Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3835637 A
Publication typeGrant
Publication dateSep 17, 1974
Filing dateDec 6, 1971
Priority dateDec 6, 1971
Publication numberUS 3835637 A, US 3835637A, US-A-3835637, US3835637 A, US3835637A
InventorsR Russell
Original AssigneeOwens Corning Fiberglass Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Yarns including fibrous glass strands and methods of their production
US 3835637 A
Abstract
This invention relates to simple, novelty and combination yarns including base or core strands of fibrous glass filaments with integrated and texturized characteristics derived from successively cutting some or all of the filaments of the strands, twisting the strands and supplementally entangling other, preferably fibrous, elements or organic or inorganic nature such as paper, cotton, rubber, synthetics, glass, or asbestos with the base strands for bulking and covering the strands and adding diverse properties thereto, the elements being held to the strands by wrapping of the ends of the cut filaments and ends of cut filaments or strands of the added elements, and by extra size or binder applied to the full assembly of materials.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

[ Sept. 17, 1974 1 YARNS INCLUDING FIBROUS GLASS STRANDS AND METHODS OF THEIR PRODUCTION [75] Inventor: Robert G. Russell, Granville, Ohio [73] Assignee: Owens-Corning Fiberglas Corporation, Toledo, Ohio 22 Filed: Dec. 6, 1971 21 Appl.l\1o.:205,04l

[52] US. Cl. 57/140 BY, 57/2, 57/140 G, 57/144, 57/157 R, 57/160 [51] Int. Cl D02g 3/04, D02g 3/18 [58] Field of Search 57/140 G, 140 BY, 140 R, 57/157 R, 157 F, 157 TS, 144,160, 2,140 J,

3,043,088 7/1962 Brecn 57/140 R X 3,079,746 3/1963 Field, Jr 57/51 3,102,379 9/1963 Eblc et a1. 57/140 BY 3,312,052 4/1967 Shirunezawe ct a]. 57/157 R 3,439,491 4/1969 Scruggs 57/140 BY X Primary Examiner-John W. Huckert Assistant Examiner-Charles Gorenstein Attorney, Agent, or FirmCarl G. Staclin; John W. Overman; William P. Carr w 5 7] ABSTRACT This invention relates to simple, novelty and combination yarns including base or core strands of fibrous glass filaments with integrated and texturized characteristics derived from successively cutting some or all of the filaments of the strands, twisting the strands and supplementally entangling other, preferably fibrous, elements or organic or inorganic nature such as paper, cotton, rubber, synthetics, glass, or asbestos with the base strands for bulking and covering the strands and adding diverse properties thereto, the elements being held to the strands by wrapping of the ends of the cut filaments and ends of cut filaments or strands of the added elements, and by extra size or binder applied to the full assembly of materials.

3 Claims, 16 Drawing Figures PATENTEU P 3.835.637

SHEET 1 {IF 4 w am PAIENIEDSEPI 7:924

SHEET 2 OF 4 I INVENTOR. 90554 7 6. #055544 PAIENTED SEP 1 7 I974 sum u" UF 4 w 5 m a YARNS INCLUDING FIBROUS GLASS STRANDS AND METHODS OF THEIR PRODUCTION A general object of this invention is to produce an improved yarn with a core or base strand of fibrous glass filaments.

More specifically an object of this invention is a yarn having a base strand of fibrous glass filaments in which some of the filaments are intermittently cut and ends of the cut filaments are wrapped helically around the base strand to strengthen and integrate the strand.

A further object of the invention is the production of novelty yarns incorporating a core or base strand of fibrous glass filaments with other fibrous elements integrated therewith through twisting of the strand or wrapping of filaments of the strand around the strand, and alternately or additionally by a binder or size applied to the combined materials.

Other objects of the invention somewhat secondary in nature, include applying a true-like twist to a strand between the forming of the glass filaments and the packaging of the strand; procedures to resist breakage of filaments in the forming operation and also locking in broken filaments; and the production of generally fire proof yarns having a base strand of fibrous glass and coverings of softer fibrous materials for better handle and appearance as well as to reduce friction between strands in a cord or rope.

These and other objects and features of the invention are attained by cutting surface filaments of a downwardly traveling fibrous glass, strand at the forming station and twisting the strand to wind the loose ends of the cut filaments around the main body of uncut filaments which resists the twisting action; also by diagonally cutting through a strand of glass filaments while the strand is being twisted, the twists being sufficiently numerous over the length of the cut to maintain the strand yet permitting the imposition of at least a temporary true twist; entangling additive fibrous elements with the base strand by directing air borne fine fibers or a slurry thereof into or against the strand prior to or during the wrapping of cut filaments or twisting of the strand; and incorporating a size in the slurry to help adhere the fiber particles and integrate them with the strand.

Air or liquid jets may also be utilized to carry long filaments or strands and to pierce the base strand for entangling such additive elongated fibrous bodies. These may be cut and wrapped around the base strand along with the cut surface filaments of the base strand.

The features and objects are described hereafter in more detail with reference to the drawings in which:

FIG. 1 is a somewhat diagrammatic elevation of apparatus for producing continuous glass filaments, gathering them in a group in strand form and processing the strand according to this invention.

FIG. 2 is a similar view of like apparatus with modifications of accessory devices for processing the strand in an alternate manner of practicing the invention;

FIG. 3 is a side elevation of the motor-driven filament cutting device utilized in the apparatus of FIG. 1;

FIG. 4 is an enlarged isometric view of the cylindrical core of the cutting device of FIG. 3;

FIG. 5 is a plan view of the cutter core of FIG. 4;

FIG. 6 is a vertical section of the cutter core of FIGS. 4 and 5 showing a strand passing therethrough;

FIG. 7 is an elevational view of a portion of a strand which has passed through the filament cutting device of FIG. 3.

FIG. 8 is a vertical section of the strand twisting de vice of the apparatus of FIG. I showing a strand passing therethrough;

FIG. 9 is an isometric view of the filament cutting device incorporated in the apparatus of FIG. 2;

FIG. 10 is a partial vertical section of the cutting device of FIG. 9;

FIG. 11 is a lateral vertical section of the cutting device of FIG. 9 and 10 showing a strand passing therethrough;

FIG. 12 is a vertical sectional view of a portion of a strand which has passed through the cutting device of FIGS. 9, l0 and 11;

FIG. 13 is an exterior elevation of the strand of FIG. 12;

FIG. 14 is a vertical section of the cutter core of FIGS. 4, 5, and 6 with a basic strand passing therethrough and an additive strand directed into adjoining relation therewith;

FIG. 15 is a similar view of the cutter core with accessory devices including an air jet for directing an additive strand into the basic strand of fibrous glass; and

FIG. 16 is an isometric elevational view of the cutter core of the preceding figures with means for projecting additive materials in particulate form upon the strands.

Referring to the drawings in more detail the apparatus of FIGS. 1 and 2 includes a molten glass feeding bushing 12 suspended from a conventional glass feeding tank. Continuous filaments 16 are drawn from minute streams of molten glass issuing from the orifices of tips 14 in the bottom of the bushings 12.

Size is applied to the filaments as they pass over the traveling belts or aprons of size applicators 24, just before they are brought together in strand form by the gathering shoe 25. The resulting strand 26 (and 26b) is brought downwardly by the revolving collet 18 of the winder 20.

The strand is collected upon a forming tube 22 as a package 23. A traverse mechanism 27 moves the arriving strand back and forth across the receiving tube 22.

In the apparatus of FIG. 1 the strand 26 passes through the cylindrical cutter 30 which is rotated by the encircling motor 31 in the manner of a motor shaft.

As may be seen in FIGS. 4, 5 and 6 the cutter has an axial bore 36 with an outwardly tapered strand receiving throat 37. Midway of the throat four equally spaced knives 38 are embedded with their cutting edges projecting slightly and facing in the direction of rotation of the cutter 30. As illustrated in FIG. 6 the knives cut only successive side portion 40 of the filaments 16 of the strand 26 as it passes through the cutter.

Adjacently below the cutter 30 in FIG. I is the rotary strand twister 32. An enlarged vertical section of this twister is shown in FIG. 8. On the upper and lower ends thereof are strand contacting rings 32a preferably com posed of silicon rubber. The twister may be driven on bearings 32b in the same manner as the cutter 30, that is as the shaft of a motor. As the strand 26 rides over the rotating surfaces of the rings 320, the frictional contact therewith applies a twisting effect on the strand. The ends of the cut filaments 40 indicated in FIG. 6 are free to follow this twisting inducement and are turned or wrapped about the strand as illustrated at 42 in FIG. 7.

The apparatus of FIG. 2 differs from that of FIG. 1 only in the use of the different design of cutter 33 and the use of air nozzles 35 for directing air jets against the strand to hold cut filaments in place.

It may be observed that the strands in FIGS. 6, '7, 11, 12, 14, 16 and 17 are schematic in that the filaments are generally straight instead of turning helically around the strand. These views were so prepared to facilitate showing cutting paths and the permanent wrap around of the cut filaments.

Naturally the twisting thrust applied to these strands will cause temporary twisting of the strand up to the upper holding point of the gathering shoe 25 and down to the collecting package 23.

Details of this cutter may be seen in FIGS. 9, and l 1. It is mounted on the rotary shaft 44 and has circular side plates 45 which are held between the sleeve 43 and lock collars 46. A diametrically opposed pair of fine piano wire cutters 47 extend between edges of the plates 45.

These wires in turn strike and out twice through the strand 26b with each rotation of the cutter. The initial entry A of one of the cutting wires 47 in the first of its two cutting actions is shown in FIG. 11 with an inclined arrow indicating the line of travel of the air jet from a nozzle 35 of FIG. 2 which acts to tuck in the ends of the severed filaments.

Because of the high speed of the downward travel of the strand 26b which may be 14,000 feet per minute the line of the cuts 48 through the strand extend at a slight angle upwardly with the-wire cutters 47 reaching the other side of the strand preferably about one and half inches from their entering points A and B.

After the first or upper cutting action with entry at A each wire cutter 47 strikes the strand from the opposite side at entry point B and makes another upwardly angled cut 48. A second air jet indicated by a second arrow tucks in the severed ends of the filaments at this lower cutting station.

Typical cuts 48 through the strand 26b are illustrated in FIG. 12 with entries on the left side of the strand indicated at A and on the right hand side at B.

The arrow 49 arcing around the strand 26b below the cutter assembly 33 in FIG. 11 shows the direction of twist imposed upon the strand by the rotating twister 34 of FIG. 2. This twister is designed similarly to twister 32 of FIG. 1 shown in detail in the cross section of FIG. 8.

As the strand 26b is now made up of successive sections with oppositely tapered ends where the filaments are severed, the free ends of filaments of each section permit a rather true twist to be effected in the strand. As the same time the gradual tapered cuts maintain sufficient interengagement of the filaments to hold the strand in integrated form. The twist thus developed in the strand 26b is illustrated at 50 in FIG. 13.

The invention further encompasses combination yarns and methods of their production. In the processing of the fibrous glass strands for the development of such yarns additive fibrous material of a wide variety of compositions in the form of yarns, strands, filaments or particles are combined with the basic strands.

In FIG. 14 an arrangement is illustrated wherein a continuous effect strand or yarn 51 is drawn from a package 52 and fed at a rate controlled by the nip rolls 54. The feeding rate may differ from the speed of travel of the basic strand. The continuous fibrous element 5! is joined with the basic strand 260 as the latter passes through the cutting tube 30. The projecting knives 38 cut into the strand or yarn 51 as they cut surface filaments of the basic strand 26c and the released surface filaments and the severed sections of the additive strand or yarn 51 are then wrapped about the basic strand 260 by the twister 32 positioned immediately below the cutting tube.

A somewhat similar arrangement is shown in FIG. 15, but here the additive continuous fibrous element 61 drawn from the supply package 62 by nip rolls 64 is forcefully impelled against the basic strand 26d by an air nozzle 65. The additive strand effect yarn is thus introduced interiorly of the basic strand by the piercing action of the air jet and becomes a more or less continuous component of the resulting yarn being much less subject to being cut by the knives 38. By feeding the ad ditive yarn 61 at a different speed than that of the basic strand a corkscrew style of yarn may be produced. By varying the speed of the yarn 61 occasional loops may be formed.

The apparatus of FIG. 16 includes a feeding tube which may be utilized for directing either a water slurry of particles preferably of a fibrous nature such as flock or such particles in an airborne stream against the basic strand 26c entering the tubular cutter 30. These particles are held to the basic strands by cut filaments thereafter twisted about the strand and supplementally by size or binder which may be carried by the particle slurry or air stream.

It should be understood that l have shown particular embodiments and methods for practicing my invention for purposes of explanation and illustration and that variant forms thereof may come within the scope and spirit of the invention as defined in the appended claims.

I claim:

1. A fibrous glass strand of generally continuous filaments having surface filaments intermittently severed with their loose ends wrapped around the strand and other fibrous material integrated with the strand by the wrapped portions of the filaments.

2. A fibrous strand having a generally untwisted core of continuous glass filaments and an outer layer of intermittently severed continuous glass filaments and including an intermittently severed supplemental continuous fibrous element of organic material, the outwardly loose ends of the severed glass filaments and fibrous element being wrapped around the strand.

3. A fibrous strand having a generally untwisted core of continuous glass filaments and an outer layer of intermittently severed continuous glass filaments the outwardly loose ends of which are wrapped around the strand, there being fibrous particles of comparatively soft organic material dispersed within the strand serving to curb destructive abrasive contact between adjacent glass filaments.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2003400 *Jun 23, 1933Jun 4, 1935Celanese CorpManufacture of staple fiber yarns
US2140535 *Jul 23, 1937Dec 20, 1938Celanese CorpApparatus for converting continuous filaments into products containing staple fibers
US2250575 *May 2, 1939Jul 29, 1941Henry DreyfusTextile material and the production thereof
US2278032 *Mar 27, 1941Mar 31, 1942Gardner M YoungmanApparatus for cutting filaments into staple lengths
US2780909 *Mar 24, 1953Feb 12, 1957Owens Corning Fiberglass CorpMethod of forming yarns from staple glass fibers
US2975503 *Aug 11, 1958Mar 21, 1961Owens Corning Fiberglass CorpGlass fabric reinforcement for plastics
US2997837 *Dec 22, 1959Aug 29, 1961Du PontSlub yarn product
US3001358 *Nov 28, 1956Sep 26, 1961Midland Ross CorpBulked continuous multi-filament yarn
US3043088 *Nov 26, 1958Jul 10, 1962Du PontProcess for making bulky yarn
US3079746 *Oct 23, 1961Mar 5, 1963Du PontFasciated yarn, process and apparatus for producing the same
US3102379 *Mar 15, 1961Sep 3, 1963Stevens & Co Inc J PShantung-effect yarn and method of production
US3312052 *May 4, 1966Apr 4, 1967Teijin LtdMethod of producing slub yarns
US3439491 *Aug 9, 1965Apr 22, 1969Monsanto CoProcess for making core spun yarns
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3978648 *Apr 9, 1974Sep 7, 1976Toray Industries, Inc.Helically wrapped yarn
US4062177 *Jun 16, 1976Dec 13, 1977Toray Industries, Inc.Spun yarn and process for manufacturing the same
US4121412 *May 10, 1977Oct 24, 1978Toray Industries, Inc.Spun yarn and process for manufacturing the same
US4152885 *Jul 1, 1977May 8, 1979Hercules IncorporatedInterlocked yarn and method of making same
US4414800 *Mar 31, 1981Nov 15, 1983Toray Industries, Inc.Twisted yarn and method of producing the same
US4430851 *Jan 29, 1982Feb 14, 1984Minnesota Mining And Manufacturing CompanyMultistrands of graphite, silicon carbide, or metal oxide ceramics
US4484436 *Jun 27, 1983Nov 27, 1984Toray Industries, Inc.Process for producing a twisted yarn
US5487941 *May 17, 1994Jan 30, 1996Pepin; John N.Molding layers with filaments and lamination, helical fiber wrapping polymer binding
Classifications
U.S. Classification57/249, 264/103, 57/2, 57/207, 57/229
International ClassificationD02G3/18, D02G3/16
Cooperative ClassificationD02G3/185
European ClassificationD02G3/18B2, D02G3/16
Legal Events
DateCodeEventDescription
Jul 31, 1987ASAssignment
Owner name: OWENS-CORNING FIBERGLAS CORPORATION, FIBERGLAS TOW
Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501
Effective date: 19870730
Owner name: OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE
Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:4903/501
Nov 13, 1986ASAssignment
Owner name: WADE, WILLIAM, J., ONE RODNEY SQUARE NORTH, WILMIN
Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351
Effective date: 19861103
Owner name: WILMINGTON TRUST COMPANY, ONE RODNEY SQUARE NORTH,
Owner name: WILMINGTON TRUST COMPANY,DELAWARE
Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:4652/351
Owner name: WADE, WILLIAM, J.,DELAWARE
Owner name: WILMINGTON TRUST COMPANY, DELAWARE
Owner name: WADE, WILLIAM, J., DELAWARE