driving bevel gear 89. It is noted at this point that drive means for various elements of the present invention are later described in connection with a schematic illustration thereof. Remotely actuated stop means 92 may also be provided to stop cans from feeding when desired.

A rotatable container transport drum 96 is provided, which may be formed as a pair of circular flanges 96' (FIG. 4) mounted upon a drive axle 97 for rotation with such axle. Containers 51 are engaged by the drum at a receiving station 98 for orbital movement by the drum about the periphery thereof as the drum rotates. Individual containers are engaged by the drum at the receiving station 9 8 by restraining or gripping means 99 illustrated in FIG. 4. Such means includes a lever 101 pivotally mounted on a shaft carried by a lateral extension of a flange of the drum and having a can engaging a pad 102 at one end of the lever. The other end of the lever carries a cam follower 103 adapted to engage a cam or track 104 mounted upon a rigid structural side plate 106 at the receiving station. A compression spring 107 mounted between the level 101 and the drum flange urges the can receiving end of the lever into can engaging relationship. Thus as each gripping means approaches the receiving station, the cam follower 103 thereof engages the cam surface 104 at the receiving station to pivot the lever 101 into open position so that the gripping means receives a can 51 from the feed mechanism 82.

With the can in position as illustrated in FIG. 4 a continued rotation of the drum moves the came follower 103 off the high portion of cam surface 104 so that the lever 101 is pivoted by the spring 107 to engage pad 102 against one end of the can, and clamps the same against the left flange 96 appearing in FIG. 4; the right flange 96' being of lesser diameter to allow clearance for pad 102.

The can or container is thus gripped in fixed position on the periphery of the drum for orbital movement about the drum axis, and it is particularly noted that the cans are restrained against rotation about their axes. It will thus be seen that at the receiving station container transport drum 96 engages can fed to the receiving station by the coveyor means to then move successive cans along the arc of a circle as the drum rotates.

Certain operations are performed upon cans moved about the circular arc of the periphery of the drum as the drum rotates, as described below, and the cans are then released from restraint at a release station 111 by the provision of a second cam surface such as the surface 104 at such location. This then serves to pivot the gripping lever 101 away from the can so that the can is free to move from the drum and such movement is discussed below.

The apparatus incorporates along the path of containers between the receiving and release stations a glue station 53 at which adhesive is applied to the cans, and a labeling station 54, employing the same numerals as those utilized above in connection with the description of the method of the present invention. The glue station 53 comprises a driven glue wheel 116 mounted for rotation upon a vessel 117 containing a liquid adhesive 118. Preferably this liquid adhesive comprises a hot melt (molten resin) maintained in molten state by suitable heating means 119.;

The glue wheel 116 is dipsosed with the periphery thereof on the circle described by the outer periphery of containers moved about the axis of the drum 96 as the drum rotates. Consequently, as individual containers pass the glue station, the outermost periphery thereof will touch the glue wheel 116 to pick up a line or pattern of dots of adhesive. Glue wheel 16 is preferably driven as can be seen from FIG. 16.

Following the glue station 53 in the traverse of cans or containers between the receiving and discharge stations, there is provided the labeling station, as it is termed herein. Considering now the labeling station 54, it is first noted that the present invention provides for employing an elongated continuous parent strip or tape 57 of material from which individual labels are formed for application to cans or containers. Tape supply is indicated at 121 in FIG. 2 and is shown in more detail in FIG. 3. As shown in FIG. 3 the strip may be provided upon a reel 122 and fed through guides 123 and tensioning and slack pickup means 124 and about a tape drive roller 126. The slack pick-up mechanism 124 may be substantially the same as that described in my above-noted copending patent application, and generally will be seen to include a drive roller 131 over which the tape passes with a second pivotal- 1y mounted roller 132 controllably bearing on tape passing over the drive roller. Following the drive roller the tape passes beneath a freely rotatable dancer roller 133 mounted on a pivotally mounted lever 134. The pivotal location of the freely rotatable roller 133 depends upon the amount of slack in the tape between the drive roller 131 and the main drive roller 126. A bar 136 connects the lever 134 and a free end of a pivotally mounted lever 137 mounting the roller 132. As the amount of tape between the rollers 1'32 and 126 increases, the freely mounted roller 133 will drop down to ride on this tape and thus through the levers and bars 134, 136 and 137, will pivot the roller 132 away from the drive roller 131 so as to slow down the feed of tape until the slack is taken up. There is also provided a registering device 138 located ahead of the main drive roller 126 and including, for example, a conventional photo sensing device to establish correspondence between an individual label in the strip to the length of an individual label to be cut from the strip. An idler roller 149 engages tape passing over the main drive roller 126.

Provision is made for cutting from the tape 57 individual labels for application to containers or cans and to this end a cutting station or assembly 59 is provided. This station as illustrated in FIGS. 2 and 9 is comprised as a single pair of cutting assemblies with the first thereof including a rotatable drum 142 mounted on a shaft 143- and carrying a pair of cutting blades 144. It will be appreciated that the number of cutting blades 144 may vary depending upon the diameter of the drum 142 and the speed of rotation thereof. The drum shaft 143 is driven by suitable means in conjunction with other components of the apparatus, as can be seen from the schematic view of FIG. 16. The drum 142 may include adjustable guards 145 to prevent tape movement against the drum.

The second cooperating cutting assembly comprises a stationary shear member or blade 46 disposed in position to cooperate with the blades 144 of the rotating drum 142 so as to sever tape passed between the shear member and drum 142. Provision may be also made for moving shear member 146 away from drum 142 as by means of a hydraulic or pneumatic cylinder 147 operating upon a pivoted arm 148 carrying the shear member. This thus provides for preventing engagement of the rotating blades 144 and the shear member 146 when no tape is being fed to the apparatus.

A problem encountered in cutting successive lengths from a tape by means of a single cutting assembly 59, as described above, is the possibility of the leading end of tape fed into the cutting means, engaging the shear member immediately following a cutting operation so that the tape is blocked and hence not fed through the cutting means. An important aspect of the invention is the provision of means preventing occurrence of the abovenoted problem and in this respect reference is made to FIGS. 6, 7 and 8 illustrating different positions of the cutting members. In FIG. 6 there is shown the retracted or inactive position of shear member 146 wherein the arm 148 mounting same is pivoted upwardly as by the hydraulic or pneumatic cylinder 147 of FIG. 2. FIG. 7 illustrates shear member 146 in normal or fixed operative position for tape cutting with a rotating cutting blade 144 engaging same to sever tape 57. It will be seen that at this particular position the upper portion of the tape is forced inwardly after being cut to rest upon the top of stationary shear member 146.

A resilient blade 149 is fixedly mounted on arm 148, and urges the tape to the right in the illustration, away from stationary shear member 146. Thus, as the rotating cutter blade 144 moves past shear member 146', resilient blade 149 pushes the cut end of the tape 57 outwardly of the shear member so that it Will pass over the shear member as illustrated in FIG. 8, and not be blocked. This then prevents possible kinking or hang-up of the tape on the shear member immediately following cutting of a label from the tape. There are also provided suitable guides 150 for the tape at the cutting station and for the cut labels leaving the station.

Labeling station 54, as illustrated in FIGS. 2, 9 and 10, comprises a vacuum drum 151 disposed immediately below cutting station 59 and includes a rotary mounted wheel 152 substantially engaging the periphery of the drum 151 below the engagement of cutting means of the cutting station. Vacuum drum 151 is provided to grip and transport individual labels from the cutting station to engagement with individual cans or containers 51 passing the labeling station. Roller 152 rotates freely while the vacuum drum is rotatably driven. The leading or lower end of tape 57 is engaged between the vacuum drum and roller 152 immediately prior to the cutting of the tape to form a label that is then held and carried about the vacuurn drum as it rotates.

Considering further vacuum drum 151 and referring particularly to FIGS. 9 and 10, it will be seen that the drum is provided with an outer rim 153 which may be formed of rubber or the like and which is provided with transverse rows of radial openings 154 therethrough. Each row of openings 154 across the drum rim communicate with a separate radial drum passage 156. The drum 151 rotates against a fixed block or the like 157 having a vacuum manifold 158 therein extending in an arc about somewhat less than 180 of drum rotation again as indicated in FIG. 10. The drum passages 156 individually extend to a side of the drum adjacent to block 157 for communication with the vacuum manifold 158 through passages 159, over a predetermined arc of rotation of the drum. Manifold 158 is adapted for connection to a vacuum source to thus draw a vacuum through the peripheral openings 154 in the drum for a portion of each drum rotation.

The present invention furthermore provides for the application of an adhesive to the outer face of labels carried by the vacuum disc 151. To this end there is provided the adhesive station 61 illustrated in FIG. 2, and including a rotary mounted wheel dipping into a pool 171 of liquid adhesive disposed in an open topped container 172. It is preferred in accordance with the present invention that adhesive shall be applied to the label at the trailing edge thereof, and this is accomplished by forming small radial projections 173 (FIGS. 2, 9 and 12), on the outer periphery of and extending transversely of vacuum drum 151 and spaced apart about such periphery a distance slightly greater than the length of each label. Immediately behind each projection 173 there is provided a transversely extending channel or groove 174 in the periphery of the vacuum drum. The spacing is such that each cut label 56 is placed on the drum with the leading edge of the label immediately over a groove or depression 174 and extends about the periphery of the drum to dispose the trailing edge of the label upon a radial projection 173.

The adhesive applying wheel 170 is rotatably mounted on a pivotally mounted bracket 170' (FIG. 2) which is periodically actuated toward and away from wheel 170 a short distance of about inch in timed relationship with travel of successive labels, by suitable actuating mechanism generally illustrated at 176, to apply the adhesive only to the trailing edge portion of each label which rests on projection or ridge 173. The ridge raises the tail or trailing edge of the label to enhance contact thereof with the adhesive applying wheel for application of the adhesive to the trailing edge of the label. The channel or recess 174 in back of each ridge 173 serves as a means to receive any excess of adhesive applied by wheel 170 to the label to preclude build-up of adhesive on the vacuum drum with consequent fouling of the drum.

It is thus seen that as indvidual labels 56 are severed from the parent tape 57 following gripping of the leading edge of the label between the vacuum drum and wheel 152, each label is drawn by vacuum application into contact with the drum periphery and moved by the vacuum drum in an arcuate path substantially tangent to the side of a container, into position for engagement with a can or -container 51 carried by the drum 96. While on the vacuum drum, adhesive is applied by wheel 170 to the back side of the trailing edge of each label. Referring again to FIGS. 2 and 9, it will be seen that the back side of the leading edge of a label is applied to can 51 on the hot melt adhesive which had been previously applied to the can as the can and label move in substantially the same direction at substantially the same speed. Thus, the peripheral velocity of vacuum drum 151 is made equal to the peripheral velocity of the container carrying drum 96; and at the point of initial contact of label and can both the can and the label are moving in substantially the same direction and at the same speed. The application of vacuum to the Openings 154 in the periphery of the vac uum drum is terminated at the same time as the leading edge of the label engages the hot melt adhesive on the can to free the label from the drum. The can then moves away from the vacuum drum to pull the label from the drum so that the label follows the container along its path with the tail of the label loosely trailing as shown in FIGS. 1 and 2.

The can, with the leading edge of the label secured to the periphery thereof by the hot melt adhesive, is then moved to the discharge station 111. At the discharge station the individual cans are released from the gripping means 99 so as to be free to rotate about their axes. Also, at the discharge station the cans move onto a track 181 preferably having a frictional surface to preclude slippage. The movement of cans onto the track is accomplished by an endless belt 182 passing about a pair of belt wheels or rollers 183 and 184 and formed, for example, with a cogged interior surface to engage such wheels, at least one of which is driven. There are additionally provided spring loaded idler rollers 186 engaging the lower portion of the belt loop on the upper surface thereof and the belt is disposed in position to engage the upper surface of each can as it enters the discharge station 111. It will thus be appreciated that, inasmuch as the cans are released from the gripping means at the discharge station, the belt 182 will roll the cans along the track 181 to thus consequently wrap the label 56 about the can. The label is preferably cut slightly longer than the can circum ference so that the trailing edge of the label will overlap the leading edge and become adhered thereto.

The successive steps of label application are particularly illustrated in the schematic showings of FIGS. 11 to 15 representing can and label positions at locations A, B, C, D and B, respectively, of FIG. 2. Referring now to these FIGS. 11-15 it is noted that at station A a line or series of dots of hot melt adhesive 120 are applied to each can 51 moving past glue station 53. The application of adhesive, desirably a molten resin, to the can insures adherence of the label and facilitates removal of the label from the vacuum drum.

At labeling station B (FIG. 12) the leading edge of a label 56 is moved in the same direction and at the same speed as the glue line 120 on the can and into engagement with same. The label is then released from the vacu um drum to move with the can as it continues its course about the periphery of the container drum 96, and'this condition is illustrated in FIG. 13 wherein the can having the leading edge of a label attached thereto approaches the moving belt 182. As the belt engages the can it rolls the can along the track 181 as illustrated at FIG. 14; to thus wrap the label about the can.

Completion of the wrapping operation is illustrated in FIG. 15 wherein the trailing edge of the label with an adhesive from the labeling station at vacuum drum 151 overlaps the leading edge of the label and is pressed thereagainst by the belt preferably backed by a spring loaded roller 186 thereat. The rollers 186 may be mounted for free rotation and also limited spring loaded vertical movement as indicated in FIGS. 2 and 15 to accommodate passage of the overlapped label through the discharge station and to apply an added pressure to the adhered overlap.

The cans will thus be seen to be rapidly and simply labeled by a truly continuous high speed operation. Complexities of apparatus are minimized hereby, and consequently problems of maintenance and repair are likewise minimized. Truly high speed operation is achieved by the present invention to thus commend the method and apparatus hereof to widespread commercial application.

Any suitable drive means may be employed for operating the elements of the present invention in timed rela tionship. FIG. 16 illustrates schematically a suitable system comprising a main drive gear box 191, driven by a variable speed motor 191'. Gear box 19 is connected by means including chain 192 to drive a main power shaft 193 in a counter-clockwise direction, as indicated by the direction arrow in FIG. 16.

Shaft 193 is connected by means including chain 194 to drive the container drum shaft 97; and shaft 97 is connected by means including chain 196 to a take-offshaft 197 to which pinion 89 is secured and which drives screw conveyor 82. Take-off shaft 197 is connected by means including chain 198 to drive the hot glue applying wheel 116. Vacuum drum 151 is driven from shaft 193- by means of gearing 201 and shaft 202; and means in: cluding chain drive 203 is provided to drive endless belt 182 by which the labels are wrapped around the containers. Also, the cutting mechanism indicated at 59 is driven from shaft 193 by means including chain 204; and glue applying wheel which applies adhesive to the label on the drum, is driven from shaft 193 by means including chain 206.

The means for driving tape driving wheel 131, appearing also in FIG. 3, is likewise from shaft 193 by means including chain 207, shaft 208 and chain 209. Because of slack which may occur in the tape 57, the other drive wheel 126 for the tape (also appearing in FIG. 3) is. driven by means including chain 211 connected to an automatically controlled differential indicated at 212, the output shaft 213 of which is connected by chain 214 to wheel 126. The differential 212 is electronically controlled by the conventional photoelectric sensing means 138 (FIGS. 2 and 3) to synchronize label spacing on tape 57 with the cutting knives 144-146.

I claim:

1. A method of continuously applying individual labels to a succession of containers having a substantially cylindrical configuration, comprising gripping each container at opposite ends thereof against rotation about its axis and while thus gripped against such axial rotation con-' tinuously conveying the container along a predetermined path, providing a rotatable vacuum adjacent and facing said conveying path, continuously feeding a parent strip of label material toward the vacuum drum to successive ly grip the leading edge portion of the front side of saidparent strip with the vacuum drum to be held thereby with the portion of the parent strip which is to form the trailing edge of label unsevered from the strip, after such leading edge is thus held and while it is still being held cutting successive individual labels from the strip at a location ahead of said leading edge and ahead of said vacuum drum, continuously conveying said individual labels by the vacuum drum along a path adjacent the container conveying path to engage the back side of leading edges of successive labels with successive containers While the container and the label are moving in substantially the same direction and at substantially the same speed, the back side of the label having adhesive applied thereto to adhere it to the container, releasing the gripping of each container after the label is adhered to the container, and subsequently rotating the container about its axis to wrap the label about the container.

2. The method of claim 1 further defined by applying to the container an adhesive on a circumferential portion thereof prior to label and container engagement, applying said first mentioned adhesive to the back side of the label at the trailing edge thereof, and engaging the leading edge of the label with the adhesive coated portion of the container to attach the label thereto whereby subsequent container rotation about its axis presses the adhesive coated trailing edge of the label against the container to complete container labeling.

3. The method of claim 2 further defined by cutting the label with a total length slightly longer than the container circumference whereby wrapping the label about the container overlaps the trailing edge and leading edge of the label on the container.

4. The method of claim 1 further defined by moving the container along a path that is an arc of a first circle, and moving the label along a path that is the arc of a second circle, said circles being substantially tangent.

5. The method of claim 1 further defined by cutting said labels from said strip of label material by a rotary cutter periodically passing in cutting relation a stationary cutter, and preventing blocking of the strip against the stationary cutter by resiliently urging the strip of labels away from the stationary cutter at the cutting location.

6. The method of claim 1 wherein said urging of the strip away from the stationary cutter is eflected by the provision of a resilient blade engageable with said strip.

7. The method of claim 1 further defined by applying adhesive to the trailing edge of each label while on the vacuum drum by a rotatable adhesive applying wheel, providing a transversely extending ridge on said drum to displace the trailing edge of the label and enhance contact with the adhesive applying wheel, and providing a transversely extending channel on the drum adjacent said ridge to receive any excess adhesive and thus prevent build-up of adhesive on the drum.

8. The method of claim 1 wherein a liquid adhesive is applied to an edge portion of each label on the vacuum drum, and build up of adhesive on the vacuum drum is prevented by the provision of a transversely extending channel on the vacuum drum at a location where the adhesive is applied, to receive any excess adhesive.

References Cited UNITED STATES PATENTS 3,690,997 9/1922 Bofinger et a1. 156-215 X 3,159,521 12/1964 Pechmann 156-519 X 3,404,059 10/1968 Ritterhofi 156-363 3,472,722 10/1969 Hutchinson 156-566 X Re. 24,097 11/1955 Van Hofe 156-212 DANIEL J. FRITSCH, Primary Examiner B. J. LEWRIS, Assistant Examiner U.S. Cl. X.R.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3979252 *Dec 21, 1973Sep 7, 1976The Hoyt CorporationApparatus for manufacturing cellular structures
US4111740 *Feb 28, 1977Sep 5, 1978Molins LimitedApparatus for joining axially abutting rods of the cigarette industry
US4148677 *Oct 20, 1977Apr 10, 1979Western Electric Company, IncorporatedMethod of and apparatus for taping an article
US4447280 *Oct 22, 1981May 8, 1984Malthouse Martin DLabelling machine
US4556441 *Jan 24, 1983Dec 3, 1985Faasse Jr Adrian LPharmaceutical packaging method
US4561928 *Mar 22, 1984Dec 31, 1985Malthouse Martin DLabelling machine
US4626314 *Oct 5, 1984Dec 2, 1986Labelette CompanyLabeling machine attachment for stack exiting of round labeled objects
US4693774 *May 15, 1986Sep 15, 1987Labelette CompanyMethod of labeling using a semi-automatic labeling machine
US4735668 *Sep 22, 1986Apr 5, 1988Shibuya America CorporationMethod of adhering labels to containers
US4789415 *Feb 9, 1987Dec 6, 1988Faasse Jr Adrian LPharmaceutical packaging machine
US5030311 *Oct 2, 1989Jul 9, 1991Eastman Kodak CompanyMethod and apparatus for taping lead and tail ends of web during winding onto a core
US5344519 *May 14, 1993Sep 6, 1994Cms Gilbreth Packaging SystemsApparatus for applying labels onto small cylindrical articles having improved vacuum and air pressure porting for label transport drum
US5350482 *Jun 30, 1992Sep 27, 1994Cms Gilbreth Packaging SystemsApparatus and method for applying labels onto small cylindrical articles
US5399216 *May 14, 1993Mar 21, 1995Cms Gilbreth Packaging SystemsApparatus and method for applying labels onto small cylindrical articles using pressure applicator to prevent label mismatching
US5401353 *Jun 11, 1993Mar 28, 1995Cms Gilbreth Packaging SystemsApparatus and method for applying labels onto small cylindrical articles using static wipers
US5405487 *Sep 1, 1993Apr 11, 1995Cms Gilbreth Packaging Systems, Inc.Apparatus and method for applying labels onto small cylindrical articles and web and adhesive delivery mechanism
US5437759 *Jun 14, 1994Aug 1, 1995Westbury; IanApparatus and method for applying labels onto small cylindrical articles using wiper speed differential
US5458728 *Jun 27, 1994Oct 17, 1995Galchefski; JohnApparatus and method for applying labels onto small cylindrical articles with improved seam formation by retarded article rotation
US5458729 *Dec 15, 1994Oct 17, 1995Galchefski; John M.Apparatus and method for applying labels onto small cylindrical articles using improved film feed and cutting system
US5480502 *Mar 28, 1995Jan 2, 1996Cms Gilbreth Packaging Systems, Inc.Method and apparatus for applying labels to articles using cooling air on label receiving positions
US5512352 *May 4, 1995Apr 30, 1996Cms Gilbreth Packaging Systems, Inc.Small cylindrical article having film wrap covering with solvent seal bond
US5516576 *Mar 3, 1995May 14, 1996Cms Gilbreth Packaging Systems, Inc.Small cylindrical article having film wrap covering
US5522960 *Mar 28, 1995Jun 4, 1996Cms Gilbreth Packaging SystemsMethod and apparatus for applying labels to tapered articles
US5538575 *Oct 21, 1994Jul 23, 1996Cms Gilbreth Packaging SystemsLabelling machine and method for applying adhesive to labels for attachment to containers and article therefore
US5679209 *Apr 18, 1996Oct 21, 1997Cms Gilbreth Packaging Systems, Inc.Labelling machine
US5688363 *Apr 18, 1996Nov 18, 1997Cms Gilbreth Packaging Systems, Inc.Labelling machine
US5749990 *Apr 21, 1995May 12, 1998Cms Gillbreth Packaging Systems, Inc.Method and apparatus for applying labels to articles using bottom feed conveying unit
US5779835 *Nov 2, 1995Jul 14, 1998Cms Gilbreth Packaging Systems, Inc.Method and apparatus for applying labels to articles using bottom feed chain conveyor
US5863382 *Sep 22, 1995Jan 26, 1999Trine Manufacturing Company, Inc.Labeling machine with improved cutter assembly
US5964974 *Mar 14, 1996Oct 12, 1999Trine Manufacturing Company, Inc.Method and apparatus for labeling containers with increased vacuum draw on label drum
US5964975 *Aug 18, 1997Oct 12, 1999Trine Labeling Systems, Inc.Method and apparatus of labeling cylindrical articles with label having formed curl
US6328832Jun 26, 1998Dec 11, 2001S-Con, Inc.Labeling apparatus with web registration, web cutting and carrier mechanisms, and methods thereof
US6450230Jun 24, 1999Sep 17, 2002S-Con, Inc.Labeling apparatus and methods thereof
US6649259Feb 29, 2000Nov 18, 2003National Starch And Chemical Investment Holding CorporationAdhesives for thermally shrinkable films or labels
US7954531Jan 20, 2005Jun 7, 2011Yuyama Mfg. Co., Ltd.Labeling apparatus
US20100243139 *Mar 19, 2010Sep 30, 2010Thomas Von HagelMethod and Apparatus for Applying Labels to a Rotating Container on a Rotating Turret
DE2857835C2 *Sep 18, 1978Jul 19, 1984Kabushiki Kaisha Shinsei Industries, Tokyo, JpTitle not available
DE2902315A1 *Jan 22, 1979Jul 26, 1979B & J Mfg CoEtikettiergeraet und formschneidevorrichtung hierfuer
DE3142202A1 *Oct 24, 1981Sep 2, 1982Sun Chemical Corp"etikettiermaschine"
DE3435103A1 *Sep 25, 1984Apr 3, 1986Langguth Gmbh & CoGlue-coating process for labels in labelling mchines and apparatus for carrying out the process
DE102007016426A1 *Apr 5, 2007Oct 9, 2008Cpc Haferkamp Gmbh & Co. KgArticle e.g. bottle, labeling method, involves producing chads or punching wastes, and cutting and discharging chads or punching wastes in roller gap through and in form of individual separate cuts from roller gap, respectively
EP0078076A2 *Dec 4, 1979May 4, 1983Associpak International Inc.Cutter assemblies for strips
EP1122173A2Jun 7, 1996Aug 8, 2001B & H MANUFACTURING COMPANY, INC.Method and apparatus for applying labels with tactilely sensible indicia on articles
EP1431188A1Oct 18, 1996Jun 23, 2004B & H MANUFACTURING COMPANY, INC.Applying stretched labels to cylindrical containers
EP2090513A1 *Feb 5, 2009Aug 19, 2009Nordson CorporationApparatus and methods for applying labels
WO1995011833A1 *Oct 5, 1994May 4, 1995James CarmichaelApparatus and method for labelling containers using thermal bonding
WO1998000339A1 *Jun 25, 1997Jan 8, 1998B & J Mfg CoLabeling machine and method
WO1999008936A1 *Aug 13, 1998Feb 25, 1999Trine Labeling Systems IncMethod and apparatus of labeling cylindrical articles with label having formed curl
Classifications
U.S. Classification156/215, 156/458, 156/256, 156/450, 156/291, 156/521
International ClassificationB65C3/00, B65C9/08, B65C9/18, B65C3/12
Cooperative ClassificationB65C9/1819, B65C3/12, B65C2009/1861
European ClassificationB65C3/12, B65C9/18A4B