Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3835864 A
Publication typeGrant
Publication dateSep 17, 1974
Filing dateSep 21, 1970
Priority dateSep 21, 1970
Also published asCA1003904A1, DE2147308A1
Publication numberUS 3835864 A, US 3835864A, US-A-3835864, US3835864 A, US3835864A
InventorsRasor N, Spickler J
Original AssigneeRasor Ass Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Intra-cardiac stimulator
US 3835864 A
Abstract
A stimulator device for insertion in a living body and having particular advantage for intra-cardiac use comprising a structure having a body form of a size and configuration to enable its transvenous or transarterial insertion, the surface of said body form providing electrode means for contact with a portion of the living body to be stimulated by said electrode means, and means mounted to project outwardly of and peripherally of said body form including anchor portions locating in a position displaced from said electrode means and providing means for engaging in portions of said living body to establish said electrode means in a required position of use, said electrode means having in connection therewith means to energize the same once said body form is located in its required position of use.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

llnited States Patent Rasor et a1.

[4 1 Sept. 17, 1974 INTRA-CARDIAC STIMULATOR US. Cl. 128/419 P, 128/418, 128/421 Int. Cl A6ln 1/36 Field of Search 128/404, 418, 419 P, 421,

[56] References Cited UNITED STATES PATENTS 3,087,486 4/1963 Kilpatrick ..128/404 3,516,412 5/1970 Ackerman 128/418 FOREIGN PATENTS OR APPLICATIONS 246,004 11/1969 U.S.S.R. 128/419 P OTHER PUBLICATIONS Hopps et al., Surgery, Volv 36, No. 4, Oct., 1954, pp. 833-849 (only p. 834 relied on).

Frei et a1. Medical Research Engineering, 4th Quarter, 1956, pp. 11-18.

Primary Examiner-William E. Kamm I 5 7 ABSTRACT A stimulator device for insertion in a living body and having particular advantage for intra-cardiac use comprising a structure having a body form of a size and configuration to enable its transvenous or transarterial insertion, the surface of said body form providing electrode means for contact with a portion of the living body to be stimulated by said electrode means, and means mounted to project outwardly of and peripherally of said body form including anchor portions locating in a position displaced from said electrode means and providing means for engaging in portions of said living body to establish said electrode means in a required position of use, said electrode means having in connection therewith means to energize the same once said body form is located in its required po sition of use.

7 Claims, 14 Drawing Figures IO SHlELDING 1 3| k 35 33 32 24 I i a m J f PATENIEUSEPI mm D m l- CONSTANT CURRENT ELEMENT TRANSISTOR SWITCH POWER SOURCE PAIENIEUSEPIYIW 3.8%.884

SHEET 3 0F 4 FIG -8 FIG 9DYNAMIC TRIGGER INPUT HEMO IMPULSES FROM ATRIAL CONTRggTION I 035 13g;

f w ENERGY CONSTANT PULSE. 32 MECHANICAL STORAGE *"CURRENT FORMING- TRANSDUCER ELEMENT ELEMENT CIRCUIT INPUT POWER FROM. v VENTRICLE CONTRACTION STIMULATION ELECTRODE III! FIG-H INTRA-CAIRDIAC STIMULATOR employed for the long-term treatment of atrioventricular (A-V) block. Such Pacemaker devices commonly employ flexible leads which connect a remotely positioned power pack with electrodes which are placed in contact with or attached to the myocardium. The techniques of implanting and using such Pacemakers, and many Pacemaker which have been used experimentally and in practice, are described by Siddons and Sowton, Cardiac Pacemakers 1967), published by Charles C. Thomas, Springfield, Illinois, Library of Congress Card No. 67-12042. Pacemakers having energy sources responsive to heart movement are shown in US. Pat. Nos. 3,358,690 and 3,486,506.

Such Pacemakers, or other biological stimulators working on these principles, have inherently suffered from certain disadvantages. The leads to the electrodes are commonly routed through veins leading into the heart itself. The movement of the heart and normal activity of the individual tend to put a strain on these leads and may result in lead breakage or dislodgement of the electrodes. The leads themselves, retained in situ, are frequently a source of irritation and infection. Further, since the electrical contact with the heart is made at the point or region of mechanical support or implantation, the normal fibrosis of tissue at these regions often results in a marked increase power required to pace, known as an increase in threshold. For example, the threshold has been found to increase on the order of ten times its original value until a plateau is reached over a period of two to three weeks. This requires a correspondingly greater power input to the electrodes, in the minimum of 3:1 over threshold, in order to achieve consistent pacing.

The remote power pack itself is a cause of discomfort and often a cause of difficulty. It is commonly implanted in a subcutaneous pocket beneath the pectoralis major or within the abdomen. Again, this provides a further opportunity for infection. Difficulty has been encountered in preventing migration of the power pack. Further, surgery is required from time to time to expose and replace the power pack due to exhaustion of the mercury cells. Prior pacing devices which derive their energy from the heart movement or pressures have commonly required thoracic surgery for attachment to the epicardium, and have employed flexible leads to the electrodes.

SUMMARY OF THE INVENTION The present invention is directed to a wholly selfcontained stimulator which is particularly adapted for use as a Pacemaker. It is contained within a package or housing which is sufficiently small to be implanted by catheter insertion (transvenous or transarterial) into a chamber of the heart where it is attached to the endocardium. The stimulating electrodes are formed integrally with the unit, without external leads, and thus make contact with the endocardium. As used herein, catheter" refers to an inserting device embodying a sheath-like element of small bore tube form.

A Pacemaker device made according to the present invention is intended primarily for long-term use. It can be used without discomfort to the user. The likelihood of a failure due to dislodgement of electrode contact, increase of threshold, or occurrence of infection is substantially reduced. Failure due to electrode lead breakage is eliminated entirely. The device can be implanted by a catheter device and technique which require only minor surgery and temporary discomfort to the patient. It can be recovered if desired or, if failure should occur it may simply be left in place and a new device inserted.

In one form of the invention a nucleonic battery is employed for providing a power source to the pulse generator circuits contained within the housing. This arrangement provides for an overall life which may be well beyond the normal life expectancy of the patient. For example, Pu 238 has a half life of 86 years, while Pm-l47, which may be preferred because of lower costs, has a half life of 2.7 years. Suitable electronics in the converting and pulse generating portion are available which operate efficiently over three or more half lives. Operation over such a large power range is made possible in part by the fact that the device of the present invention does not cause a material or significant increase in threshold, and therefore can continue to operate after decay to very low power levels.

Three forms of the invention are disclosed which employ a biologically energized power source and thus derive their power requirements from the body itself. Prior attempts have obtained insufficient power from normal heart activity to provide reliable and continuous pacing. However, the apparatus of the present invention is one which does not result in a significant increase in threshold power and accordingly reliable pacing may be affected over an extended period of time with modest lower power requirements. The energy required for each stimulation pulse may be in the order of one microjoule or less, corresponding to a total power input to the electronics on the order of six microwatts or less. The mechanical work which is available substantially exceeds this.

In one form of the invention, a movable wall or diaphragm transforms hemodynamic pressure into electric energy by means of a suitable transducer. In other forms of the invention, a mass is suspended in such a manner that movements of the heart set up a sympathetic or harmonic movement of the mass, and this movement may be electromechanically coupled to produce energy. For example, the transducer may comprise a permanent magnet in combination with a nonmoving electric coil. In another form, the mass may be connected to stress a piezoelectric crystal.

The body or housing structure of the present invention may also be used as the electrode structure for existing Pacemakers, as it offers certain advantages over the endocardial electrodes which are presently in use.

Another important object of the invention is the provision of a bioelectric stimulator which is fully self coritained and implantable at the site of stimulation, and an improved electrode structure therefor.

A further object of the invention is the provision of a stimulator, heart Pacemaker, or an electrode structure for a Pacemaker, in which the region of attachment is spaced from the region of stimulation to avoid the adverse effects of tissue fibrosis at the region of attachment.

A further object of the invention is a provision of a catheter for inserting the Pacemaker or electrode assembly therefor, as described above, and the further provision of the combination of a novel catheter and Pacemaker or electrode assembly therefor. The catheter is preferably a triaxial arrangement in which one of three concentric elements is removably secured to the body of the device, a second element forms a torque tube which may be used to assist in implanting the device and for removing the first element from the device, and the third element comprises an outer removable sheath which preferably extends at least partially over the body of the device during transvascular passage and may be employed to retain the body-attaching members on the device in a retracting or inoperative position until the device has been positioned, as desired. Thereafter, the sheath may be retracted to expose the body of tissue-attaching members, or extended to cover these members for removal of the device from the heart.

These and other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of the stimulator and catheter devices of the invention;

FIG. 2 shows parts of FIG. 1 in an assembled condition;

FIG. 3 is an enlarged sectional view, partially in diagrammatic form, of the stimulator of FIG. 1 adapted particularly for use as a heart pacer;

FIG. 4 is an end view of the device of FIG. 3;

FIGS. 5a, 5b and 5c are, respectively, diagrams illustrating the method of implanting the pacer using the catheter device of this invention;

FIG. 6 is a schematic drawing showing a pulsing circuit which may be used with this invention;

FIG. 7 is a diagram of a modified form of the circuit of FIG. 6 particularly adapted for use with a nucleonic or other varying power source;

FIG. 8 shows a modified form of the invention adapted to respond to hemodynamic pressure changes;

FIG. 9 is a block diagram of the pacer of FIG. 8;

FIG. 10 is a further modification showing a biologically powered pacer according to the present invention;

FIG. 11 is a still further modification showing another form of the biologically powered pacer; and

FIG. 12 is a modified catheter and an improved Pacemaker electrode assembly according to the teachings of this invention.

DESCRIPTION OF PREFERRED EMBODIMENTS Referring to FIGS. l-4, a self-contained stimulator 10, particularly is adapted as a heart pacer, and a catheter 11 is adapted for use with such pacer. The pacer 10 is formed with an elongated capsule-like, generally cylindrical body 12. Preferably, the body 12 is formed exclusively on its outer surfaces of biologically compatable materials, the major portion of which may be stainless steel. While the outer surface of the body 12 is shown in the drawings as being formed essentially of smooth inert material, such as stainless steel, it is within the scope of this invention to provide the body with a compatible flocking material, such as a dacron weave to promote the formation of neointima once the unit has been implanted.

The device can be implanted in any of the four chambers of the heart where patho-physiology would be optimum for a particular patient. However, the preferred embodiment herein will emphasize implantation within the right ventricle where the greatest clinical and experimental experience has been concentrated to date. When the stimulator, or pacer 10, is adapted for implantation directly within a heart ventricle, it should have a maximum overall length not substantially exceeding 30mm and preferably in the order of 18mm or less. The diameter of the body 12 should not substantially exceed 10mm and is preferably 8mm or less. Such dimensions provide a self-contained Pacemaker which is sufficiently small to permit catheter transvascular insertion into a ventricle, and permit it to be received within such ventricle without disturbing the proper function of the heart.

The forward end of the body 12 is provided with means for attaching the pacer 10 to the myocardium. A preferred form of the attachment comprises a pair of oppositely directed spiral stainless steel attaching points or wires 15 and 16, as best shown in FIG. 4. The wires have inner ends attached to the circumference of the body 12 and free outer ends. These attaching wires are adapted to be retained in a retracted position in closely surrounding relation to the circumference of the body 12, but when released, spring out to the expanded or operative position, as shown.

Catheter means for transvenous implanting of the Pacemaker 10 preferably consists of the triaxial device illustrated generally at 11 in FIGS. 1 and 2. This arrangement comprises a central rod 22 which is formed with a threaded end 23 which is adapted to be attached or received with a suitable internally threaded nut 24 formed on the rear wall 24' of the body 12, as shown in FIG. 3. A torque tube 25 is slidably received over the rod 22 and, at its forward end, is formed with an internal socket portion 26 adapted to be received over the nut 24 in driving engagement with the Pacemaker 10. The catheter is further provided with an axially slidable sheath 27 which has a forward metallic end portion 28 of a diameter sufficiently to be received at least partially over the body of the Pacemaker 10. In use, the sleeve 28 substantially covers the Pacemaker and retains the attaching wires 15 and 16 in their retracted position substantially as shown in FIG. 2. The use of the catheter 11 is further described in connection with the illustration of FIGS. 5a-c.

This entire catheter system may be rigid with defined bends or may be flexible or may be steerable. In the preferred fonn, a central rod 22 and the torque tube 25 are flexible, while the forward end of the sheath 27 is formed with a predetermined bend as indicated at 27 in FIG. 5a. The bend which may be formed within 2-4 inches of the end of the catheter assembly, may have an angle of approximately 30 in order to permit the catheter and the attached Pacemaker to be steerable around comers and bends.

Referring particularly to FIG. 3, the Pacemaker 10 is shown as including a forward body portion 12a and a cylindrically continuous rear body portion 12b. The forward portion is hollow and contains the electronic pulsing circuit 30, illustrative examples of which are shown in FIGS. 6 and 7. It has been found that relatively simple circuits are totally satisfactory and are in fact preferred over the more complicated circuits shown, for example, in the reference text referred to under the Background section of the specification. The simpler circuits generally have lower losses and greater overall reliability. Such circuits can easily be fitted within the activity defined with the body section 12a without the necessity of reverting to microminiature or integrated circuits. However, such circuits permit even further miniaturization, but the overall size of the stimulator of this invention is dictated not so much by the circuit requirements but by the space requirements of the power source.

The body sections 12a and 1212 may be threaded together and sealed as shown at 31, but it is within the scope of this invention to make the body 12 of simple one-piece construction. The rear wall 24' is preferred welded to the case 12b by electron beam welding. There is some advantage in the two-piece body construction of FIG. 3 in that it permits the body parts to be separated and adjustments to be made to the circuit prior to insertion.

One of the important advantages of the stimulator of the present invention resides in the fact that the pacing electrodes are formed integrally with outer surfaces of the body 12. To this end, the body portions 12a and 12b themselves define the positive pulsing electrode which, as previously noted, may be formed preferably of stainless steel. The negative pulsing electrode 32 is formed preferably of platinum and supported on a forwardly extending dielectric pedestal 33. The pedestal is preferably formed of an inert ceramic, defining a hollow co-axial insulator. The insulator 33 may thus have an outer curved surface 34 leading smoothly from the electrode end 32 and flaring outwardly at the body 12a to assist in guiding the device during insertion. A tubular portion 35 extends into the interior of the body 12a. The forward end of the body 12a is formed with an annular ledge 36 to provide support for the insulator and for the electrode 32.

The stimulating electrode 32 may also be of the differential current density type, known as the Parsonnet Electrode and described by George H. Myers and Victor Parsonnet in Engineering in the Heart and Blood Vessels, (1969) John Wiley & Sons, New York, N.Y.

The arrangement as shown has several important advantages. In the first place, it will be noted that, unlike prior devices, the electrodes do not themselves form or comprise the attaching devices. Rather, the pacing electrodes are well spaced axially from the barbs l5 and 16. Thus, once these electrodes have made reliable pacing contact with the heart tissue, they do not transmit the destructive forces of attachment and retention to this tissue, and they remain free of the adverse affects of fibrosis which invariably occurs at the regions of attachment or forcible retention. In devices where the electrodes themselves are directly attached or are forcibly retained by pressing against the tissue, an approximately l0 times increase in the threshold is not uncommon. This occurs over approximately a two to three week period subsequent to implanting and then reaches a plateau. Such a substantial increase in threshold requires a corresponding increase in power requirements simply to overcome the threshold and to effect reliable stimulation. The elimination of the cause of threshold rise permits reliable pacing with substantially lower power consumption.

Another important advantage of the construction of FIG. 3 is the total elimination of external flexible leads between the pacing circuit and the tissue to be stimulated. This then results in the elimination of the lead placement and breakage difficulties which are inherently associated with remotely positioned pacer circuit.

A further important advantage of the pacer of this invention is the fact that it can be reliably powered from a suitable nucleonic power source 40. There are available in the present state of the art a number of nucleonic conversion devices which may be contained within the physical dimensions of the body portion 12b, and suitably shielded and sealed therein. A preferred form of such device is a betavoltaic converter which is, in effect, a stack of semiconductor photocells which are coated with a radioactive material and which are irradiated by beta particles to produce an unidirectional current electric output. Beta sources may include Pm-147 which has a 2.7 years half life. It is within the state of the art to provide an electronic circuit which will operate effectively over more than three half-lives of such power sources within the volume available. The use of tritium, with a half life of 12.6 years, is also possible.

A power source 40 using radioisotope fuel may also be of the thermionic type, the thermoelectric type or the double conversion type. In the thermionic and thermoelectric types, heat from the radioisotopic fuel is transformed into electric power by electron transport through a thermionic diode or thermocouple respectively. In the double conversion type, radiation from the radiosotope fuel is employed to excite a lightemitting phosphor, and the photons in turn excite a semiconductor photocell. All three of these types can use Pu-238, which is a desirable fuel for biological applications and has a half life of 86 years. The choice of fuel and type of convertor will depend upon the cost of the source material and fabrication, the half life, and the efficiency of conversion as well as the shielding required. Suitable radioisotope-fueled batteries are made by Donald W. Douglas Laboratories, 2955 George Washington Way, Richland, Washington and sold under the tradenames Betacel and Isomite, representing beta-voltaic and thermionic types respectively. While nucleonic power sources are preferred by reason of long life, it is within the scope of the invention to employ rechargeable batteries, or mercury cells. The latter may be satisfactory for short term pacing, in view of the relatively high overall efficiency of the device.

As shown in FIG. 3, an insulated plate 41 in contact with the power source is hermetically sealed by an insulator 42, and leads 43 extend to the circuit contained within the body section 12a. The case 12 is negative with respect to the power source but is positive with respect to the biological load.

The diagram of FIG. 6 illustrates one form of the pulsing circuit in which a power source 40 is shown as providing an output voltage of approximately 39 volts. This output is applied through charging resistor 44 and through the load 45 to a capacitor 46. The time required to charge the capacitor will depend upon the charging time constant of the circuit, and since the biological load 45 is normally less than 1,000 ohms it forms a small part of the total resistance in the charging circuit. However, as long as the load 45 is present the circuit will charge.

The transistors 48 and 49 comprise a transistor switch. This switch automatically becomes conductive to connect one side of the capacitor 46 to ground at some predetermined potential during the charging of the capacitor 46, and thus provides a low impedence grounding circuit permitting a discharge of the capacitor through the load 45. The peak load voltage may be 1.3 volts, and the transistor switch may be conductive for 3ms. Thereafter, the current through the switching circuit drops to the point where it becomes nonconductive, and recharging of the capacitor 46 resumes through resistor 44, at a repetitive rate depending on the R-C constant.

It might also be noted that since the capacitor 46 is charged through the biological load a current reversal takes place between the negative pulsing electrode 32 and the case 12 which has the effect of reducing or eliminating polarization which otherwise occurs when electrodes are pulsed in the same direction in an electrolytic solution.

The diagram of FIG. 7 is essentially for the same circuit as shown in FIG. 6 except for the addition of a constant current element 50 which may comprise a constant current transistor. This circuit is useful to maintain a constant pulse height and rate when the pulsing circuit is used with nucleonic power source whose output decays with time, or with biologically activated power sources whose output varies with the amount of biological activity.

The method of implanting the Pacemaker of the present invention using the improved catheter is illustrated diagrammatically in FIG. 5. The Pacemaker is assembled with the catheter 11 as shown in FIG. 2. The catheter is formed with a fixed or predetermined bend 27 about two to three inches from the end, of about 2040 to enable it to turn corners while it is being in serted. The insertion technique itself is essentially the same as currently in use for the transvenous implantation of endocardiac electrodes and other cardiac catherization procedures. The Pacemaker may, for instance, be inserted in the right external jugular vein and advanced through the superior vena cava and through the right atrium into the apex of the right ventricular cavity. This is the position illustrated in FIG. a. This is accomplished, of course, under fluoroscopic observation.

Prior to attaching the Pacemaker, the effectiveness of its resting position may first be observed with an electrocardiograph to assure that it is functioning normally and that it has captured the heart. The end 28 of the sheath 27 is preferably made of conductive material, such as stainless steel, so that the electrode formed on the body 12 will conduct through the sheath.

Having determined a proper position, the sheath may be partially retracted as shown in FIG. 5b to expose the barbs, and the torque tube 25 rotated clockwise to imbed the barbs in the myocardium. The entire Pacemaker, in this condition, will be wedged into the trabeculae making contact both with the case and with the tip electrode 32.

Once attachment in this manner is made, the torque tube 25 may be held against rotation and the rod 23 unscrewed from the internal threads in the nut 24. The entire catheter may then be extracted leaving the Pacemaker imbedded essentially as shown in FIG. 5c. The Pacemaker can be extracted from the heart by reversing the foregoing procedure.

The invention is not limited to heart pacing as such. Other examples of the direct implantation of the selfcontained stimulator at the site of the stimulation without separate electrical leads include baropacing (stimulation of the baroreceptors in the neck or aortic arch), stimulation of the diaphragm for breathing (stimulation of the phrenic nerve), stimulation of the numerous sphincter muscles which control the flow of various body fluids and solids (at the sphincter site), and other such functions which have been shown to respond to electrical stimulation and which small size and absence of electrical leads would render feasible or more practical. In most such cases the self-contained stimulator described in FIG. 3 would deliver a pulse approximately every 20 milliseconds during activation of the biological function instead of about one pulse per second as in the cardiac Pacemaker. Activation of the pulse train could beaccomplished by external command via an electromagnetic or magnetic signal from outside the body.

The invention is not limited to an arrangement which contains an internal source of power. In FIG. 8 there is illustrated an embodiment of the invention which is responsive to hemodynamic pressure. The body section 12b is replaced by a flexible or movable section which incorporates a rubber diaphragm or metal bellows 60 which moves under the influence of pressure changes within the heart cavity. Forces and motions arising from such pressure changes are applied to an electromechanical transducer 62 the output of which may be applied to a suitable energy storing circuit 63. The transducer may be of the magnetic induction type or may be a piezoelectric generator. The storage device 63 may be a diode-isolated full-wave rectifier with capacitor storage. The energy thus stored is available for subsequent release to the stimulation electrodes by a pulse forming circuit substantially as previously described. The storage device will be kept charged by the succession of heart beats and therefore serves the function of the power source previously described.

For example, if the effective area of the movable section 65 is about /2Cm and moves 1mm under the influence of a 20 torr average pressure pulse, each beat would produce about microjoules of mechanical work. Since less than 10 microjoules of electric energy is required for each pulse, a large margin of reserve power is available.

A circuit diagram at FIG. 9 shows an arrangement of the pacer of FIG. 8 adapted as a synchronous pacer, to obtain the benefits from synchronous pacing by slaving the unit to the atriol systole. After storing the large power pulse generated by the transducer during the ventricular contraction, the pulse-forming circuit is armed;" i.e. it reaches a condition in which the next significant electrical signal from the transducer will cause the circuit to tire and deliver an electrical pulse to the stimulating electrodes. Therefore, the pressure impulse from the next atrial contraction is transmitted through the tricuspid valve to generate an electrical signal from the transducer which tires the circuit. The stimulated ventricular contractions thereby become synchronized with the atrial contractions. It may be desirable to construct the circuit so that arming is delayed until after the refractory period of the heartbeat to avoid premature firing by reverberations from the ventricular contraction. Also it may be desirable physiologically to provide a delay between the signal from the atrial contraction and the Pacemaker output pulse, similar to the delay in the A-V node.

FIGS. 10 and 11 illustrate additional arrangements by means of which the heart movement itself can be used to provide a suitable source of energy. Observation has shown that an implanted Pacemaker undergoes transient displacements of about 1cm within a 24th of a second. Assuming constant acceleration, a mm displacement relative to the capsule over l/24th second of an armature weighing 4 grams would produce a force of about 2500 dynes acting over this distance, to produce about 120 microjoules of work per beat, again substantially in excess of the requirements of the Pacemaker. Referringto FIG. 10, a mass 70 is mounted in the manner of a pendulum on the end of a leaf spring 72. The natural oscillation rate of the mass 70 on the spring 72 may be that of the paced heart rate. The lower end of the spring 72 is joint with a magnetic armature 75 received between the poles 76 and 77 of a permanent magnet 78.

The lower end of the armature is retained in a V- shaped recess 79 by the magnetic attraction and is correspondingly formed with a knife or V-edge 80 to provide a pivotal movement. The poles 76 and 77 are spaced apart so that the armature 75 can assume either one of two stable positions, as shown by the full lines and broken lines. In one position, the flux is induced through the armature in one direction while in the other position it is induced in the opposite direction.

Since the pendulum formed by the mass 70 and spring 72 oscillates in resonance with the sinus rate of the heart, the bending moment of the spring 72 lifts the armature 75 from one pole face whereupon it abruptly moves to the opposite pole face, resulting in a sudden reversal of the flux and inducing an electric current in the surrounding coil 82. The coil output may be applied to the storage device 63, as described in connection with FIG. 8. FIG. 11 is similar to FIG. except that the mass 70 and the spring 72 are connected to stress a piezoelectric crystal 85. In this embodiment, the periodic rate of the mass and spring may be substantially greater than that of the heart, to produce a ringing effect with each beat.

Certain of the teachings and advantages of the present invention may be used to improve the performance of existing pacemakers which presently use endocardinal electrodes. The body Pacemaker 10 may be modified for this purpose to perform the function of the electrodes only and an arrangement for this purpose is illustrated at 100 in FIG. 12. In this case, the cartridge body 112 is made similarly to the body 12 except that it does not contain any pulsing circuitry or power source, but merely comprises means for making electrical contact. Thus, the body 112 may conveniently be made to a smaller length and/or diameter than that which has previously been described. The outer surface of the body 112 thus comprises one of the electrodes, while stimulating electrode 132 may be made and supported on a ceramic pedestal spaced from the body 1 12 in the manner which has been described in connection with the electrode 32 of FIG. 3.

The electrode assembly 100 will be connected by flexible leads to a conventional remote pacer by means of a flexible electrical conduit or lead 122. The lead 122 may be a coaxial conductive cable, which has one of its leads connected to the case or body 112 and the other connected to the electrode 132. The assembly may be used with remote pacers which employ a single electrode lead or a pair of leads. Where a single lead is used, it would be connected inside the body 112 to the electrode 132.

The electrode assembly of this invention is provided with a somewhat modified form of attachment comprising a pair of generally axially extending retaining wires 115 and 116. The forward ends of the wires are attached or secured to the body 12. The wires extend rearwardly and outwardly, and are movable between a retracted position in which the wires lie adjacent to the outer surface of the body, to a spread apart position, substantially as shown.

The general technique of inserting and implanting the electrode assembly 100 does not differ substantially from that described in connection with the pacemaker 10. The torque tube 25 and the sheath 27 may be used, with the rod 22 removed. The cylindrical conductive end 28 would be received partially over the body 112 with the attaching wires 115 and 116 collapsed and retained within end 28. The electrical lead 122 is threaded through the hollow torque tube 25.

It would be expected that the electrode assembly would be inserted well into the apex of the ventricle cavity accompanied by some stretching of the heart muscle. The torque tube 25 could be employed to provide axial forces as well as rotational alignment. The sheath 27 would then be retracted exposing the ends of the attachment wires 115 and 116, and when the axial force is released the ends of the wires would tend to imbed themselves within the heart muscle. If necessary, some pull could be placed on the lead 122 to complete the attachment, andthen the catheter may be extracted leaving the electrode assembly 100 in place.

The electrode assembly 100 provides to a remote Pacemaker certain of the advantages of the present invention. Principally, the electrodes, which are formed as integral and discrete surface portions of the assembly, are not prone to dislodgement, movement, penetration or breakage. Further, they define regions of stimulation which are spaced from the region of attachment, as in the case of the Pacemaker 10, and thus remain free of the adverse affects of fibrosis.

It is accordingly seen that this invention provides a novel self-contained biological stimulator, which is particularly adapted for use as a Pacemaker, and an electrode assembly useful with existing Pacemakers. It is intended for long-term treatment of partial or complete A-V block. Synchronous pacing may be used, as desired, and the circuit can be modified as known in the art for demand pacing. For synchronous pacing of de vices of the types of FIGS. 3, 10 or 11, a short sensing or trigger electrode wire may extend axially from the rear wall 24 of the body 12b through the tricuspid valve into the right atrium to pick up the atrium pulse as a control signal for the circuit 30. For demand pacing, the surface electrode 32 may be used to pick up the ventricle pulse and suppress the trigger circuit in the manner taught for example by Keller US. Pat. No. 3,431,912 or Greatbatch US. Pat. No. 3,478,746. The physical size of the capsules which form the bodies is sufficiently small to permit long-term treatment, such as in the case of a child. The apparatus and method of the attachment and implanting is one which results in minimum discomfort to the patient. In the event of failure, the size of the Pacemaker is sufficiently small to make it feasible to simply leave it in place and to insert a new one, although intervenous removal by catheter also is possible.

While the forms of apparatus herein described constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise forms of apparatus, and that changes may be made therein without departing from the scope of the invention.

What is claimed is:

1. A stimulator device for insertion in a living body and having particular advantage for intracardiac use comprising a structure having a body form for transvenous or transarterial insertion, electrode means on the surface of said body form for contact with a portion of the living body to be stimulated by said electrode means, and means mounted to project outwardly of and peripherally of said body form including anchor portions locating in a position displaced from said electrode means and providing means for engaging in portions of said living body to establish said electrode means in a required position of use, said electrode means having in connection therewith means to energize the same once said body form is located in its required position of use.

2. A stimulator device as in claim 1 wherein said means to energize said electrode means includes a power source positioning in a location remote from said body form.

3. A stimulator device as in claim 1 wherein said means to energize said electrode means includes a power source embodied within said body fonn.

4. A stimulator device as in claim 1 wherein spaced surface portions of said body form define separate electrode means.

5. A structure as in claim 1 wherein said anchor portions are defined by wire like segments connected with and biased to normally project outwardly from said body form to facilitate the establishment of a connection thereof with said living body in an area displaced from said electrode means.

6. A stimulator device as in claim 1 wherein said electrode means have a fixed positioning in respect to said body form and comprise at least two electrodes, and said body form includes insulator means separating said electrodes.

7. A stimulator device as in claim 1 characterized by said body form being a unitized structure having means for guiding the same for transvenous or transarterial insertion.

v dm' rrb STAEES PATENT eFwcE CERT?FECAXJEfi? QUREC'HQN Patent No. 3,835,864 Dated September 17, 1974 Inventor(s)@ Nd S Raqn-r and jincn nh W qgirdz'lar It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Col. 5, line 6, "activity" has been correoted to read cavity line 1.6, "preferred" has been corrected to read preferably Col. line 32, "radiosotope" has been corrected to I Q read radioisotope Signed and sealed this 18th day of February-1975.

(SEAL) Attest:

' C. MARSHALL DANN RUTH C. MASON Commissioner of Parents Arresting Officer and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3087486 *Mar 5, 1959Apr 30, 1963Cenco Instr CorpCardiac electrode means
US3516412 *Mar 5, 1969Jun 23, 1970Electro Catheter CorpBipolar electrode having irregularity at inserting end thereof and method of insertion
SU246004A * Title not available
Non-Patent Citations
Reference
1 *Frei et al. Medical Research Engineering, 4th Quarter, 1956, pp. 11 18.
2 *Hopps et al., Surgery, Vol. 36, No. 4, Oct., 1954, pp. 833 849 (only p. 834 relied on).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3902501 *Jun 21, 1973Sep 2, 1975Medtronic IncEndocardial electrode
US3920888 *Jun 4, 1974Nov 18, 1975Nuclear Battery CorpElectrical feed-through assembly suitable for electronic devices implantable in a human body
US3926198 *May 2, 1975Dec 16, 1975Arco Med Prod CoCardiac pacer
US3976082 *Feb 24, 1975Aug 24, 1976German SchmittIntracardial stimulation electrode
US4010758 *Sep 3, 1975Mar 8, 1977Medtronic, Inc.Bipolar body tissue electrode
US4014346 *Jun 26, 1975Mar 29, 1977Research CorporationHermetically sealed cardiac pacer system and recharging system therefor
US4066085 *May 20, 1976Jan 3, 1978Cordis CorporationContact device for muscle stimulation
US4134408 *Nov 12, 1976Jan 16, 1979Research CorporationCardiac pacer energy conservation system
US4140132 *Mar 23, 1978Feb 20, 1979Dahl Joseph DVariable rate timer for a cardiac pacemaker
US4142531 *Dec 2, 1977Mar 6, 1979Coratomic, Inc.Catheter
US4144890 *Dec 19, 1976Mar 20, 1979Cordis CorporationContact device for muscle stimulation
US4157720 *Sep 16, 1977Jun 12, 1979Greatbatch WCardiac pacemaker
US4233992 *Jul 19, 1978Nov 18, 1980Bisping Hans JuergenImplantable electrode
US4254764 *Mar 1, 1979Mar 10, 1981Neward Theodore CClip electrode
US4256115 *Jan 14, 1980Mar 17, 1981American Technology, Inc.Leadless cardiac pacer
US4299239 *Feb 5, 1979Nov 10, 1981Intermedics, Inc.Epicardial heart lead assembly
US4301815 *Jan 23, 1980Nov 24, 1981Telectronics Pty. LimitedTrailing tine electrode lead
US4369791 *Apr 13, 1981Jan 25, 1983Medtronic, Inc.Body implantable electrode
US4414986 *Jan 29, 1982Nov 15, 1983Medtronic, Inc.Biomedical stimulation lead
US4452254 *Jul 13, 1981Jun 5, 1984Goldberg Edward MCardiac electrode and method for installing same
US4501276 *Jul 16, 1982Feb 26, 1985Illinois Tool Works Inc.Fetal electrode apparatus
US4564023 *Mar 28, 1983Jan 14, 1986Cordis CorporationRetention skirt for pacing electrode assembly
US4590949 *Nov 1, 1984May 27, 1986Cordis CorporationNeural stimulating lead with stabilizing mechanism and method for using same
US4669488 *Oct 7, 1985Jun 2, 1987Cordis CorporationRetention skirt for pacing electrode assembly
US4690143 *Jan 24, 1986Sep 1, 1987Cordis CorporationPacing lead with piezoelectric power generating means
US4799499 *Aug 8, 1986Jan 24, 1989Bisping Hans JuergenImplantable electrode with active fixation means
US4825871 *May 18, 1987May 2, 1989Societe Anonyme Dite: AtesysDefibrillating or cardioverting electric shock system including electrodes
US4832032 *Sep 8, 1987May 23, 1989La Jolla Technology, Inc.Electrical apparatus protective interconnect
US5133353 *Apr 25, 1990Jul 28, 1992Cardiac Pacemakers, Inc.Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5385574 *Jul 24, 1992Jan 31, 1995Cardiac Pacemakers, Inc.Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5709644 *Jun 14, 1996Jan 20, 1998Pacesetter, Inc.Radioactive
US5713945 *Jun 13, 1996Feb 3, 1998Pacesetter, Inc.Implantable lead modified to reduce tissue ingrowth
US5908447 *Feb 6, 1998Jun 1, 1999Intermedics Inc.Breakaway structure for body implantable medical device
US5941904 *Sep 12, 1997Aug 24, 1999Sulzer Intermedics Inc.Electromagnetic acceleration transducer for implantable medical device
US6200260Oct 2, 1998Mar 13, 2001Fore Flow CorporationImplantable heart assist system
US6299575Apr 25, 2000Oct 9, 2001Orqis Medical CorporationImplantable heart assist system
US6387037Dec 23, 1999May 14, 2002Orqis Medical CorporationImplantable heart assist system and method of applying same
US6390969Apr 21, 2000May 21, 2002Orqis Medical CorporationImplantable heart assist system and method of applying same
US6405091 *Jul 20, 1999Jun 11, 2002Pacesetter, Inc.Lead assembly with masked microdisk tip electrode and monolithic controlled release device
US6428464Apr 9, 1999Aug 6, 2002Orqis Medical CorporationImplantable heart assist system
US6480740Dec 26, 2000Nov 12, 2002Cardiac Pacemakers, Inc.Safety pacing in multi-site CRM devices
US6493586Aug 30, 2000Dec 10, 2002Cardiac Pacemakers, Inc.Site reversion in cardiac rhythm management
US6584362Aug 30, 2000Jun 24, 2003Cardiac Pacemakers, Inc.Leads for pacing and/or sensing the heart from within the coronary veins
US6610004Feb 15, 2002Aug 26, 2003Orqis Medical CorporationImplantable heart assist system and method of applying same
US6654638 *Apr 6, 2000Nov 25, 2003Cardiac Pacemakers, Inc.Ultrasonically activated electrodes
US6685621Jun 11, 2002Feb 3, 2004Orois Medical CorporationImplantable heart assist system and method of applying same
US6754536Jan 30, 2002Jun 22, 2004Medtronic, IncImplantable medical device affixed internally within the gastrointestinal tract
US6827682Dec 19, 2001Dec 7, 2004Mogens BuggeImplantable device for utilization of the hydraulic energy of the heart
US6889082Nov 6, 2002May 3, 2005Orqis Medical CorporationImplantable heart assist system and method of applying same
US6922589Dec 9, 2002Jul 26, 2005Cardiac Pacemakers, Inc.Site reversion in cardiac rhythm management
US6963774Nov 8, 2002Nov 8, 2005Cardiac Pacemakers, Inc.Safety pacing in multi-site CRM devices
US6999814Jun 19, 2001Feb 14, 2006Cardiac Pacemakers, Inc.Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US7058449May 5, 2004Jun 6, 2006Cardiac Pacemakers, Inc.Safety pacing in multi-site CRM devices
US7081084 *Jul 16, 2002Jul 25, 2006University Of CincinnatiModular power system and method for a heart wall actuation system for the natural heart
US7125376Apr 7, 2003Oct 24, 2006Orqis Medical CorporationImplantable heart assist system and method of applying same
US7139614May 7, 2003Nov 21, 2006Cardiac Pacemakers, Inc.Leads for pacing and/or sensing the heart from within the coronary veins
US7144365Dec 5, 2003Dec 5, 2006Orqis Medical CorporationImplantable heart assist system and method of applying same
US7158838Jan 31, 2003Jan 2, 2007Medtronic, Inc.Arrangement for implanting a miniaturized cardiac lead having a fixation helix
US7252005Aug 18, 2004Aug 7, 2007Alfred E. Mann Foundation For Scientific ResearchSystem and apparatus for sensing pressure in living organisms and inanimate objects
US7331921Jun 28, 2004Feb 19, 2008Orqis Medical CorporationImplantable heart assist system and method of applying same
US7445592Jun 10, 2004Nov 4, 2008Orqis Medical CorporationCannulae having reduced flow resistance
US7458929May 3, 2005Dec 2, 2008Orqis Medical CorporationImplantable heart assist system and method of applying same
US7509174 *Nov 14, 2002Mar 24, 2009Intrapace, Inc.Gastric treatment/diagnosis device and attachment device and method
US7513863Jun 28, 2004Apr 7, 2009Orqis Medical CorporationImplantable heart assist system and method of applying same
US7522959Dec 30, 2004Apr 21, 2009Cardiac Pacemakers, Inc.Subcutaneous cardiac rhythm management
US7529589Jun 4, 2004May 5, 2009Synecor LlcIntravascular electrophysiological system and methods
US7532933Oct 20, 2004May 12, 2009Boston Scientific Scimed, Inc.Leadless cardiac stimulation systems
US7596413Jun 8, 2004Sep 29, 2009Cardiac Pacemakers, Inc.Coordinated therapy for disordered breathing including baroreflex modulation
US7617007Oct 29, 2004Nov 10, 2009Synecor LlcMethod and apparatus for retaining medical implants within body vessels
US7623926Apr 5, 2004Nov 24, 2009Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7630765Jun 1, 2006Dec 8, 2009Cardiac Pacemakers, Inc.Safety pacing in multi-site CRM devices
US7647109Mar 7, 2005Jan 12, 2010Boston Scientific Scimed, Inc.Leadless cardiac stimulation systems
US7650186Mar 7, 2005Jan 19, 2010Boston Scientific Scimed, Inc.Leadless cardiac stimulation systems
US7658705Dec 8, 2005Feb 9, 2010Cardioenergetics, Inc.Actuation mechanisms for a heart actuation device
US7715918Oct 18, 2006May 11, 2010University Of CincinnatiMuscle energy converter with smooth continuous tissue interface
US7734343May 31, 2006Jun 8, 2010Synecor, LlcImplantable intravascular device for defibrillation and/or pacing
US7747323Jun 8, 2004Jun 29, 2010Cardiac Pacemakers, Inc.Adaptive baroreflex stimulation therapy for disordered breathing
US7747335 *Dec 10, 2004Jun 29, 2010Synecor LlcImplantable medical device having pre-implant exoskeleton
US7753837Dec 8, 2005Jul 13, 2010The University Of CincinnatiPower system for a heart actuation device
US7801614Oct 23, 2006Sep 21, 2010Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7813812Jul 7, 2006Oct 12, 2010Cvrx, Inc.Baroreflex stimulator with integrated pressure sensor
US7840271Jul 20, 2005Nov 23, 2010Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7840281Jul 21, 2006Nov 23, 2010Boston Scientific Scimed, Inc.Delivery of cardiac stimulation devices
US7850729Dec 8, 2005Dec 14, 2010The University Of CincinnatiDeforming jacket for a heart actuation device
US7890191Feb 28, 2008Feb 15, 2011Medtronic, Inc.Implantable medical device system with fixation member
US7894914Aug 28, 2007Feb 22, 2011Cardiac Pacemakers, Inc.Medical device electrodes including nanostructures
US7899554Oct 30, 2007Mar 1, 2011Synecor LlcIntravascular System and Method
US7904179Feb 28, 2008Mar 8, 2011Medtronic, Inc.Implantable medical device system with fixation member
US7925352Mar 27, 2009Apr 12, 2011Synecor LlcSystem and method for transvascularly stimulating contents of the carotid sheath
US7933661 *May 18, 2007Apr 26, 2011Medtronic, Inc.Lead retention means
US7937148Oct 13, 2006May 3, 2011Nanostim, Inc.Rate responsive leadless cardiac pacemaker
US7937161Mar 31, 2006May 3, 2011Boston Scientific Scimed, Inc.Cardiac stimulation electrodes, delivery devices, and implantation configurations
US7945333Oct 13, 2006May 17, 2011Nanostim, Inc.Programmer for biostimulator system
US7949400Nov 10, 2009May 24, 2011Cvrx, Inc.Devices and methods for cardiovascular reflex control via coupled electrodes
US7974710Apr 28, 2005Jul 5, 2011Medtronic, Inc.Guide catheters for accessing cardiac sites
US7979127May 25, 2010Jul 12, 2011Intrapace, Inc.Digestive organ retention device
US7991480Aug 28, 2007Aug 2, 2011Cardiac Pacemakers, Inc.Medical device electrodes having cells disposed on nanostructures
US8003879 *Mar 5, 2007Aug 23, 2011Cardiac Pacemakers, Inc.Method and apparatus for in vivo thermoelectric power system
US8010209Oct 13, 2006Aug 30, 2011Nanostim, Inc.Delivery system for implantable biostimulator
US8039727Mar 5, 2007Oct 18, 2011Cardiac Pacemakers, Inc.Method and apparatus for shunt for in vivo thermoelectric power system
US8050774Dec 22, 2005Nov 1, 2011Boston Scientific Scimed, Inc.Electrode apparatus, systems and methods
US8050775Oct 29, 2009Nov 1, 2011Cardiac Pacemakers, Inc.Coronary vein lead having pre-formed biased portions for fixation
US8060206Jul 7, 2006Nov 15, 2011Cvrx, Inc.Baroreflex modulation to gradually decrease blood pressure
US8086314 *Oct 29, 2002Dec 27, 2011Cvrx, Inc.Devices and methods for cardiovascular reflex control
US8109879Jan 10, 2006Feb 7, 2012Cardiac Pacemakers, Inc.Assessing autonomic activity using baroreflex analysis
US8116883Feb 2, 2007Feb 14, 2012Synecor LlcIntravascular device for neuromodulation
US8185213Oct 22, 2010May 22, 2012Boston Scientific Scimed, Inc.Delivery of cardiac stimulation devices
US8204605Feb 4, 2009Jun 19, 2012Cardiac Pacemakers, Inc.Multi-site atrial electrostimulation
US8260417Nov 17, 2009Sep 4, 2012Cardiac Pacemakers, Inc.Safety pacing in multi-site CRM devices
US8290595 *Jul 7, 2006Oct 16, 2012Cvrx, Inc.Method and apparatus for stimulation of baroreceptors in pulmonary artery
US8290600Jul 21, 2006Oct 16, 2012Boston Scientific Scimed, Inc.Electrical stimulation of body tissue using interconnected electrode assemblies
US8295939May 17, 2011Oct 23, 2012Nanostim, Inc.Programmer for biostimulator system
US8301248Jun 27, 2008Oct 30, 2012Boston Scientific Neuromodulation CorporationSequenced and simultaneous stimulation for treating congestive heart failure
US8311633Dec 4, 2007Nov 13, 2012Synecor LlcIntravascular implantable device having superior anchoring arrangement
US8332029Jun 28, 2006Dec 11, 2012Bioness Inc.Implant system and method using implanted passive conductors for routing electrical current
US8332036Mar 8, 2007Dec 11, 2012Boston Scientific Scimed, Inc.Leadless cardiac stimulation systems
US8340780May 7, 2007Dec 25, 2012Scimed Life Systems, Inc.Leadless cardiac stimulation systems
US8352025Oct 13, 2006Jan 8, 2013Nanostim, Inc.Leadless cardiac pacemaker triggered by conductive communication
US8352028Apr 26, 2010Jan 8, 2013Medtronic, Inc.Intravascular medical device
US8369954Mar 7, 2011Feb 5, 2013Synecor LlcSystem and method for transvascularly stimulating contents of the carotid sheath
US8403866Apr 14, 2009Mar 26, 2013Medtronic, Inc.Guide catheters for accessing cardiac sites
US8406886Mar 9, 2009Mar 26, 2013Rehabtronics, Inc.Method of routing electrical current to bodily tissues via implanted passive conductors
US8442638May 17, 2010May 14, 2013Cardiac Pacemakers, Inc.Adaptive baroreflex stimulation therapy for disordered breathing
US8457742Oct 13, 2006Jun 4, 2013Nanostim, Inc.Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator
US8467880Aug 25, 2008Jun 18, 2013Bioness Inc.System for transmitting electrical current to a bodily tissue
US8478408Mar 8, 2007Jul 2, 2013Boston Scientific Scimed Inc.Leadless cardiac stimulation systems
US8483820Oct 4, 2007Jul 9, 2013Bioness Inc.System and method for percutaneous delivery of electrical stimulation to a target body tissue
US8498721Oct 3, 2011Jul 30, 2013Cardiac Pacemakers, Inc.Coronary vein leads having pre-formed biased portions for fixation
US8504156Aug 26, 2011Aug 6, 2013Medtronic, Inc.Holding members for implantable cardiac stimulation devices
US8527068Feb 2, 2010Sep 3, 2013Nanostim, Inc.Leadless cardiac pacemaker with secondary fixation capability
US8535222Mar 13, 2007Sep 17, 2013Cardiac Pacemakers, Inc.Sleep detection using an adjustable threshold
US8538517Sep 14, 2012Sep 17, 2013Bioness Inc.Implant, system and method using implanted passive conductors for routing electrical current
US8538529Mar 5, 2007Sep 17, 2013Cardiac Pacemakers, Inc.Power converter for use with implantable thermoelectric generator
US8543205Oct 12, 2011Sep 24, 2013Nanostim, Inc.Temperature sensor for a leadless cardiac pacemaker
US8571662Jan 29, 2008Oct 29, 2013Simon Fraser UniversityTransvascular nerve stimulation apparatus and methods
US8583236 *Mar 8, 2010Nov 12, 2013Cvrx, Inc.Devices and methods for cardiovascular reflex control
US8594794Jul 17, 2008Nov 26, 2013Cvrx, Inc.Baroreflex activation therapy with incrementally changing intensity
US8606356Aug 17, 2004Dec 10, 2013Cardiac Pacemakers, Inc.Autonomic arousal detection system and method
US8606359Apr 13, 2007Dec 10, 2013Cvrx, Inc.System and method for sustained baroreflex stimulation
US8615310Dec 13, 2011Dec 24, 2013Pacesetter, Inc.Delivery catheter systems and methods
US8630710 *Mar 1, 2007Jan 14, 2014The Board Of Trustees Of The Leland Stanford Junior UniversityImplanted cardiac device for defibrillation
US8634912Jan 17, 2012Jan 21, 2014Pacesetter, Inc.Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension
US8644934Sep 13, 2007Feb 4, 2014Boston Scientific Scimed Inc.Cardiac stimulation using leadless electrode assemblies
US8670842Dec 14, 2012Mar 11, 2014Pacesetter, Inc.Intra-cardiac implantable medical device
US8700181Jan 17, 2012Apr 15, 2014Pacesetter, Inc.Single-chamber leadless intra-cardiac medical device with dual-chamber functionality and shaped stabilization intra-cardiac extension
US8712531May 24, 2012Apr 29, 2014Cvrx, Inc.Automatic baroreflex modulation responsive to adverse event
US8718789Apr 19, 2010May 6, 2014Cvrx, Inc.Electrode structures and methods for their use in cardiovascular reflex control
US8738137Dec 1, 2009May 27, 2014Bioness Inc.System for transmitting electrical current to a bodily tissue
US8738147Jan 29, 2009May 27, 2014Cardiac Pacemakers, Inc.Wireless tissue electrostimulation
US8781605Jan 17, 2012Jul 15, 2014Pacesetter, Inc.Unitary dual-chamber leadless intra-cardiac medical device and method of implanting same
US8788035Dec 7, 2012Jul 22, 2014Pacesetter, Inc.Leadless cardiac pacemaker triggered by conductive communication
US8788053Oct 17, 2012Jul 22, 2014Pacesetter, Inc.Programmer for biostimulator system
US8798745Apr 19, 2013Aug 5, 2014Pacesetter, Inc.Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator
US20090149902 *Mar 1, 2007Jun 11, 2009Kumar Uday NImplanted cardiac device for defibrillation
US20130345770 *Jun 21, 2012Dec 26, 2013Pacesetter, Inc.Leadless intra-cardiac medical device with reduced number of feed-thrus
USRE28990 *Feb 6, 1975Oct 5, 1976Corometrics Medical Systems, Inc.Bipolar electrode structure for monitoring fetal heartbeat and the like
USRE41394Jan 17, 2006Jun 22, 2010Mogens BuggeImplantable device for utilization of the hydraulic energy of the heart
CN101578067BOct 13, 2006Jul 17, 2013内诺斯蒂姆股份有限公司Leadless cardiac pacemaker and system
DE2506694A1 *Feb 18, 1975Sep 11, 1975Medtronic IncImplantable elektrodenanordnung
DE3016497A1 *Apr 26, 1980Jul 30, 1981Telectronics Pty LtdElektrodenleitung mit sich nach hinten erstreckenden zinken
EP0003948A1 *Jul 14, 1978Sep 19, 1979Hans-Jürgen Dipl.-Ing. BispingImplantable electrode
EP0004967A2 *Apr 17, 1979Oct 31, 1979Werner Dr.Dr. MohlAnchoring means for a probe head, particularly a cardiac probe
EP0041254A1 *May 29, 1981Dec 9, 1981Hans-Jürgen Dipl.-Ing. BispingImplantable pacemaker leads
EP1508295A1 *Aug 20, 2004Feb 23, 2005Alfred E. Mann Foundation for Scientific ResearchSystem and apparatus for sensing pressure in living organisms and inanimate objects
EP1969998A2 *Aug 20, 2004Sep 17, 2008Alfred E. Mann Foundation for Scientific ResearchSystem and apparatus for sensing pressure in living organisms and inanimate objects
EP2097851A2 *Oct 5, 2007Sep 9, 2009Bioness Inc.System and method for percutaneous delivery of electrical stimulation to a target body tissue
WO2000078376A1 *Jun 26, 2000Dec 28, 2000Anagram Consultants AgImplantable device for utilisation of the hydraulic energy of the heart
WO2007047681A2 *Oct 13, 2006Apr 26, 2007Nanostim IncLeadless cardiac pacemaker and system
WO2007068284A1 *Dec 12, 2005Jun 21, 2007Synergio AgIntra cardiac device, system and methods
WO2009032485A1Aug 11, 2008Mar 12, 2009Cardiac Pacemakers IncMedical device electrodes having cells disposed on nanostructures
WO2013032624A2 *Aug 2, 2012Mar 7, 2013Medtronic, Inc.Holding members for implantable cardiac stimulation devices
Classifications
U.S. Classification607/36, 607/35, 607/126
International ClassificationA61N1/375, A61N1/05, A61N1/378
Cooperative ClassificationA61N1/375, A61N1/0573, A61N1/3785
European ClassificationA61N1/05N4A, A61N1/375, A61N1/378B
Legal Events
DateCodeEventDescription
Apr 6, 1982AS02Assignment of assignor's interest
Owner name: INTERMEDICS, INC., A CORP. OF TEX.
Effective date: 19820318
Owner name: RASOR ASSOCIATES, INC.,
Apr 6, 1982ASAssignment
Owner name: INTERMEDICS, INC., A CORP. OF TEX.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RASOR ASSOCIATES, INC.,;REEL/FRAME:003968/0071
Effective date: 19820318