Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3839964 A
Publication typeGrant
Publication dateOct 8, 1974
Filing dateDec 15, 1972
Priority dateNov 4, 1969
Publication numberUS 3839964 A, US 3839964A, US-A-3839964, US3839964 A, US3839964A
InventorsGayot J
Original AssigneeMatra Engins
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Installation for transportation by trains made of different types of carriages
US 3839964 A
An installation for transportation by trains made up of carriages able to move first within a network of their own, which may be a rail system, and then in an ordinary automotive vehicle network.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Gayot 1 Oct. 8, 1974 1 INSTALLATION FOR TRANSPORTATION 3,037,402 6/1972 Barry 104/18 BY TRAINS DE F DIFFERENT TYPES 3.382.033 951968 Herscovitch 105/215 R 3,4 ,634 10 1968 Crowder 104/88 0F CARRIAGES 3,483,829 12/1969 Barry 104/18 [75] Inventor: Jean Gayot, Meudon, France 3,552,321 1/1971 Priebe 104/88 [73] Assignee: Engins Matra, Paris, France Primary Examiner M; Henson Wood JR [22] Filed: Dec. 15, 1972 Assistant Examiner-D. W. Keen Attorney, Agent, or Firm-Kinzer, Plyer, Dorn & [21] Appl. No.. 315,351 McEachran Related US. Application Data [63] Continuation of $61. No. 84,729, 0m. 28, 1970, ABSTRACT abandoned An installation for transportation by trains made up of [30] Foreign A pii fi priority Da'ia carriages able to move first within a network of their Nov 4 1969 France 69 37894 own, which may be a rail system, and then in an ordinary automotive vehicle network.

[52] C] 104/18"l04/ Hag Passengers pass from one network. to another whilst [51] Int Cl 1 B 61k 1/00 remaining in the same carriage, thus abolishing loss of [58] Field 011' Search 104/1, 88, 18,20; f badmg 1 105/215 R Carriages circulate in the first network according to the principle of segmented trains, then as convoys, [56] References Cited and lastly as individual vehicles. 4

UNITED STATES PATENTS 3 Claims, 3 Drawing Figures 1,001,170 1 8/1911 Sayer 104/18 2,194,057 3/1940 Simpson 104/88 PAIEM BI 8 :914

SHEET 10? 2 Fig.1

Inventor Jean Ga and; 113M M4 255 M} PATENTED OCT 81974 SHEET 2 BF 2 ln'venkov de a n. Gciget :5 Kim a (bub fifiornew INSTALLATION FOR TRANSPORTATION BY TRAINS MADE OF DIFFERENT TYPES OF CARRIAGES This application is a continuation of application Ser. No. 84,729 filed Oct. '28, 1970, now abandoned.

BACKGROUND OF THE INVENTION DESCRIPTION OF THE PRIOR ART In recent years, the increasing importance of problems posed by transportation, in particular urban and suburban transport, has led to application studies of transport systems, both for capitals with well over a million inhabitants and for medium-sized urban centers, or even for such places as an airport, university campus, exhibition, etc.

These studies have established the following facts:

users have great difficulty in defining the presentday demand for transport, and above all the change in this demand at a future period that is long enough to ensure a reasonable return of outlay from a transportation installation. It would therefore be most advantageous to have a system able to adapt to increasing outputs and variable tracks.

however interesting the time-saving arrived at through a means of transportation, the duration of the passengers journey isvabove all conditioned by the halts for loading. It would therefore be advantageous to have a system enabling the number of halts for loading to be reduced.

investment costs are so high that it is important to seek'optimization, simultaneously on the technical and economic plane.

In the case of urban and suburban transport, at least three service zones should be distinguished.

a. the city urban center: it is a zonewith very heavy traffic, but where demand for transport is generally stabilized in space, if not in time. Here, it is thus possible, and even necessary, to provide means of transport on their own ground, with large output, and having a substructure which is generally quite big. i

b. the immediate urban circumference: it should be served regularly, but less often than zone (a). The demand for transport here is also more variable. It is thus necessary to provide means of transport that still allow quite a large output, but having a rela tively smaller substructure which does not constitute an obstacle to the future development of layouts.

c. the suburbs or neighborhood: the density of traffic here is much less, due to less use beingmade of available space. For the same reasons, the demand for transport here is very unstable. It is thus necessary to provide means of transport with as small a substructure as possible but which, on the other hand, will not haveto be capable of large outputs.

None of the known means of transport is capable of adapting simultaneously to the three sets of conditions successively defined above. It is therefore necessary to treat the problem of each of the three service zones separately, the city center, for example, being served by an Underground railway, the immediate circumference by a bus network, and the outer suburbs by occasional buses and private vehicles.

As in known, this solution presents many and serious drawbacks and in particular imposes halts for loading which lead to additional fatigue and considerable loss of time.

SUMMARY OF THE INVENTION The invention aims at remedying these drawbacks.

For this purpose, the invention relates to an installation for transportation by trains made up of different types of carriages, intended to serve selectively zones having different densities of traffic, characterized by the fact that it comprises at least one network on its own ground, linked to an ordinary track network, the transportation trains functioning without halts for loading, on the one hand, in accordance with the segmented train principle in zones with heavy traffic, these complete or divided trains serving, on the other hand, zones with less traffic by, traveling in convoy with all carriages stopping at each station, these convoys finally splitting up into individual vehiclesto go along ordinary routes, the whole network being run in both directions.

In accordance with an additionalcharacteristic of the invention, the substructure comprises radiating tracks which subdivide from the heavy trafiic zone towards less dense zones, the substructure of the heavy traffic zone allowing the implementation of segmented trains, that of the zone immediately adjacent allowing functioning in convoy with a stop at all stations, and the third zone, having the least traffic, not havinga substructure, and carriages there using ordinary'roads.

It will be seen from the foregoing that this invention aims at an installation for trarisportationallowing in each case for adjustment of the amount of expenses and their division between the substructure, and exploitation for the probable duration of the proposed service. i The invention also aims at abolishing halts for loading, thusobtaining high commercial speeds for each of the journeys concerning morethan one of the zones served, the heavy traffic zone already offering a high commercial speed. I i l This invention also aims at an installationpresenting increasing flexibility from the city center-to the suburbs, and which is very flexible at the ends of its branches toenable it to be adapted tothe development of the locality in time and space.

BRIEF DESCRIPTION OFTHE DRAWINGS The novel features that areconsidered characteristic of this invention are set forth with particularity in the appended claims. I,

The invention itself, however, both as to its organization and its operation, togetherwith additional objects and advantages thereof, will best be understoodffrom the following descriptions of specific embodiments when read in connection with the accompanying drawings, wherein like reference characters indicate like parts throughout the several figures, and in which:

FIG. 1 represents a plan drawing of an installation serving a locality.

FIG. 2 is a diagrammatic view showing the functioning of a segmented train. I

FIG. 3 is a perspective view in accordance with FIG. 2.

DESCRIPTION OF PREFERRED EMBODIMENT The installation and in particular its substructure are represented in FIG. 1. They are made up of three concentric zones. Thus a zone A of heavy traffic can be distinguished, corresponding to the center of a locality to be served, a zone B forming the immediate circumference of the central zone A and surrounding it over a certain width, and lastly a zone C called suburbs and whose configuration is much less definite than the zones A and B that it surrounds.

Traffic is progressively less dense from zone A to zone C. This is due to the fact that the various passengers leaving zone A split up between the various lines of transport, whose number increases from zone A to zone C.

The organization of this installation, shown diagrammatically in FIG. 1, is constituted in a specific way adapted to each of zones A, B, C. Thus, in accordance with a preferred embodiment, the zone A substructure is on its own ground, for example an Underground or aerial railway network, made up of lines A A A connection is shown, as an example, at the intersection of lines A,, A In this embodiment, line A has been made to branch into two lines A,, A",. v

The group of lines comprise stations A A,,,, A" A2 I I21 the same way, the immediate circumference B network is made up of a network on its own ground which may be, depending on the case, an underground, aerial or ground-level track network. In this case, each line A A A,, A" is such that it can continue along one or more corresponding lines in the immediate circumference.

To simplify the account, the same indices have been used for these lines in zone B as for the corresponding lines in zone A. Thus the line A branches in zone B into three secondary lines B',, each of which comprises a certain number of stations B' At the edge of zone B, each of the lines B may end in one or more lines C serving zone C.

In accordance with a preferential embodiment of the invention, the lines C' etc., have no substructure of their own and use ordinary routes. For this reason, they may have more flexibility and be modified as required by the changing and development of this suburb.

Thus it is possible to envisage an underground network for the lines in zone A, tracks similar to tramor railway lines for those in zone B,and ordinary roads for those in zone C.

In accordance with a specific embodiment of the invention, substructure lines are formed by tracks in zones A and B, these tracks being equipped, for example, with steering rails. The circulation network on its own ground may comprise ordinary railway tracks. However, it may also comprise routes similar to automotive vehicle roads, used solely by vehicles in accordance with this installation. In the latter case, the means of support are, for example, wheels with pneumatic tires suitable for the entire network.

On the other hand, when the network comprises both tracks and routes, carriages are fitted with dual purpose wheels having tires for traveling on rails, and pneumatic tires for traveling on automotive vehicle roads.

Thus, in zone A the carriages are joined together like made-up trains preferably functioning in accordance with the principle of segmented trains. This functioning method will be described in greater detail later, with reference to FIGS. 2 and 3. These segmented trains allow all the advantages of this method of transport to be used on lines A,, A A,, A",, up to the circumference of zone A.

From this limit, the segmented trains become normal made-up railway trains, with all the carriages on each line stopping at all stations.

Depending on the circumstances, when the lines in zone B issue from a single line in zone A and subdivide on entering this zone B, a lesser density of trains is obtained, depending on this subdivision. This characteristic is particularly applicable for line A which branches into three lines B',. As an example, it is possible to envisage either dividing the different made-up trains between the subdivisions 40 without spearating the car raiges or subdividing each madeup train into a certain number of convoys each having one or more carriages traveling on each respective line of zone B.

The different or unique types of carriages used in the installation in accordance with the invention are thus able to move on the tracks in zones A and B, and on ordinary automotive vehicle roads in zone C.

It is thus possible to provide an automatic pilot and position control for the trains in zones A, B. Steering is then effected, for example, electronically, by means of an electric rail on the ground.

Installations are also provided along the track, enabling the functioning of segmented trains, which is to say that such installations may be automatically controlled locally or remotely to effect coupling and uncoupling of the carriages as required. I

In accordance with one characteristic of the invention, it is essential that each different type of carriage has its own means of propulsion.

When a vehicle travels along ordinary roads, such as highways, its autonomy may be assured either by its own means if it has an autonomous motor, or by means of an automobile traction engine.

In zone C, vehicles must be driven by a driver, as opposed to zones A and B where steering is normally automatic.

The foregoing description relates basically to traffic going from zone A to zones 'B andC. It is obvious that circulation in the opposite direction is effected in the opposite manner. Thus, the various vehicles in zone C regroup at the circumference of zone B. From this point, vehicles are regrouped into convoys which travel along the return routes of the tracks in zone B and these convoys lastly reach zone A, where they regroup into trains functioning in accordance with the principle of segmented trains.

In the system called segmented trains, a made-up train travels along a line at high speed, without stopping at intermediary stations. As shown in FIGS. 2 and '3, the train T on track A' on approaching such a station as A may drop off one or more of the rear carriages RC and RC which stop at the station platform. The same train, on leaving the station picks up in front of it carriages FC and FC left by a preceding train T and whose speed has previously been increased to a suitable rate to allow this junction to be effected. When trains T and then T; arrive at station 3, the carriages making up each of them may be divided as required between the various tracks linking station 3 to stations 3, 3", 3" in track system B',:

For reasons of clarity, the above-mentioned specification has been limited to the trafic which passes through station 3. However, it is obvious that all the other stations 1, 2, 3, 4, 5 and 6 constitute metting points between areas A and B. All other drawing references not described in the specification have been inserted again in order to give a whole picture of the installation, since the above-mentioned explanations may apply to all the branches of the net-work.

Symetrical notations have been used with respect of the various references.

The steering rails referred to above may conform to the disclosure in the copending application of Jean Gayot, Ser. No. 85,963, filed Nov. 2, 1970 and corresponding to French application No. 69 37 895 filed Nov. 4, 1969 and its addition No. 70 36 613 filed Oct. 9, 1970, and this also holds true for the disclosure of a different or unique carriage or car embodying its own propulsion and steering system.

This system of segmented trains presents the advantages of continuous means of transportation: high commercial speed and comfort. It is more specially adapted to an average amount of traffic of the order of 5,000 to 25,000 passengers/ hour and its substructure is relatively small.

What is claimed is:

l. A method of transporting passengers on trains between concentric areas of variant traffic density including stations within a first central zone of greatest density, including stations within a second intermediate zone of density less than thecentral area and including local stops at a third outer peripheral zone of at least traffic density, comprising: constantly propelling each train without stopping between stations in the first zone while separating therefrom a vehicle to be dropped at such a station and picking up a vehicle previously dropped at such a station; stopping each entire train at stations within the second zone; and separating the train into individual vehicles serving the third zone.

2. A method according to claim 1 wherein tracks are provided for the trains in thefirst and second zones, wherein the pneumatic tires are provided for the vehicle comprising the trains, and wherein the vehicles in the third zone travel along ordinary automobile roads.

for travelling the automobile roads.-

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1001170 *Oct 18, 1909Aug 22, 1911Robert Cooke SayerRailway, road, water, and like traffic system.
US2194057 *Aug 27, 1937Mar 19, 1940Automatic Telephone & ElectSignaling system
US3037462 *Feb 9, 1956Jun 5, 1962Barry Leonard DRailway control system for coincident local and express service
US3399633 *Oct 12, 1966Sep 3, 1968Herscovitch William HowardConvertible rail-highway tractor
US3403634 *Jul 22, 1964Oct 1, 1968Docutel IncAutomatically controlled railway passenger vehicle system
US3483829 *Oct 14, 1966Dec 16, 1969Leonard D BarryContainer,routing storage,and transfer system
US3552321 *Feb 26, 1968Jan 5, 1971Priebe Paul DCombined local feeder and nonstop express train
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4685398 *Aug 14, 1984Aug 11, 1987Kissel Jr Waldemar FComprehensive unit transportation system
US5063857 *Sep 29, 1988Nov 12, 1991Kissel Jr Waldemar FComprehensive unit transporation system
US5623413 *Sep 1, 1994Apr 22, 1997Harris CorporationScheduling system and method
US5794172 *Jan 23, 1997Aug 11, 1998Harris CorporationScheduling system and method
US6154735 *Aug 6, 1998Nov 28, 2000Harris CorporationResource scheduler for scheduling railway train resources
US6679181May 24, 2001Jan 20, 2004Richard B. FoxDual mode transportation system and method
US7168661Jan 20, 2004Jan 30, 2007Fox Richard BGuided vehicle and method for use with dual mode transportation system
US7222083May 16, 2003May 22, 2007Harris CorporationResource schedule for scheduling rail way train resources
US7340328May 16, 2003Mar 4, 2008Harris CorporationScheduling system and method
US7343314May 16, 2003Mar 11, 2008Harris CorporationSystem and method for scheduling and train control
US7512481Feb 25, 2004Mar 31, 2009General Electric CompanySystem and method for computer aided dispatching using a coordinating agent
US7539624May 16, 2003May 26, 2009Harris CorporationAutomatic train control system and method
US7558740Aug 18, 2004Jul 7, 2009Harris CorporationSystem and method for scheduling and train control
US7680750Jun 29, 2006Mar 16, 2010General Electric CompanyMethod of planning train movement using a three step optimization engine
US7715977Apr 14, 2008May 11, 2010General Electric CompanySystem and method for computer aided dispatching using a coordinating agent
US7725249Jan 31, 2006May 25, 2010General Electric CompanyMethod and apparatus for congestion management
US7734383May 2, 2006Jun 8, 2010General Electric CompanyMethod and apparatus for planning the movement of trains using dynamic analysis
US7797087Jan 31, 2006Sep 14, 2010General Electric CompanyMethod and apparatus for selectively disabling train location reports
US7797088May 2, 2006Sep 14, 2010General Electric CompanyMethod and apparatus for planning linked train movements
US7813846Mar 14, 2006Oct 12, 2010General Electric CompanySystem and method for railyard planning
US7908047Jun 2, 2005Mar 15, 2011General Electric CompanyMethod and apparatus for run-time incorporation of domain data configuration changes
US7937193Jan 31, 2006May 3, 2011General Electric CompanyMethod and apparatus for coordinating railway line of road and yard planners
US8082071Sep 11, 2006Dec 20, 2011General Electric CompanySystem and method of multi-generation positive train control system
US8292172Apr 20, 2007Oct 23, 2012General Electric CompanyEnhanced recordation device for rail car inspections
US8433461Nov 2, 2006Apr 30, 2013General Electric CompanyMethod of planning the movement of trains using pre-allocation of resources
US8498762May 2, 2006Jul 30, 2013General Electric CompanyMethod of planning the movement of trains using route protection
US8589057Oct 19, 2010Nov 19, 2013General Electric CompanyMethod and apparatus for automatic selection of alternative routing through congested areas using congestion prediction metrics
US20040111309 *May 16, 2003Jun 10, 2004Matheson William L.Resource schedule for scheduling rail way train resources
US20040172174 *Feb 25, 2004Sep 2, 2004Julich Paul M.System and method for computer aided dispatching using a coordinating agent
US20040172175 *Feb 25, 2004Sep 2, 2004Julich Paul M.System and method for dispatching by exception
US20050234757 *Aug 18, 2004Oct 20, 2005Matheson William LSystem and method for scheduling and train control
US20050288832 *Jun 2, 2005Dec 29, 2005Smith Brian SMethod and apparatus for run-time incorporation of domain data configuration changes
WO2006107224A2 *Apr 3, 2006Oct 12, 2006Olgierd MikoszaA method of mass transportation of people or cargo, and an associated transport infrastructure
U.S. Classification104/18, 104/20, 104/88.2, 104/307
International ClassificationB61B15/00, B60F1/00
Cooperative ClassificationB60F1/00, B61B15/00
European ClassificationB60F1/00, B61B15/00