Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3838429 A
Publication typeGrant
Publication dateSep 24, 1974
Filing dateAug 3, 1973
Priority dateAug 3, 1973
Publication numberUS 3838429 A, US 3838429A, US-A-3838429, US3838429 A, US3838429A
InventorsReggia F
Original AssigneeUs Army
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Miniaturized transmission line top loaded monopole antenna
US 3838429 A
Abstract
A miniaturized antenna having high radiation efficiency consists essentially of an open circuit transmission line top-loading a short monopole over a metal ground plane. The currents in the two sides of the transmission line, being oppositely directed, tend to cancel each other's effect in the distant field. Thus, only the short vertical monopole contributes to the distant field radiation. The omnidirectional monopole is a constant current radiating element operating at near RF ground potential (high current, low impedance).
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

States atent 191 [111 3,838,429 eggia Sept. 24, 1974 [54] MINIATURIZED TRANSMISSION LINE TOP 3,513,473 5/1970 Seward 343/752 LOADED MONOPOLE ANTENNA Frank Reggie, Bethesda, Md.

The United States of America as represented by the Secretary of the Army, Washington, DC.

Filed: Aug. 3, 1973 Appl. No.: 385,382

Inventor:

Assignee:

US. Cl 343/750, 343/752, 343/830 Int. Cl. H0lq 9/00 Field of Search 343/752, 828, 895, 750,

References Cited UNITED STATES PATENTS Kriz 343/895 2/1969 Wanselow et a1...

Metal Ground Plane 1 K Radiating Primary Examiner-Eli Lieberman Attorney, Agent, or Firm-Edward J. Kelly; Saul Elbaum [5 7] ABSTRACT ance).

5 Claims, 4 Drawing Figures Monopole Coaxial Cable RF lnpuf From I? PAJENIEMEPM 3,838,429

High Consfanf 'Currenf Radiating Element 0 n or r Lon l0 pe row (20 g 8 Transmission K k 4/ A For Tuning Frequency I (Opfional) Fig. 2 Printed Cir-cuff (Spiral) l7 Mefal Ground Radiafing a T5 28 Plane Monopole Coaxial Cable RF Input From /2 Fig. 3

Radiating Monopole RF lnpuf /0 From 72 MINIATURIZED TRANSMISSION LINE TOP LOADED MONOPOLE ANTENNA RIGHTS OF THE GOVERNMENT FIELD OF THE INVENTION The present invention relates to antennas, and more particularly to a miniaturized monopole antenna having high radiation efficiency and omnidirectional radiation.

BRIEF DESCRIPTION OF THE PRIOR ART In the past, efforts have been made to reduce the size of monopole antennas to permit their use in applica tions where limited space was a problem. Successful ra- BRIEF DESCRIPTION OF THE PRESENT INVENTION The present invention is directed to a miniaturized transmission line top-loaded monopole antenna, with a monopole length that is less than one-twentieth of a wavelength. This is due to the recognition that the spiral transmission line of the present invention is short circuited at the input end thereof while the output end remains an open circuit. The point at which the transmission line is short circuited is adjustable and results in a variation of the input impedance thereby permitting one to obtain a'desired characteristic impedance to excite the monopole. The short circuiting characteristic forces relatively high current to flow through the monopole, which produces high efficiency radiation. The transmission line of the invention is formed on a printed circuit, in the form of a spiral to minimize the space requirement for the resulting antenna. The spiral has balanced inductance and capacitance which forces oppositely flowing currents in the transmission'line to cancel their resulting effects in the distant field. Accordingly, this transmission line design does not suffer from the disadvantages of previously conceived capacitive loaded antennas.

The above-mentioned objects and advantages of the present. invention will be more clearly understood when considered in conjunction with the accompanying drawings in which: I

BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is an electrical schematic diagram illustrating the electrical equivalent of the antenna presented by the invention.

FIG. 2 is a cross sectional view of the present invention illustrating the relationships of the antenna components.

FIG. 3 is a perspective view of the present invention, again illustrating the disposition of the antenna components, as shown in FIG. 2.

FIG. 4 is a disassembled view of an antenna in accordance with the present invention wherein multiple spiral transmission lines are employed with a single feed line to effect multiple frequency antenna operation.

DETAILED DESCRIPTION OF THE INVENTION Referring to the figures and more particularly FIG. 1 reference numeral 10 generally indicates a feed line from a coaxial cable 8 which is connected to a first terminal of an RF source 12, the opposite terminal of the source being connected to a ground plane 16 (conductor). A cylindrical conductor 14 serves as an external sleeve for the coaxial cable 8 and functions as a monopole radiator. Sleeve 14 is shorted to RF ground 16. A transmission line 17 is connected at its left end to the monopole 14, while the right end of the transmission line remains an open circuit. The right end of the feed line 10 is connected to a point 18, along the transmis sion line. Depending upon where this point is chosen, the input impedance will vary. Typically, the impedance may be equal to 50 ohms. Also, for purposes of illustration, the length of the transmission line is chosen to be less than one-quarter of a wave-length. The dimension between the transmission line and the ground plane is typically three-quarter inches. In order to achieve a true RF short-circuit at the monopole 14, the left-most end 19 of the transmission line is electrically shorted to the monopole 14. A variable capacitor may be connected as illustrated by 20, between the right open circuit, end of the transmission line and the ground plane.

FIG. 2 shows a cross sectional view of a preferred embodiment of the invention which is shown in perspective, in FIG. 3. As illustrated in FIG. 2, a'coaxial cable 8 extends upwardly in concentric relation with the hollow cylinder 14 which constitutes a radiating monopole. The feed line 10, extending through the cable, protrudes from the upper end of the cable and is connected to the transmission line. For purposes of consistency, the components denoted in FIG. 2 carry the same members ascribed in FIG. 1. Thus, the connection point between the feed line 10 and the transmission line 17 is shown at 18. The transmission line 17 is a spiral conductor formed on a printed circuit above the ground plane 16. The substrate of the printed circuit may be Teflon Fiberglass, and denoted by 26. The monopole 14 is electrically connected to the coaxial cable 8 as seen by the conductor ring 22. A similar ring connector electrically connects the monopole to the ground plane 16, as will be seen by connection 24. The transmission line is shorted at one end thereof at 19 by suitably connecting the. upper end of the monopole 14 to a radially inward spiral section. The structure of the antenna, as shown in FIG. 2 will achieve omnidirectional (in horizontal plane), vertically polarized radiation as indicated by the E field vector 28.

FIG. 3 shows the components of the antenna in a perspective view. Similar components have been labeled alike in FIGS. 1, 2, and 3.

FFIG. 4 illustrates an alternate embodiment of the present invention which permits multiple frequency operation of the antenna. As will be observed, the transmission line printed circuit, ground plane, and monopole look fairly similar in both FIGS. 3 and 4. However, there are distinct differences in the structure of the two embodiments. The transmission line printed circuit 30, of FIG. 4 includes two central arcuate conductor segments 32 and 34 that respectively connect the spiral transmission lines 36 and 38 thereto. These spiral conductors, constituting two transmission lines, are electrically isolated from one another on the printed circuit board. Each spiral transmission line operates in a different frequency mode for the antenna. Thus, the feed line can carry signals at two frequencies. This means that the antenna can operate at a first frequency for transmission while it receives at a second frequency. Alternately, it may transmit or receive at two respectively different frequencies. To complete the dual frequency operation, a T conductor having segments 40 and 42, is disposed at the top of the feed line 10 as it protrudes upwardly from the monopole. By connecting components 40-32 and 42-34, the feed line will communicate with the respective spiral transmission lines 36 and 38.

In order to tune an antenna operating at dual frequencies, it is first necessary to set the position of component 40 at a point along spiral 32, where the desired impedance is reached. Then, the same procedure is followed with respect to components 42 and 34. However, the connection of the latter components will cause a shift in the impedance between 40 and 32. Respective iterative tunings will finally result in the desired impedance settings for both transmissions lines.

In order to rigidify the components of the antenna, the space between the transmission line printed circuit board 30 and the ground plane 16 is filled with a suitable dielectric, such as polyurethane material.

Although the previous discussion included single and dual frequency modes, it is emphasized that a greater number of frequencies can be operated upon by the antenna. In certain applications, multiple feed lines, such as 10, can be used. However, this does not depart from the principals for the invention.

I wish it to be understood that I do not desire to be limited to the exact details of construction shown and described for obvious modifications can be made by a person skilled in the art.

Wherefore I claim the following:

1. A miniaturized antenna structure comprising:

a metal ground plane member;

a hollowed cylindrical monopole perpendicularly disposed and electrically connected at one end thereof to the ground plane member for radiating.

electromagnetic energy therefrom;

a printed circuit board located at a second end of the monopole, and in parallel spaced relation to the ground plane member, the printed circuit board including an insulator substrate and a spiral conductor transmission line formed thereon, the transmission line having a first end short circuited to the monopole while an opposite second end is open circuited; and

coaxial cable extending through the cylindrical monopole, the cable being connected to an r.f source at one end thereof, an outer cable conductor connected at an opposite end to the cylindrical monopole, an inner cable conductor connected between the source and a point along the transmission line for producing preselected transmission line impedance, whereby the monopole radiates energy in an onmidirectional pattern.

2. The subject matter of claim 1 wherein the printed circuit board includes a second spiral conductor, generally concentric with the first, and further means are provided to connect the inner cable conductor with a point along the transmission line for effecting multiple frequency operation of the antenna structure.

3. The subject matter as defined in claim 1 together with a variable capacitor connected across the open circuited end of the transmission line for tuning a preselected frequency of operation.

4. A small antenna structure comprising:

a ground plane member;

monopole radiating means perpendicular disposed and electrically connected at one end thereof to the ground plane member for radiating electromagnetic energy therefrom;

a spiral transmission line located at a second end of the radiating means, and in parallel spaced relation to the ground plane member, the transmission line having a first end short circuited to the radiating means while an opposite second end is open circuited; and

feed line means connected at a first end to an r.f. input source, a second end connected to a point along the transmission line for producing a preselected transmission line impedance;

a second spiral transmission line positioned concentrio with the first transmission line;

means for connecting the feed line means to a point along the second spiral transmission line for effecting multiple frequency operation of the antenna structure.

5. The subject matter of claim 4 together with a second feed line means for connecting the source to a point along the second spiral transmission line.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3384896 *Jun 28, 1965May 21, 1968Northrop CorpVertical monopole with spiral-shaped top loading
US3427624 *Jul 13, 1966Feb 11, 1969Northrop CorpLow profile antenna having horizontal tunable top loading member
US3513473 *Mar 14, 1968May 19, 1970Avco CorpInductively loaded capacitive antenna
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4089005 *Jan 10, 1977May 9, 1978Motorola, Inc.Dual frequency antenna
US4672685 *Jan 3, 1986Jun 9, 1987Motorola, Inc.Dual band antenna having separate matched inputs for each band
US4827266 *Feb 19, 1986May 2, 1989Mitsubishi Denki Kabushiki KaishaAntenna with lumped reactive matching elements between radiator and groundplate
US4939525 *Mar 31, 1988Jul 3, 1990Cincinnati Electronics CorporationTunable short monopole top-loaded antenna
US4972196 *Sep 15, 1987Nov 20, 1990Board Of Trustees Of The Univ. Of IllinoisBroadband, unidirectional patch antenna
US5181044 *Nov 13, 1990Jan 19, 1993Matsushita Electric Works, Ltd.Top loaded antenna
US5646524 *Jun 16, 1993Jul 8, 1997Elbit Ltd.Three dimensional tracking system employing a rotating field
US5646525 *Feb 8, 1995Jul 8, 1997Elbit Ltd.Three dimensional tracking system employing a rotating field
US5673055 *Apr 21, 1994Sep 30, 1997The United States Of America As Represented By The Secretary Of The NavyRosette-shaped monopole antenna top-load for increased antenna voltage and power capability
US5796369 *Feb 5, 1997Aug 18, 1998Henf; GeorgeHigh efficiency compact antenna assembly
US6188366 *Jun 2, 1999Feb 13, 2001Matsushita Electric Industrial Co., Ltd.Monopole antenna
US6373437 *Dec 7, 2000Apr 16, 2002Motorola, Inc.Communication device having linked microphone and antenna communication of content to end users
US6642902Apr 8, 2002Nov 4, 2003Kenneth A. HirschbergLow loss loading, compact antenna and antenna loading method
US6842158 *Dec 27, 2002Jan 11, 2005Skycross, Inc.Wideband low profile spiral-shaped transmission line antenna
US6859181 *Jun 24, 2003Feb 22, 2005General Motors CorporationIntegrated spiral and top-loaded monopole antenna
US6864856Jun 10, 2003Mar 8, 2005Hrl Laboratories, LlcLow profile, dual polarized/pattern antenna
US6874222 *Feb 13, 2003Apr 5, 2005Atheros, Inc.Method of manufacturing a central stem monopole antenna
US7046199Feb 13, 2004May 16, 2006Skycross, Inc.Monolithic low profile omni-directional surface-mount antenna
US7079079Jun 30, 2004Jul 18, 2006Skycross, Inc.Low profile compact multi-band meanderline loaded antenna
US7084835 *Dec 17, 2004Aug 1, 2006The United States Of America As Represented By The Secretary Of The NavyCompact antenna assembly
US7113135Jun 8, 2004Sep 26, 2006Skycross, Inc.Tri-band antenna for digital multimedia broadcast (DMB) applications
US7755554 *Jun 30, 2008Jul 13, 2010Hon Hai Precision Industry Co., Ltd.Antenna
US20030150099 *Feb 13, 2003Aug 14, 2003Lebaric Jovan E.Method of manufacturing a central stem monopole antenna
US20030156065 *Dec 27, 2002Aug 21, 2003Young-Min JoWideband low profile spiral-shaped transmission line antenna
US20040027308 *Jun 10, 2003Feb 12, 2004Lynch Jonathan J.Low profile, dual polarized/pattern antenna
US20040217910 *Feb 13, 2004Nov 4, 2004Mark MontgomeryMonolithic low profile omni-directional surface-mount antenna
US20040263406 *Jun 24, 2003Dec 30, 2004Colburn Joseph S.Integrated spiral and top-loaded monopole antenna
US20050270238 *Jun 8, 2004Dec 8, 2005Young-Min JoTri-band antenna for digital multimedia broadcast (DMB) applications
US20060001575 *Jun 30, 2004Jan 5, 2006Young-Min JoLow profile compact multi-band meanderline loaded antenna
US20090128418 *Jun 30, 2008May 21, 2009Hon Hai Precision Industry Co., Ltd.Antenna
CN101540428BApr 27, 2009Aug 29, 2012哈尔滨工业大学Miniaturized antenna in current phase-reversing connection
WO2002047297A1 *Dec 3, 2001Jun 13, 2002Motorola IncA communication device having linked microphone and antenna
WO2003105273A2 *Jun 9, 2003Dec 18, 2003Hrl Laboratories, LlcLow profile, dual polarized/pattern antenna
Classifications
U.S. Classification343/750, 343/752, 343/725, 343/830
International ClassificationH01Q9/04, H01Q9/36
Cooperative ClassificationH01Q9/36
European ClassificationH01Q9/36