Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3835912 A
Publication typeGrant
Publication dateSep 17, 1974
Filing dateJun 25, 1973
Priority dateJun 25, 1973
Publication numberUS 3835912 A, US 3835912A, US-A-3835912, US3835912 A, US3835912A
InventorsP Kristensen, W Simon
Original AssigneeS K S Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of joining a filament to a metal rod
US 3835912 A
Abstract
A metal tube is butted against a metal rod. The rod and tube are welded together using a laser energy source. A filament is inserted into the tube and secured therein. The rod may then be sharpened to serve as a needle.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

if warm KR 3,835,913 United States Patent 1 [111 3,835,912 Kristensen et a1. Sept. 17, 1974 [54] METHOD OF JOINING A FILAMENT TO A 3,443,451 5/1969 Zieber, Jr. 29/4744 x M TAL OD 3,534,740 10/1970 Thompson r 128/339 3,611,551 10/1971 Shave er al. 163/5 X [75] Inventors: Paul A. Kristensen, St. James;

William F. Simon, Duluth, both of Primary ExaminerRichard J. Herbst 73 Assignee: S.K.S. Limited, Barbados, British Assistant E-wminervictor D1 Palma W I di Attorney, Agent, or Firm-Thomas G. Devme [22] Filed: June 25, 1973 [21] Appl. N0.: 373,399

[57] ABSTRACT [52] US. Cl 163/5, 29/471.7, 29/474.4,

123/339 219 121 LM A metal tube is butted against a metal rod. The rod 51 Int. Cl 321g 3/18 and tube are welded together using a laser energy [58] Field of Search 29/47l.1, 471.7, 474.4; SOUTCB- A filament is inserted into the tube and 219/121 1 3/1 5; 12 339 cured therein. The rod may then be sharpened to serve as a needle.

[56] References Cited UNITED STATES PATENTS 12 Claims, 4 Drawing Figures 2,743,505 5/1956 Hill 29/474.4 X

PAIENIEB sm mu FROM LASER METHOD OF JOINING A FILAMENT TO A METAL ROD BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to attaching a filament to a small, metal rod. Specifically, it deals with the problem of securing a filament to a needle without having to pass the filament through an eye in the needle.

2. Description of the Prior Art Prior to this invention, needles of this type, commonly referred to in the trade as swage or suture needles to differentiate them from the eyed type, consisted of two main classes generally known in the trade as the channel type and the drill end or seamless type.

The channel type has a groove struck at the extremity of the needle, the end opposite the point. Raised triangular protrusions or corrugations extend across the bottom of the groove and after the filament has been inserted into the groove, the side walls of the groove are crimped or swaged around the filament, thereby effecting a gripping action on the filament by the corrugations. In the channel type, it is difficult to form a cylindrical shape at the channel in the end section to a smooth tight closure because of metal flow characteristics and shape of the groove. If this channel type needle is to be used as a surgical needle, then metal flaking or burrs caused by metal flow may leave a residue in the living tissue through which the surgical needle passes. Furthermore, packing fluids'could be carried over to the tissue to cause irritation, and sharp edges along the channel clip-off walls as well as the corrugation could fracture the filament (suture)during the closing of the channel or in the use of the needle. Also, such a needle requires cold working to attach the filament. The channel end must be annealed after heat treatment of the needle to allow the metal to flow without cracking severely, resulting in a weak wall and therefore poor gripping force, a non-uniform heat treatment or a soft end which could bend excessively during use.

The drill end type is an improvement over the channel type in that the tapped hole, having radial protrusions, located at the extremity of the needle at the end opposite the point, is crimped orswaged around the filament resulting in a stronger one piece, seamless wall and a better gripping action. However, this type of needle requires minimum size drilling and tapping to relatively close tolerance diameters.

Another type needle has a hole drilled at the end opposite the pointed end and then has the filament inserted, together with a' bonding agent to cement the filament in place. This type does not require the minimum tolerances of the type having radial protrusions and it does not cause metal flaking resulting from the crimping action. Both of these drill end types have the disadvantage of requiring the needle to be drilled.

Applicants invention solves the above problem by using commercially available stainless steel hypodermic stock for welding to a stainless steel rod, using a laser as the means of weldingThe hypodermic stock can either be crimped against the filament which has been inserted, or a bonding agent can be used to secure the filament within the hypodermic stock. The disadvantageous step of drilling a bore .into the needleis eliminated.

BRIEF SUMMARY OF THE INVENTION A filament is connected to a small, metal rod through a process wherein a section of metal tube is attached to a metal rod of a diameter approximating that of the tube, the welding being accomplished using a laser. The filament is subsequently secured within the tube either by crimping or by cementing the filament to the inside wall. The rod may be sharpened and configured as desired. Use of the finished article is ideally suited for medical purposes. That is, if the rod is stainless steel, the tube is stainless steel hypodermic needle stock, and the filament is suture material, the combination is excellent to serve as a surgical needle and suture. Fish hook assemblies and common sewing needle assemblies are other applications which are obvious but certainly not limiting to the many possibilities to which this invention lends itself. The welding step, using the laser, enables fast and efficient welding without having to move the joint to be welded.

It is therefore an object of this invention to provide an improved method for securing a filament to a metal rod.

It is another object of this invention to provide a method of securing a metal tube to a metal rod and then affixing a filament to the metal tube.

It is also an object of this invention to provide an improved means of welding a metal tube to a metal rod.

These and other objects will be made evident in the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates the metal tube and metal rod in place with the filament inserted into the tube.

FIG. 2 illustrates one embodiment of welding a metal tube to a metal rod using a laser.

FIG. 3 illustrates another embodiment of welding a metal rod to a metal tube using a laser.

,FIG. 4 illustrates a sharpened and shaped metal rod with a filament attached.

DETAILED DESCRIPTION OF THE INVENTION Referring first to FIG. 1, metal rod 13 is shown butted up against metal tube 11 forming a junction 16 therebetween. An area 16 surrounding the junction 15 is shown upon which light energy from a laser may be applied. The tube 11 has an inside bore 12 into which filament 14 is inserted. Filament 14 may be secured by crimping or by being cemented in place.

FIG. 4 shows rod 13 having been curved and having been sharpened to a point 17. FIG. 4 illustrates a typical surgical needle having a filament (suture) 14 attached thereto. The needle could, of course, be straight or shaped as desired for the particular application.

MODE OF OPERATION FIG. 2 diagrammatically illustrates one method of using a laser to weld metal rod 13 to metal tube 11. A laser beam 52 from a laser (not shown) is directed to a beam splitter 51. Beam splitters are well known and simply reflect some of the incoming light and permit some of the incoming light to pass through. Light beams 54 and are reflected while light beam 53 passes through beam splitter 51. Light beams 54 and 55 are reflected by mirrors 57 and 56, respectively. Light beam 54 is split into beams 61 and 62 by beam splitter 60, light beam 62 impinging on surrounding area 16. Light beam 55 is reflected from mirror 67 to also impinge on surrounding area 16. Light beam 61 is reflected by mirror 63 and again by mirror 65 to impinge on surrounding area 16. Light beam 53, passing through beam splitter 51 also impinges on area 16. Thus, area 16 is subjected to a number of light beams of high energy originating from a laser. By using different configurations of beam splitters and mirrors, the surrounding area 16 could obviously be attacked by more or less light beams at varied angles.

FIG. 3 diagrammatically illustrates another embodiment of the method of welding metal tube 11 to metal rod 13. Laser beam 52 from a laser (not shown) enters lens 81 and is broadened into light beam 82 having a diameter of 2r. Light beam 82 is directed to conical mirror 83 which forms light disc 84 having a thickness r. Light disc 84 is reflected from the inside surface of conical mirror 85 forming hollow cylinder 86 having a wall 87 of thickness r. Hollow beam 86 is reflected by the inside surface of conical mirror 88 forming light disc 89 having a thickness r. Junction between metal tube 11 and metal rod 13 is illustrated within thickness r so that the light energy of light disc 89 is applied to surrounding area 16. The light energy is thereby applied uniformly around junction 15.

FIG. 4 is a resultant structure from the steps of butting tube 11 against rod 13, welding tube 11 to rod 13 by applying light energy from a laser, inserting filament 14 into tube 11 and securing filament 14 within tube 11. In the preferred embodiment, the tube is of hypodermic stock, is stainless steel and may vary in diameter from approximately 0.01 inches to 0.05 inches. The metal rod is stainless steel and may also vary from 0.01 inches to 0.05 inches. When the resultant structure is intended for medical purposes, the filament 14 is suture material. Those having skill in this art appreciate that the dimensions and materials are illustrative only and are not limiting to the scope and intent of this invention.

We claim:

1. The method of joining a filament to a metal rod via a metal tube, using a laser energy source, comprising the steps of:

a. butting the tube against the rod;

b. welding the'tube to the rod by applying light from the laser energy source to an area surrounding the junction between the tube and the rod;

0. inserting the filament into the tube; and

d. securing the filament within the tube.

2. The method of claim 1 wherein the step of welding further comprises:

i. providing a beam of laser light from the laser energy source;

ii. splitting the beam of laser light into a plurality of light beams; and

iii. directing each of the plurality of light beams to a predetermined point on the area surrounding the junction between the tube and the rod.

3. The method of claim 2 wherein the step of splitting.

the beam of laser light further comprises applying the beam to a beam splitter, and the step of directing the plurality of light beams further comprises reflecting at least some of the plurality of light beams from reflective surfaces to predetermined points on the surrounding area.

4. The method of claim 3 wherein the step of securing the filament further comprises cementing the filament within the tube.

5. The method of claim 3 wherein the step of securing the filament further comprises crimping the tube against the filament.

6. The method of claim 1 wherein the step of welding further comprises:

i. providing a beam of laser light from the laser energy source;

ii. converting the beam of laser light into a disc of light; and

iii. positioning the disc of light to form a ring of light converging on the junction of the tube and the rod.

7. The method of claim 6 wherein the step of converting the beam of light further comprises broadening the beam of laser light to a beam of light having a diameter of Zr, and applying the broadened beam to a conical reflective surface to provide the disc of light having a thickness of r.

8. The method of claim 7 wherein the step of positioning the disc of light further comprises translating the disc into a hollow beam having a wall thickness of r by reflecting the disc from a first inside, conical reflective surface, and re-translating the hollow beam into a disc of light converging on the junction, having a thickness of r, by reflecting the hollow beam from a second, inside, reflective conical surface.

9. The method of claim 6 wherein the step of securing the filament further comprises cementing the filament within the tube.

10. The method of claim 6 wherein the step of securing the filament further comprises crimping the tube against the filament.

11. The method of claim 8 wherein the step of securing the filament further comprises cementing the filament within the tube.

12. The method of claim 8 wherein the step of securing the filament further comprises crimping the tube

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2743505 *Apr 14, 1951May 1, 1956Int Standard Electric CorpJoints for coaxial cable
US3443451 *Aug 18, 1966May 13, 1969Teleflex IncMotion transmitting core element and method for making same
US3534740 *Aug 17, 1967Oct 20, 1970Ethicon IncSpandex suture needle combination
US3611551 *Aug 25, 1969Oct 12, 1971Deknatel IncMethod for attaching suture and needle
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4069080 *Jun 11, 1976Jan 17, 1978W. R. Grace & Co.Method and apparatus of bonding superposed sheets of polymeric material in a linear weld
US4201618 *Jul 21, 1978May 6, 1980The United States Of America As Represented By The Secretary Of The NavyUv radiation
US4224096 *Mar 25, 1976Sep 23, 1980W. R. Grace & Co.Laser sealing of thermoplastic material
US4700043 *Dec 9, 1986Oct 13, 1987Matsutani Seisakusho Co., Ltd.Method of forming bore in eyeless operating needle
US4832025 *Jul 30, 1987May 23, 1989American Cyanamid CompanyThermoplastic surgical suture with a melt fused length
US4922904 *Jun 8, 1989May 8, 1990Keisei Medical Industrial Company LimitedApparatus for connecting thread to surgical needle
US4935029 *Jun 17, 1988Jun 19, 1990Matsutani Seisakusho Co., Ltd.Surgical needle
US4976727 *Dec 13, 1989Dec 11, 1990Matsutani Seisakusho Co., Ltd.Surgical needle
US5001323 *Dec 8, 1989Mar 19, 1991Matsutani Seisakusho Co., Ltd.Method and apparatus for manufacturing surgical needle
US5041128 *Jun 4, 1990Aug 20, 1991United States Sirgical CorporationCombined surgical needle-suture device possessing an integrated suture cut-off feature
US5051107 *Jun 4, 1990Sep 24, 1991United States Surgical CorporationSurgical needle-suture attachment for controlled suture release
US5059212 *Jun 4, 1990Oct 22, 1991United States Surgical CorporationSurgical needle-suture attachment for controlled separation of the needle from the suture
US5067959 *Jun 4, 1990Nov 26, 1991United States Surgical CorporationSurgical needle-suture attachement for controlled suture release
US5083008 *Aug 31, 1990Jan 21, 1992Hazet-Werk Hermann Zerver Gmbh & Co. KgMethod for the manufacture of die-forged or die-stamped workpieces
US5084063 *Jun 4, 1990Jan 28, 1992United States Surgical CorporationSurgical needle-suture attachment
US5089010 *Jun 4, 1990Feb 18, 1992United States Surgical CorporationSurgical needle-suture attachment possessing weakened suture segment for controlled suture release
US5089011 *Jun 21, 1990Feb 18, 1992United States Surgical CorporationCombined surgical needle-suture device possessing an integrated suture cut-off feature
US5089012 *Sep 6, 1990Feb 18, 1992Ethicon, Inc.Surgical suture, in particular for sternotomy closure
US5102418 *Feb 27, 1991Apr 7, 1992United States Surgical CorporationMethod for attaching a surgical needle to a suture
US5116358 *Jul 23, 1990May 26, 1992United States Surgical CorporationCombined surgical needle-suture device possessing a controlled suture separation feature
US5123911 *Nov 12, 1991Jun 23, 1992United States Surgical CorporationMethod for attaching a surgical needle to a suture
US5133738 *Aug 21, 1990Jul 28, 1992United States Surgical CorporationCombined surgical needle-spiroid braided suture device
US5139514 *Oct 7, 1991Aug 18, 1992United States Surgical CorporationCombined needle-suture device
US5156615 *Nov 18, 1991Oct 20, 1992United States Surgical CorporationSurgical needle-suture attachment for controlled suture release
US5226912 *Aug 21, 1990Jul 13, 1993United States Surgical CorporationCombined surgical needle-braided suture device
US5259845 *Apr 3, 1991Nov 9, 1993United States Surgical CorporationSurgical needle-suture attachment with a lubricated suture tip for controlled suture release
US5280674 *Nov 12, 1991Jan 25, 1994United States Surgical CorporationApparatus for attaching a surgical needle to a suture
US5306288 *Apr 29, 1991Apr 26, 1994United States Surgical CorporationCombined surgical needle-suture device
US5403345 *Oct 12, 1993Apr 4, 1995United States Surgical CorporationNeedle suture attachment
US5726422 *May 10, 1996Mar 10, 1998Ethicon, Inc.Apparatus with moving clamp for making surgical sutures, and method for using same
US5792181 *May 10, 1996Aug 11, 1998Ethicon, Inc.Surgical suture having a thermally formed tip, and apparatus and method for making same
US5813303 *May 10, 1996Sep 29, 1998Ethicon, Inc.Apparatus for cutting a surgical suture at two locations
US5855156 *May 10, 1996Jan 5, 1999Ethicon, Inc.Apparatus for cutting a surgical suture tip
US5891166 *Oct 30, 1996Apr 6, 1999Ethicon, Inc.Surgical suture having an ultrasonically formed tip, and apparatus and method for making same
US5975876 *May 10, 1996Nov 2, 1999Ethicon, Inc.Combined apparatus for heating and cutting a surgical suture tip
US6001121 *Apr 14, 1998Dec 14, 1999Ethicon, Inc.Surgical suture having a thermally formed tip, and apparatus and method for making same
US6035751 *Apr 28, 1998Mar 14, 2000Ethicon, Inc.Method for cutting a surgical suture at two locations
US6035916 *Mar 26, 1999Mar 14, 2000Ethicon, Inc.Surgical suture having an ultrasonically formed tip, and apparatus method for making same
US6126676 *May 4, 1999Oct 3, 2000Ethicon, Inc.Surgical tipping apparatus
US6306157May 30, 2000Oct 23, 2001Ethicon, Inc.Surgical tipping apparatus
US6730111Aug 14, 2001May 4, 2004Semyon ShchervinskySurgical tipping apparatus
US7557325Aug 5, 2004Jul 7, 2009Lasag AgMethod for manufacturing a medical needle
US7862572Sep 20, 2005Jan 4, 2011Endoevolution, LlcApparatus and method for minimally invasive suturing
US7976555Jul 17, 2008Jul 12, 2011Endoevolution, LlcApparatus and method for minimally invasive suturing
US7993354Oct 21, 2010Aug 9, 2011Endoevolution, LlcDevices and methods for minimally invasive suturing
US8066737Mar 22, 2006Nov 29, 2011Endoevolution, LlcNeedle for suturing instrument
US8123764Nov 20, 2009Feb 28, 2012Endoevolution, LlcApparatus and method for minimally invasive suturing
US8469973Jul 17, 2008Jun 25, 2013Endoevolution, LlcApparatus and method for sternotomy closure
US8623048Aug 3, 2011Jan 7, 2014Endoevolution, LlcSuturing instrument
US8778102Jun 16, 2008Jul 15, 2014Ethicon, Inc.Post laser drilling stress relief of surgical needles made of refractory alloys
US20110315334 *Sep 28, 2009Dec 29, 2011Katoh KazuakiHole opening device and hole opening method for eyeless needle
EP1504829A1 *Aug 5, 2003Feb 9, 2005Lasag AgProcess of manufacturing a medical needle
Classifications
U.S. Classification163/5, 606/226, 228/187, 228/903, 228/131, 219/121.64, 219/121.77
International ClassificationB21G1/10, A61B17/06, B23K26/067
Cooperative ClassificationB23K26/0621, Y10S228/903, B23K26/067, B21G1/10, A61B17/06004
European ClassificationB23K26/067, B21G1/10, A61B17/06A, B23K26/06A6