Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3836342 A
Publication typeGrant
Publication dateSep 17, 1974
Filing dateJun 23, 1972
Priority dateJun 23, 1972
Also published asCA988299A1
Publication numberUS 3836342 A, US 3836342A, US-A-3836342, US3836342 A, US3836342A
InventorsB Bisson, J Shang, R Wynkoop
Original AssigneeSun Research Development
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Gasoline containing a methyl phenol and an ether
US 3836342 A
Abstract
A useful fuel for an internal combustion engine comprises a hydrocarbon base stock of gasoline boiling range, a methyl-substituted phenol and an ether containing a branched alkyl group and boiling below 460 DEG F., said phenol and said ether each being present in amount (e.g., 0.1-15 wt. %) sufficient to increase the Research octane number (RON). The invention also includes a gasoline blending system. For example, preferred compositions can be made by blending 89 RON gasoline containing 5 vol. % p-cresol with 97 RON gasoline containing 5% methyl methoxy propane. Beneficial synergism is noted in such blends for RON blending values.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

States Patent Shang et al.

[ GASOLINE CONTAINING A METIIYI PHIENOL AND AN ETHER [75] Inventors: Jer-Yu Shang; Barry A. Bisson, both of Wilmington, Del.; Raymond Wynkoop, Gladwyne, Pa.

[73] Assignee: Sun Research and Development Co.,

Philadelphia, Pa.

[22] Filed: June 23, I972 [21] Appl. No.: 265,850

3,030,195 4/1962 Ewan 44/56 3,224,848 12/1965 Henderson 44/56 OTHER PUBLICATIONS Unzelman et 211., Are there substitutes for lead antiknocks? May 14, 1971, p. 888, API Division of Re- [451 Sept. 17, I974 fining Proceedings.

Van Winkle, Matthew, Aviation Gasoline Manufacture, 1944, p. 199, McGraw Hill Book Company.

Primary Examiner-Patrick P. Garvin Assistant Examiner-Andrew H. Metz Attorney, Agent, or FirmMr. George L. Church; Mr. J. Edward Hess; Mr. Barry A. Bisson [5 7 ABSTRACT A useful fuel for an internal combustion engine comprises a hydrocarbon base stock of gasoline boiling range, a methyl-substituted phenol and an ether containing a branched alkyl group and boiling below 460F., said phenol and said ether each being present in amount (e.g., 0.1-15 wt. sufficient to increase the Research octane number (RON). The invention also includes a gasoline blending system. For example, preferred compositions can be made by blending 89 RON gasoline containing 5 vol. p-cresol with 97 RON gasoline containing 5% methyl methoxy propane. Beneficial synergism is noted in such blends for RON blending values.

13 Claims, 2 Drawing Figures PATENILUSEP mam SHEET 1 BF 2 FIG.

O BASE STOCK U BASE STOCK 5% WT. MIXTURE A BLENDING VALUE 5 5% WT. MIXTURE VOL.% HIGH RON BASE 5% MMOP PAIENIED 3, 8 36.342

sum 2 [IF 2 FIG. 2

O BASE STOCK 87 R 0 BASES P-CRESOL a MMOP A BLENDING VALUES MOTOR OCTANE NUMBER I I I 0 25 5o 75 I00 VOL. LOW RON BASE 5% P-CRESOL l I l I I00 75 so 25 o VOL. HIGH RON BASE 5% MMOP MOTOR BLENDING VALUES GASOLINE CONTAINING A METHYL PHENOL AND AN lETK-llER SUMMARY OF THE INVENTION The invention includes a novel gasoline blending systern, the use of this system to produce motor fuel of improved octane rating, and novel gasoline compositions containing certain phenols and ethers.

One embodiment is gasoline comprising a hydrocarbon base stock of gasoline boiling range, a methyl substituted phenol and an ether having at least one branched alkyl group and boiling below 460F., said phenol and said ether each being present in amount sufficient to increase the Research octane number.

Another embodiment is a gasoline blending system comprising a supply of a relatively high Research octane number gasoline containing an octane improving amount of an ether boiling below 460F., and a supply of a relatively low Research octane number gasoline containing an octane improving amount of a methyl substituted phenol boiling below about 460F., and means for blending said two supplies to produce gasolines having octane numbers intermediate to those of said high and low octane number gasolines.

The preferred methyl substituted phenols include the cresols (e.g., p-cresol), the xylenols (e.g., 2,3 dimethyl phenol) and the trimethyl-substituted phenols (e. g., hydroxy pseudocumene, hydroxy mesetylene, and hemimelitol) and mixtures of such phenols, with the cresols being the preferred additives to a low RON hydrocarbon base stock in our blending system where the high RON hydrocarbon base contains an ether additlve.

The preferred ethers comprise the dialkyl ethers wherein at least one alkyl group is branched, and include diisopropyl ether, diisobutyl ether, methyl isopentyl ether, methyl isopropyl ether, and mixtures of two or more said ethers. Phenyl alkyl ethers can also be used (e.g., isopropyl phenyl ether). One non-branched alkyl phenyl ether, methyl phenyl ether (methoxy benzene) can be used in a gasoline containing a methyl phenol or as the ether in the blending system described herein.

The ethers and phenols which can be used in our invention include those described by G. H. Unzdman, E. .l. Forster and A. M. Burns, in AP! Preprint (Div. of Refining) No. 47-71, titled Are There Substitutes for Lead Antiknocks, presented at the API Meeting in San Francisco, May 14, 1971.

Generally, the amount of the ether can be in the range of 0.05-30% and the amount of the phenol in the range of 0.05-35% (the limit being determined by solubility); however, the preferred amounts are in the range of 0. ll%. More preferred, the phenol is in the range of 0.5- wt. and the total of said amounts is in the range of 1-15 wt.

BRIEF DESCRIPTION OF THE DRAWINGS The accompanying FIGS. 1 and 2 illustrate the beneficial synergistic effect on research octane blending and motor octane blending values which can be obtained by practice of the blending system of the present invention wherein the low RON gasoline contains p-cresol and the high RON gasoline contains methyl methoxy propane.

As is described in more detail hereinafter, the data for FIGS. l and 2 were obtained with gasoline base stocks of slightly different composition and are presented for purposes of illustration. If desired, the data in Table 2 herein can be plotted, in a manner similar to FIG. 1, to provide a comparison of RON and MON blending values for the same gasoline bases.

FURTHER DESCRIPTION In a preferred blending system the low RON gasoline contains a cresol (or mixture of cresols) and preferably contains p-cresol (typically, l-l5 wt. more preferred 2-10 wt. and the high RON gasoline contains methyl tertiary butyl ether, methyl methoxy propane (MMOP), typically 1-20 wt. more preferred 2-15 wt. (e.g., 7%).

The gasolines can also contain a lead antiknock e. g., 0.1-4 cc. TEL/gal), a lead scavenger (e.g., organo bromides, ethylene dichloride), deposit modifiers (e.g., boron and phosphorous compounds), lower acyclic alcohols (e.g., methanol, ethanol, isopropanol, butanol, etc.), a lead appreciator (e.g., t-butylacetate), oxidation inhibitors (e.g., aromatic amines and/or alkyl phenols, such as 2,6-di-t-butyl-p-cresol), metal deactivators (e.g., NN-disalicylidene-l,2-propylene diamine), corrosion inhibitors (e.g., high molecular weight phosphoric, carboxylic or sulfon ic acids or their reaction products with nitrogen bases, such as amines, and include Ethyl MPA), antistatic additives (e.g., Shell ASA-3") and anti-icing additives (e.g, methylcellosolve and glycerol). Some of these gasoline additives are described, for example, by J. P. Heuston, Chemical Additives in Petroleum Fuels, S. African Ind. Chemist, 20:65-70, 74 (1966).

In our gasoline blending system, one or both of the gasolines can contain an acyclic alcohol containing in the range of 1-4 carbon atoms preferably the supply which contains the ether contains in the range of ll5 wt. of the alcohol. Such alcohols increase the RON of the gasolines.

In the blending system, on a lead free basis the high RON gasoline will typically have an RON in the range of 90-105 and the low RON gasoline will be at least 5 RON lower. However, where one: or both gasolines contain a lead antiknock compound (such as mixed methyl and ethyl leads, e.g., dimethyl diethyl lead, etc.), the high RON gasoline can have an RON as high as 120 (the low RON gasoline being, typically, in the range of 75-90 RON).

In our blending system, typically, the hydrocarbon base of the high RON gasoline can contain in the range of 20-40% aromatics, 0-20% olefins, 0-l0% naphthenes, with the balance being para'ffins (the minimum paraffin content being 45%, more preferred 55%). The low RON gasoline can contain in the range of 15-40% aromatics, 025% olefins, 2-20% naphthenes, with the balance being paraffms, the minimum paraffin content being 35% (more preferred 45%).

In our preferred gasoline compositions, containing both the ether and phenol (such as the blends from our system), the preferred hydrocarbon base stock contains in the range of 40-75% paraffins, 0-10% naphthenes, 0-20% olefins and 20-40% aromatics. More preferred, the base stock will have an RON in the range of -100, and an MON in the range of 75-95. For the synergistic effect disclosed herein with p-cresol and MMOP, the preferred base stock contains in the range of 50-60% paraffins, 1-10% naphthenes, 2-l0% olefins and 28-38% aromatics.

ILLUSTRATIVE EXAMPLES EXAMPLE 1 Typical low Research octane rating and high Research octane rating hydrocarbon base stocks, in the gasoline boiling range, were obtained by blending selected refinery streams, including catalytically cracked gasoline, straight run gasoline, reformate, aviation alkylate, etc.

Table 111 reports the percentages by volume of paraffins, naphthenes, olefins and aromatics in these base stocks. Table IV reports in more detail on the composition of a stabilized sample of each blend stock.

Methyl methoxy propane (MMOP) was added, 5 wt. to a sample of the high RON base stock and pcresol, 5 wt. was added to a sample of the low RON base stock.

A series of blends was made of various proportions of the high RON base with the low RON base and of the high RON base plus 5% MMOP with the low RON base plus 5% p-cresol.

Research octane ratings were obtained for each of the base stocks and blends. The significance of the blending value octane number and its method of calculation are described in US. Pat. No. 3,030,195, issued 4-17-62 to Evan B. Ewan. The blending value RON was then calculated for selected blends. The results of these tests and calculations are reported in Table l and are summarized by the curves in FIG. 1. A beneficial synergistic effect was noted for the RON blending values of 30 the blends containing both p-cresol and MMOP.

'There was an insufficient amount of the two hydrocarbon bases to permit testing for motor octane number (MON).

EXAMPLE 2 High and low RON hydrocarbon base stocks, in the gasoline boiling range, were obtained by blending the same types of selected refinery streams and in about the same proportions as in Example 1. Since the refinery streams were not identical to those used in the Example bases, the chemical compositions and octane ratings were not the same as in Example 1, but represent the usual variation which is encountered in refining practice. 5 wt. pscresol was added to a sample of the low RON base and,-l5 lwt. MMOP was added to the high RON base. The tiivo gasolines were blended as in Example 1 and both research (RON) and motor (MON) octane numbers were obtained. Research and motor blending values were calculated. Table 11 reports the results of these tests and calculations. Slight synergism (in comparison with Example 1) was noted in the RON blending values for some blends and greater synergism (but less than in Example 1) was noted for most blends in the MON blending values. FIG. 2 presents curves summarizing the results of the motor octane number testing of this example.

Table V attached hereto presents analyses of typical refinery streams which can be used to make hydrocarbon base stocks which can be used in the present invention. Table V also shows proportions for blending these streams to make a high RON and a low RON base which are particularly desirable in our blending system.

20 The low RON base analyzes (in volume paraffins, 7% naphthenes, 15% olefins and 38% aromatics. The high RON base contains 63% paraffins, 0% naphthenes, 3% olefins and 34% aromatics.

In gasoline for automobiles-using conventional piston engines, it has been found that knocking under actual road conditions (or road octane) can be better correllated with a function such as R+M/2 or R+2M,/2, which combines RON (i.e., R) and MON (i.e., M), than with either RON or MON. Therefore, it is apparent that both of the previous examples indicate that the present blending system and gasolines can provide improved performance in an automobile under actual road conditions.

Among the cresols, the ortho and meta isomers are less preferred in gasoline than p-cresol. That is, paracresol has higher research and motor octane blending values (and lower sensitivity) than the other isomers. Each of these isomers can absorb (or dissolve) in the order of 2 wt. water and, with about 15 wt. cresols in gasoline the water solubility is about 0.5 wt If this amount of water is added to the gasoline, it reduces flame temperature and, thus, the NOx (nitrogen oxides) emission and increases the power output of the engine.

TABLE I p-CRESOL AND METHYL t-BUTYL ETHER 1N GASOLINE BLENDS Base Composition (Volume C D E F RUN A B G H Low RON Base Stock 5% Wt. p-Cresol 85.7 71.4 57.1 42.9 28.6 14.3 High RON Base Stock 5% Wt. MMOP 100 14.3 28.6 42.9 57.1 71.4 85.7 Research, F-1 Clear Duplicates 89.0 97.8 90.4 91.6 93.0 94.6 95.6 97.0 89.1 97.8 90.6 91.8 93.0 94.6 95.6 96.8 Average 89.05 97.8 90.5 91.7 93.0 94.6 95.6 96.9

A B C D E F G H Low RON Base Stock 100 85.7 71.4 57.1 42.9 28.6 14.3 High RON Base Stock 100 14.3 28.6 42.9 57.1 71.4 85.7 Research, F-l Clear Duplicates 83.6 96.3 85.2 87.0 88.9 90.3 92.0 93.6 83.8 96L 85.4 87.0 88.8 90.4 92.0 93.6 Average 83.7 96.25 85.3 87.0 88.85 90.35 92.0 93.6 Increased RON 5.35 1.55 5.20 4.70 4.15 4.25 3.60 3.30 Blending Value RON 191 127 189 181 172 175 164 TABLE II p-Cresol and methyl methoxy propane (MMOP) in gasoline blends (All concentrations in volume percent, unless otherwise noted) Blend No 1 2 3 4 5 6 7 8 9 10 11 12 18 14 15 16 Low Octane Base 100 85.7 71.4 57.1 42.9 28.6 14 3 LOB plus 5% wt.

p-cresol 100 85- 7 7 4 57. 1 42. 9 28. 6 14,3 High Octane Base H0 100 14.3 28.6 42. 9 57.1 71.4 5,7 HOB plus 5% wt.

MMOP 100 14.3 28.6 42.9 57.1 71.4 35 7 Research (RON):

Cl r 84. 9 89. 2 95. 2 96. 6 86. 0 90. 2 87. 5 90. 9 89. 1 91. 8 90. 8 03. 4 9'1. 9 94. 5 93, 7 95, 4 Duplicate 85. 0 89. 2 95. 2 96. 6 86. 0 90. 3 87. 5 91. 2 89. 2 92. 0 91. 0 93. 3 92. 0 94. 4 93. 6 95. 4 Average 84. 95 89. 2 95. 2 96. 6 86. 0 90. 87. 5 91. 0.5 89. 15 91. 9 90. 9 93. 91. 95 94. 65 4 Blndg.value RON 169.95 123.2 171.0 1 8.5 144.15 139.9 141.85 128.65 Motor (MON) clear. 78. 0 82. 0 85. 6 86. 0 78. 7 82. 7 79. 5 83. 3 81. 1 83. 9 82. 4 84. 3 83. 4 84. 9 84. 0 85. 4 Duplicate 78. 0 82.0 85.3 86. 0 78. 9 82. 4 78. 8 83. 0 81. 2 83. 8 82. 4 84. 3 83. 4 84. 9 84. 3 85. 5

Average 78.0 82.0 85.45 86.0 78.8 82. 78. 83. 15 81. 15 83. i5 .4 83. 4 84. 9 84. 15 85. 45 Blndg. value MON 8.0 110. 15 Sensitivity R-M. 6.95 7. 20 9. 9. 95 B.V. sensitivity 05 18. 50

TABLE 111 GASOLINE COMPOSITION (VOLUME PERCENT) 25 Blends (Base Stocks) Low RON High RON Paraffims 55 58 Naphthenes 9 6 Monocyclic paraffins 8.8 1.9 Olefins l0 4 di-cyclic paraffms 0.6 0.1 lQfiL 25 32 tri-cyclic paraffins 0.1 0 TOTAL 100 100 3 Olefins 9.6 3.7 Research Octane (RON) Aliphatic monoolefins 7.6 3.2 Mmor Octane (MON) 78 85 Cyclic monoolefins 2.0 0.5 Aromatics 30.2 34.6

(Alkyl Benzenes) (29.2) (34.4) v Benzene 1.1 0.5 Toluene 5.5 15.8 35 0,35 I00 TABLE IV C s 8.0 5.6 CXOS 3.6 2.1 n 1.0 0.4 STAB1LlZED* GASOLINE COMPOSITION (VOLUME PERCENT) (Alkyl Naphthalene) (1.0) (0.2)

Base Stock Low RON High RON Naphthakne 5 02 0 Methyl naphthalene 0 5 0,0 Paraffins 50.9 59.7 4 TOTAL 100.2 100.0

Parafflns 50.9 59.7 N112 1111161185 Stabilized by distillation to remove components boiling below 100F.

TABLE V Base Stock Vol.% Component Refinery Analysis (Vol. of Component) Low High Component Paraffins Naphthenes Olefins Aromatics RON RON Alkyl benzenes* 100 11.0 Reformate 35.2 0.6 0.1 64.1 10.6 25.8 Catalytic Gasoline 1 1.9 8.0 20.3 59.8 63.4 Straight Run Gaso. 55.8 33.2 1.2 9.8 2.5 lsopentane 100 12.1 7.4 lsomerizate" 89.8 10.2 0.8 Alkylate 98.0 2.0 1.8 40.6 Poly Gasoline 100 0.3 2.1 Udex Raffirnate 86.8 6.4 3.6 3.2 1.0 Butanes** 7.5 13.1

Typically bottoms from toluene manufacture. containing mostly xylenes (typically 50-80%) and toluene (typically 5-30%). remainder (e.g.. 5l5%) Product of hydroisomerizati of 9-15 psi). Propane can also being other alkyl benzenes (up 10 C). on of refinery streams which contain normal paraffins (e.g., Udex raffinate).

nt can be varied to obtain the desired Reid Vapor Pressure (typically in the range be present in winter gasoline.

The invention claimed is:

l. Gasoline comprising a hydrocarbon base stock of gasoline boiling range, from 0.05 to 35% of a methyl substituted phenol and from 0.05 to 30 of a hydrocarbyl ether having at least one branched alkyl group and boiling below 460F., said phenol and said ther each being present in amount sufficient to increase the Research octane number.

2. Gasoline according to claim 1 and wherein the amounts of said phenol and said ether are in the range of 01-15 wt.

3. Gasoline according to claim 2 and wherein the amount of said phenol is in the range of 0.1- wt. and the total of said amounts is in the range of 1-15 wt.

4. Gasoline according to claim 1 and wherein said ether is methyl methoxypropane.

5. Gasoline according to claim 1 and wherein said phenol is selected from the group consisting of ortho, meta and paracresol and mixtures of two or more said cresols.

. 6. Gasoline according to claim 5 and wherein said ether is methyl methoxypropane.

7. Gasoline according to claim 6 and wherein said phenol consists essentially of paracresol.

,8- .qa ql ns .3299551'195.tqslaimaniwherei aid amount of said phenol is in the range of 05-15%, said amount of said ether is in the range of 0.5-1 5% and the total of said amounts is in the range of l-l6%.

9. Gasoline according to claim 8 and wherein the total of said amounts is in the range of 2-l0%.

l0. Gasoline according to claim 1 wherein said ether is selected from the group consisting of diisopropyl ether, diisobutyl ether, methyl isopentyl ether, methyl isopropyl ether, and mixtures of two or more said ethers.

11. The composition of claim 1 wherein said base stock contains in the range of 40-75% paraffins, O-l 0% naphthenes, 0-20% olefins, and 20-40% aromatics.

12. The composition of claim 1 wherein said base stock has an RON in the range of 80-100 and an MON in the range of -95.

13. The composition of claim 12 wherein said base stock contains in the range of 50-60% paraffins, l-l0% naphthenes, 2-l0% olefins and 28-38% aromatics.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2240040 *Apr 15, 1939Apr 29, 1941 Stabilization of ethers
US2952612 *Jun 27, 1957Sep 13, 1960Shell Oil CoProduction of high octane motor fuel with an alkyl ether additive
US3030195 *Jan 20, 1959Apr 17, 1962Sun Oil CoMotor fuels
US3224848 *Mar 16, 1959Dec 21, 1965Shell Oil CoGasoline composition
Non-Patent Citations
Reference
1 *Unzelman et al., Are there substitutes for lead antiknocks May 14, 1971, p. 888, API Division of Refining Proceedings.
2 *Van Winkle, Matthew, Aviation Gasoline Manufacture, 1944, p. 199, McGraw Hill Book Company.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4407661 *Dec 7, 1981Oct 4, 1983Standard Oil CompanyOctane number improvers
US4412847 *Oct 3, 1978Nov 1, 1983The Standard Oil CompanyAryl ethers
US5593567 *Mar 22, 1995Jan 14, 1997Jessup; Peter J.Gasoline fuel
US5653866 *Jun 5, 1995Aug 5, 1997Union Oil Company Of CaliforniaControlling properties of an unleaded gasoline fuel suitable for combustion in automobiles, to reduce the emissions of NOx, CO and/or hydrocarbons; specified Reid Vapor Pressure, D-86 Distillation Point, and essentially zero olefins; use with catalytic converter; air pollution control
US5837126 *Aug 1, 1997Nov 17, 1998Union Oil Company Of CaliforniaGasoline fuel
US6030521 *Nov 13, 1998Feb 29, 2000Union Oil Company Of CaliforniaGasoline fuel
US7557255 *May 2, 2002Jul 7, 2009Bp Corporation North America Inc.Method and an unleaded low emission gasoline for fueling an automotive engine with reduced emissions
Classifications
U.S. Classification44/448, 44/449
International ClassificationC10L1/18, C10L1/02
Cooperative ClassificationC10L1/18, C10L1/1852, C10L1/023, C10L1/1832
European ClassificationC10L1/18, C10L1/02B