Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3836967 A
Publication typeGrant
Publication dateSep 17, 1974
Filing dateMay 28, 1962
Priority dateMar 10, 1958
Publication numberUS 3836967 A, US 3836967A, US-A-3836967, US3836967 A, US3836967A
InventorsWright R
Original AssigneeWright R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Broadband microwave energy absorptive structure
US 3836967 A
Abstract
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 Wright Sept. 17, 1974 BROADBAND MICROWAVE ENERGY ABSORPTIVE STRUCTURE Rufus W. Wright, 12 Westmoreland Rd., Alexandria, Va. 22308 Filed: May 28, 1962 App1.No.: 199,226

Related US. Application Data Continuation-impart of Ser. No. 720,512, March 10, 1958, abandoned.

Inventor:

US. Cl 343/18 A Int. Cl H0lg 17/00 Field of Search 343/18 A; 229/90 References Cited UNITED STATES PATENTS 3/1941 Dunajeff 229/90 3/1949 Tiley 343/18 3/1961 Tanner 343/18 2/1966 McMillan 343/18 A Primary Examiner-T. 1-1. Tubbesing Assistant Examiner-G. E. Montone Attorney, Agent, or FirmR. S. Sciascia; Arthur L. Branning [5 7] ABSTRACT The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

7 Claims, 3 Drawing Figures PATENTEDSEP 1 1 m4 IINVENTOR RUFUS w. WRIGHT ATTORNEY BROADBAND MICROWAVE ENERGY ABSORPTIVE STRUCTURE This application is a continuation-in-part of application Ser. No. 720,512, filed Mar. 10, 1958 for RADIO FREQUENCY ENERGY ABSORPTIVE STRUC- TURE, now abandoned.

This invention relates in general to a structure for impeding the reflection of a beam of electromagnetic waves from the surface of an object and more particularly to a flexible, thin-wall structure which is suitable as a broadband absorber of microwave energy.

Previous developments in lossy dielectric type absorbers involved the use of a dielectric body on or in which was distributed a high loss substance in the form of finely divided conductive material. Absorbers of this type usually provided a low density dielectric as the supporting material, shaped into a pattern of geometric projections, such as wedges, cones or pyramids, and having on the surface thereof a lossy coating of conductive particles with a suitable binder material. A low dielectric substance has previously been used as a matrix or binder in which conductive particles, such as graphite or finely divided carbon, have been distributed throughout the substance to form an absorbent composition in depth.

It has been found in practice that these absorbent structures were somewhat bulky and heavy in the amount of supporting material that was required to maintain the desired configuration; they were, for the most part, substantially rigid structures and therefore unwieldy in applying them to surfaces of varying contours. Moreover, considerable manufacturing effort and costs were involved in assembling and coating different materials to provide composite structures. Additionally, many of these absorbers were not effective over a wide range of frequencies.

A practical absorbent material that involved the use of a low density mat of fibers coated with a thin film of conducting rubber, as described in U.S. Pat. No. 2,977,591, was found to operate over a wide range of microwave frequencies, but the fibrous structure was not suitable for general outdoor use because the performance thereof in wet weather is degraded by the amount of energy reflected from the drops of water that remain suspended in the medium.

It is an object of the present invention, therefore, to provide a new and improved lossy dielectric microwave absorber which overcomes the limitations of prior art absorbers of the type described.

Another object of the invention is to provide a microwave energy absorber which can absorb satisfactorily over a wide range of frequencies and angles, and its mode of operation does not depend on the relative to said absorber reflecting surface being in a fixed position.

A further object of the invention is to provide a broadband microwave energy absorber which is effective in improving radar performance, camouflaging radar targets and in reducing wave energy reflections which limit antenna test ranger.

A still further object of the invention is to provide a new and improved microwave energy absorber of simple structure, substantially lower weight and relatively inexpensive construction.

And yet another object of the invention is to provide an improved absorber having extremely flexible structure capable of easy mounting on curved surfaces and FIG. 2 is a cross sectional view of the absorptive structure on a line through the apices of FIG. 1; and

FIG. 3 illustrates the flexible nature of the absorber by rolling over the dentate surface thereof and bringing the rear hollow structure into view.

In accordance with the present invention, a substantially thin sheet of lossy material may be shaped into a surface of adjoining, hollow, essentially thin-skin, tapered projections to provide a novel type absorbent structure that is capable of reducing reflection of microwave energy over a wide range of frequencies. The thin sheet lossy material which is employed for this purpose consists of a resistive composition of finely divided conducting particles dispersed in a flexible matrix. The novel absorber provides an extremely lightweight structure of about 0.3 lb. per sq. ft. in which the conductive sheet has been found to be self-supporting and capable of withstanding the outdoor rigors. The particular pyramidal configuration of the invention has physical characteristics that are applicable to a number of general outdoor uses. The performance of this absorber over a wide frequency range and over a wide range of incidence achieves power reductions of more than 15 decibels.

Referring now more particularly to the perspective view of FIG. 1 and the cross sectional view of F IG. 2, the absorber 11 consists of hollow, four-sided pyramids 12 formed by a high loss thin sheet 13 which is composed of conducting particles 14 (shown in the drawing as tiny dots), for example finely divided carbon or metal particles, embedded within a matrix 15 of rubber, neoprene or other similar flexible material. The high lossy material, which is prescribed for the present invention, is a conductive film that must be very thin electrically to avoid increased reflectivity at higher microwave frequencies.

The new absorber may be made by preparing a composition of natural rubber, neoprene or flexible plastic material to which is added a dispersion of finely divided carbon black in concentrations of about 20 to 30 percent by weight. Among well known techniques which may be used in preparing the hollow pyramidal structure include compression molding, latex dipping, lateex filtration dipping and latex-filtration casting, and provide means for shaping the desired surface configuration in a matrix or mold in which the thin sheet composition is to be formed. When the resistance of the thin sheet is to be varied for any given set of conditions, this may be accomplished by changing both film thickness and carbon black concentration. The effective range of resistive sheet thickness is in the range of about 0.008 inch to 0.045 inch with the preferred range being in the region of about 0.01 to 0.02 inch. Resistive film thicknesses as fine as 0.003 to 0.005 may also be utilized if a backing of approximately 0.01 inch of unpigmented rubber is included for support. Typically, a 0.01-0.02 inch sheet of rubber containing 20-30 percent concentration of carbon black particles by weight is capable of absorbing efficiently up to 25,000 megacycles per second (mcs). The lower frequency limit of the absorber is determined by the absorber thickness (height of the pyramids) and occurs when said absorber thickness is approximately 0.3 k air (wavelength in air).

Experiments conducted on absorber samples having 3/4 inch high pyramids have demonstrated that the hollow, thin skin structure is capable of reducing reflection of incident energy to less than 2 percent from about 5,000 through 25,000 mcs. Comparable performance was attained over both higher and lower frequency ranges with absorber samples having pyramid heights (absorber thickness) of V2, 2, 4, and 8 inches. The pyramids had apex angles of 40 and a film thicknss of 0.02 inch and were composed of rubber containing therein carbon black particles of about 22 percent by weight and wherein the composition and thickness of the film provided a surface resistance of about 125 ohms per square. The performance of these samples in reducing reflection to less than 2 percent of the incident energy is shown in the table by means of their effective ranges of operation:

These absorber structures were tested to obtain reflection data by mounting the samples directly on a metal surface. The low frequency data was obtained with a single horn waveguide system. The waveguide measurements for reflected energy include any small amount of scattered energy. The high frequency data was obtained with a double horn, free space setup. The data obtained by this system does not include scattered energy, but comparison of the two systems indicates scattered energy to be negligible. The double horn system has become the standard technique throughout industry for testing absorber materials. Generally, the absorber materials tested are used to reduce reflections from metal surfaces, and the testing procedures prescribe that the absorber structures be placed directly on the reflecting surfaces. The performance of well designed broadband absorbers is only slightly dependent on the position of the absorber in relation to the reflecting surface, except at the very low frequency limit of their performance. The magnitude of reflection was plotted through 500 to 50,000 mcs. For frequencies above the 25,000 mcs range, the absorbed radiation amounted to at least 75 percent of the incident beam.

The effect of increasing the height of the absorber is to lower the low frequency limit. It has been observed that increasing the height of the pyramids, while maintaining the ratio of pyramid height to base width constant, will not change the surface area of the absorber. Hence in the present absorber, weight per unit area is independent of the height ofthe pyramids. Thus, higher pyramids are required to absorb energy at lower frequency, but the weight of the absorber material per unit area of surface protected remains constant.

The limit for increasing the height of the absorber is based on a practical consideration of size and ease of handling. Also, a limitation in decreasing the height of the absorber has been observed, assuming a constant height to base ratio, when the projections become so numerous that the peaks and valleys account for much of the absorber area and have considerable effect upon reflectivity characteristics. This disadvantage can be minimized by including additional projections with sharp peaks and valleys between the main tapered projections.

The peaks and valleys of the projection also limit the side angle d) that can be prescribed for the projections, i.e., beyond a certain minimum side angle 4) (about 15) the projections become so numerous for a given area that, as previously mentioned, the peaks and valleys become virtually a reflecting area. The side angle as shown in FIG. 2 is the angle formed by the side of the pyramid with a perpendicular to the base of the pyramid. Pyramidal projections with side angles of about 15 to 25 are found to be particularly effective in accordance with the teachings of the present invention.

It has been determined that the radio frequency resistance of a flat conducting sheet will be the same as the dc resistance only when the sheet thickness is very small compared with the skin depth. Thus as sheet thickness is increased, for constant surface resistance, reflectivity rises above expectations, based on the dc resistance, to a maximum when the sheet is a quarter wave thick electrically. Since an electric quarter wavelength is approached sooner at higher frequencies, the sheet thickness must be reduced to values as small as 0.003 to 0.005 inches, in order to have broadband absorption extend to higher frequencies beyond 25,000 mcs without an increase in reflectivity. As previously mentioned, film thicknesses in the range of 0.003 to 0.005 can be formed by incorporating a higher concentration of carbon black in the film and providing a rubber sheet of approximately 0.01 inch thick for support. This range of thickness will effectively absorb microwave frequencies beyond 30,000 mcs.

The sheet thickness is a most significant aspect of the present broad band absorber in maintaining a relatively uniform absorption throughout a wide range of microwave frequencies. A sheet resistance equal to that of free space, i.e., 377 ohms per square, while suitable for a resonant absorber, is not the most suitable sheet resistance for a shaped broadband absorber. Depending upon such factors as absorber height, sheet thickness and height to base ratio, an optimum resistance exists for broadband absorption. Higher than optimum values of resistance will decrease reflection from the shaped sheet itself, but will result in higher overall reflection because of a decrease in attenuation which allows a greater amount of energy to be returned from the reflecting surface. A lower than optimum resistance will cause higher overall reflection due to increased reflection from the surface of the sheet even though energy returned from the reflecting surface may be negligible. In the region of optimum resistance the amount of energy returned from both sources is approximately the same and also small. It has been found that a sheet resistance in the region of about 50-200 ohms per square is generally suitable for broadband absorption.

The pyramidal configuration has been preferred over other types of surface figures because of simplicity of construction and because the surface provides free draining of water from the sloping surface and thus avoids the increased reflection that occurs in wet weather from standing water. Conical shapes give rise to considerable reflection because of the flat areas surrounding their bases; when the cones are overlapped at the bases to minimize flat areas, they form narrow pockets that accumulate water and contribute to high reflectivity.

The pyramidal shaped resistive skin is a good absorber because it is capable of providing high attenuation to an electromagnetic wave in a short distance with low reflection. It provides an advantage over many absorber structures in that all its volume is air (free space) except for the small amount of active conducting material. Reduction of the amount of solid binder material, such as rubber or plastic, facilitates low reflection. The physical features appear equally attractive: It can be made extremely lightweight because of the small amount of material, such as carbon or graphite required to make a sufficiently conducting film. This physical shape can provide a very flexible absorber, as shown in FIG. 3, which facilitates mounting an curved surfaces.

It can readily be seen that the foregoing disclosure will provide an absorber of superior performance with a minimum of weight, greater flexibility in mounting, and ease of handling. The hollow thin skin structure is also conveniently inter-stacked for storage and shipmerit.

Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.

What is claimed is:

l. A microwave radiation absorber comprising a plurality of uniform, hollow, tapered projections contiguously disposed over an area, said projections being formed of a conductive sheet composed of conducting particles dispersed in a flexible medium.

2. A microwave radiation absorber comprising a plurality of uniform, hollow, tapered projections contiguously disposed over an area, said projections being formed of a conductive sheet having a thickness in the range of from about 0.008 to about 0.045 inch, said sheet being composed of conducting particles dispersed in a flexible medium.

3. A microwave radiation absorber comprising a plurality of uniform, hollow, tapered projections contiguously disposed over an area, said projections being formed of a conductive sheet having a thickness in the range of from about 0.008 to about 0.045 inch, said sheet being composed of carbon particles dispersed in rubber.

4. A microwave radiation absorber comprising a plurality of uniform, hollow, pyramids contiguously disposed over an area, said pyramids being formed of a conductive sheet having a thickness in the range of from about 0.008 to about 0.045 inch, said sheet being composed of carbon particles dispersed in neoprene.

5. A microwave radiation absorber comprising a plurality of uniform, hollow pyramids contiguously disposed over an area, said pyramids being formed of a conductive sheet having a thickness in the range of from about 0.01 to about 0.02 inch, said sheet being composed of carbon particles dispersed in neoprene.

6. A microwave radiation absorber comprising a plurality of uniform, hollow pyramids contiguously disposed over an area, said pyramids being formed of a conducting sheet having a thickness in the range of from about 0.01 to about 0.02 inch, said sheet being composed of about 10 to 20 percent by weight of carbon particles dispersed in neoprene.

7. A microwave radiation absorber comprising a plurality of uniform hollow pyramids contiguously disposed over an area, said pyramids being formed of a rubber sheet having a thickness in the range of from about 0.01 to about 0.02 inch, the face surface of said sheet comprising 20 to 30 percent by weight of finely divided carbon particles to a depth therein approximately 0.003 to 0.005 inch.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2233592 *Jul 21, 1938Mar 4, 1941Commercial Ingredients CorpResilient sheet
US2464006 *Apr 28, 1944Mar 8, 1949Philco CorpRadio wave absorption device
US2977591 *Sep 17, 1952Mar 28, 1961Tanner Howard AFibrous microwave absorber
US3234549 *Mar 20, 1961Feb 8, 1966Mcmillan Corp Of North CarolinAbsorber for radio waves
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4164718 *Sep 15, 1977Aug 14, 1979California Institute Of TechnologyElectromagnetic power absorber
US4942402 *Oct 26, 1988Jul 17, 1990Thorn Emi Electronics LimitedSilicon elastomer with fillers, moldings, coatings
US5014060 *Oct 13, 1989May 7, 1991The Boeing CompanyAircraft construction
US5016015 *Oct 13, 1989May 14, 1991The Boeing CompanyAircraft construction
US5063384 *Oct 13, 1989Nov 5, 1991The Boeing CompanyAircraft construction
US5081455 *Jan 4, 1989Jan 14, 1992Nec CorporationElectromagnetic wave absorber
US5128678 *Oct 13, 1989Jul 7, 1992The Boeing CompanyAircraft construction
US5260513 *May 6, 1992Nov 9, 1993University Of Massachusetts LowellMethod for absorbing radiation
US5396249 *Sep 3, 1993Mar 7, 1995Otsuka Science Co., Ltd.Microwave absorber and process for manufacturing same
US5583318 *Dec 30, 1993Dec 10, 1996Lucent Technologies Inc.In a data processing enclosure
US5594218 *Jan 4, 1995Jan 14, 1997Northrop Grumman CorporationAnechoic chamber absorber and method
US5688348 *Jan 8, 1997Nov 18, 1997Northrop Grumman CorporationAnechoic chamber absorber and method
US5844518 *Feb 13, 1997Dec 1, 1998Mcdonnell Douglas Helicopter Corp.Thermoplastic syntactic foam waffle absorber
US6555203Sep 3, 1999Apr 29, 2003Barracuda Technologies AbCamouflage material
US6771204 *Jan 28, 2003Aug 3, 2004Kabushiki Kaisha RikenRadio wave absorber
US6803883Feb 13, 2003Oct 12, 2004Spectrasite Communications, Inc.Radio frequency electromagnetic emissions shield
US6900384 *Oct 31, 2002May 31, 2005Telefonaktiebolget Lm Ericsson (Publ)Cover for an electronic device
US7250920Sep 29, 2004Jul 31, 2007The United States Of America As Represented By The Secrtary Of The NavyMulti-purpose electromagnetic radiation interface system and method
US7940204 *Oct 29, 2009May 10, 2011Orbit Advanced Technologies, Inc.Absorber assembly for an anechoic chamber
US8149153Jul 12, 2008Apr 3, 2012The United States Of America As Represented By The Secretary Of The NavyInstrumentation structure with reduced electromagnetic radiation reflectivity or interference characteristics
DE3940986A1 *Dec 12, 1989Jun 13, 1991Messerschmitt Boelkow BlohmDuennschicht-absorber
EP0370421A1 *Nov 18, 1989May 30, 1990Akzo Kashima LimitedElectromagnetic wave absorber
WO1993015530A1 *Feb 4, 1993Aug 5, 1993Illbruck GmbhAbsorber of electromagnetic waves
Classifications
U.S. Classification342/4
International ClassificationH01Q17/00
Cooperative ClassificationH01Q17/008
European ClassificationH01Q17/00G