Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3840073 A
Publication typeGrant
Publication dateOct 8, 1974
Filing dateMay 4, 1973
Priority dateMay 4, 1973
Also published asCA1002871A1
Publication numberUS 3840073 A, US 3840073A, US-A-3840073, US3840073 A, US3840073A
InventorsAllen J, Tate J
Original AssigneeTexaco Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Miscible displacement of petroleum
US 3840073 A
Abstract
A miscible displacement process for the recovery of petroleum from a petroleum bearing formation is performed in situ by use of a solvent miscible with the petroleum and having a density greater than water followed by an aqueous driving fluid.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

XR L'MtiMHBM/Ylfi unneu mates ratem 11 1 .1 1 3 Allen et al. Oct. 8, 1974 [5 MISCIBLE DISPLACEMENT OF 2,842,204 7/1958 Homer 166/268 PETROLEUM 3,003,554 10/1961 Craig, Jr. et al. 166/274 3,131,760 5/1964 Arendt et a1 166/268 Inventors: Joseph C. Allen, Bellalre; Ja k R 3,157,231 11/1964 Darley 166/268 Tate, Houston, both of Tex. 3,241,614 3/1966 Bertness 166/304 3,249,157 5/1966 B h t l. 166/273 [73] Asslgnee: Texac" New York 3,729,053 4/1973 166/273 [22] Filed: May 4, 1973 Primary Examiner-James A. Leppink [21] Appl' 357414 Attorney, Agent, or FirmT. H. Whaley; C. G. Ries [52] US. Cl. 166/274, 166/275 57 ABSTRACT [51] Int. Cl ..E21b 43/16 [58] Field of Search 166/268275, A mlsclble dlsplacemem Pmcess for of 166/266 267 petroleum from a petroleum bearing formatton 1s performed in situ by use of a solvent miscible with the pe- [56] References Cited troleum and having a density greater than water fol- UNITED STATES PATENTS lowed by an aqueous driving fluid. 2,708,481 5/1955 Allen 166/268 23 Claims, 1 Drawing Figure I I -':l

1 7 i r l /6 K l l l /5 1 MISCIBLE DISPLACEMENT OF PETROLEUM BACKGROUNDOF THE INVENTION inefficiency of these displacement processes is partly due to the relative forces of capillarity and interfacial tension. Miscible flooding provides a method for efficiently displacing the petroleum from a reservoir.

In miscible flooding, solvent for the petroleum is introduced into the reservoir and driven through the reservoir. Dissolution of the petroleum by the solvent permits no two phase system between the solvent and the petroleum to exist at the conditions of temperature and pressure existing in the reservoir. Therefore, the retentive forces of capillarity and interfacial tension are nonexistent. These forces decrease the displacement efficiency of a recovery process where the driving fluid or displacing agent and the petroleum exist as two phases in the reservoir.

In a miscible flood process the solvent has the capability of mixing completely with the petroleum in the reservoir. A transition zone is formed at theleading edge of the solvent between the solvent and the petroleum in which miscibility exists between the solvent and the petroleum. For economic reasons the solvent is normally injected as a slug followed by another fluid such as a gas or an aqueous fluid to drive the solvent slug and the petroleum through the reservoir;

In displacement processes in general, the ideal sought after is piston-like displacement. That is, the displacing fluids should ideally present a flat front to the petroleum in the reservoir and displace it uniformly through the reservoir. Most miscible solvent slugs are followed by an aqueous fluid to drive them through the reservoir. Moreover, most miscible solvent have heretofore been light hydrocarbons with densities less than water. Problems have arisen with such processes, however.

In a vertical miscible flood, for example, using a light hydrocarbon solvent slug followed by water, the water will tend to finger through the less dense solvent due to viscous fingering and gravity segregation, destroying piston-like displacement and resulting in premature breakthrough of the displacing medium water. Further, there are certain petroleum deposits which are only partially soluble in the prior art solvents. One type-of petroleum which is only partially soluble in prior art solvents are the tar sand oils.

Throughout the world there are various known locations where the earth contains large deposits of tar sands. For example, one of the most extensive and best known deposits of this type occurs in the Athabasca district of Alberta, Canada. In the tar sands in such deposits, the oil typically has a density approaching or even greater than that of water. The Athabasca tar sands extend for many miles and occur in varying thicknesses of up to more than 200 feet. Although in some places the Athabasca tar sands are disposed practically on the surface of the earth, generally they are located under an overburden which ranges in thickness from a few feet to as much as 1,000 or more feet in depth. The tar sands located at these depths constitute one of the worlds largest presently known petroleum deposits. In these sands, the oil content ranges between about 10 and 20 percent by weight, although sands with lesser or greater amounts of oil content are not unusual. Additionally, the sands generally contain small amounts of water in the range of from about 1 to 10 percent by weight.

The oil present in and recoverable from Athabasca tar sands is usually a rather viscous material ranging in specific gravity from slightly below 1.00 to about 1.04 or somewhat greater. At a typical reservoir temperature, e.g., about 48F, this oil is immobile, having a viscosity exceeding several thousand centipoises. At higher temperatures, such as temperatures aove about 200F. this oil becomes mobile, with viscosities of less than about 343 centipoises, and the tar sands are incompetent. Since this tarry material does not generally command a very high price, particularly when in its crude state, its separation and recovery must involve a minimum of expenditure in order to be economically attractive for commercial practice.

SUMMARY OF THE INVENTION The invention is a process for the recovery of petroleum from a reservoir by miscible displacement. The process involves introducing a slug of solvent capable of dissolving formation hydrocarbon and of density greater than water into the upper portion of a reservoir and forcing the solvent through the reservoir to some point lower than the point of introduction by means of an aqueous fluid and producing the solvent and extracted fluids from the reservoir at this point.

BRIEF DESCRIPTION OF THE DRAWING The FIGURE depicts the vertical drive process of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS This invention is an improvement in the displacement of heavy oil, such as tar sand oil. The improvement comprises a first downward displacement with a petroleum solvent having a density greater than an aqueous fluid and preferably a viscosity less than an aqueous fluid, followed secondly by displacing the solventpetroleum solution also downwardly with the water or aqueous fluid. Aqueous fluid is used to denote water and water solutions such as brine. The terms water or aqueous fluid may also include water thickened with polymers or other chemicals. The solvent, being heavier than water, will substantially eliminate fingering of the aqueous fluid through the solvent. That is, in a downward drive the lighter aqueous fluid will ride above the heavier solvent providing a piston-like displacement of the solvent. Also, if the aqueous driving fluid is more viscous than the solvent, the likelihood of fingering of the aqueous fluid through the solvent is further reduced. Thus, both gravity stabilization and favorable viscosity contrast is provided between the aqueous fluid and the petroleum solvent.

Although aqueous fluids such as water are the pre ferred fluids for displacing the solvent through the reservoir, any fluid having favorable properties may be used. The displacing fluid must be lighter than the solvent and preferably more viscous. The fluid must also be unreactive with the solvent and immiscible with the solvent.

The types of solvents useful in the process of our invention are those which are heavier than and chemically inert to water and have solubility characteristics which enable them to dissolve adequate amounts of petroleum. It is preferred that the solvent have a viscosity less than water. Ideally, the solvent should be completely miscible with the petroleum so that the interface between the leading edge of the solvent and the petroleum is removed. Examples of specific solvents include but are not limited to carbon disulfide and chlorinated hydrocarbons such as methylene dichloride and carbon tetrachloride. Any solvent more dense than the aqueous driving fluid may be used.

In certain applications carbon disulfide is the preferred solvent because of its unique properties or ease of manufacture and recovery. In the case of tar sand oil, for example, the bitumen is more soluble in carbon disulfide than in other solvents and certain bitumens may only be soluble to any appreciable extent in carbon disulfide. Also, where the recovered crude is to be catalytically treated in a refinery, for example, carbon disulfide is preferred. It is a characteristic of covalently bonded halogens such as those found in halogenated hydrocarbons that they tend to poison some'r'efinery catalysts. Carbon disulfide does not and in addition is quite easily removed from recovered crude by physical separation processes to be reused again, leaving the crude substantially free of carbon disulfide. Carbon disulfide may also have a great economic advantage over halogenated hydrocarbons since it may be manufactured by the reaction between coke (carbon) and sulfur. Coke and sulfur are often found in excess near prolific tar sand deposits such as the Athabasca tar sands of Canada. The use of these materials would be an aid to conservation of the environment.

It is also within the scope of our invention to use as a solvent a blend of carbon disulfide with another component, mutually soluble in carbon disulfide such as a chlorinated hydrocarbon. These materials should also be easily removed from dissolved tar sand oil by physical separation techniques such as vacuum distillation.

The process of our invention may be carried out by a variety of techniques. In one technique, for example, at least two wells are needed, one for injection and another for production. The solvent may proceed through the formation horizontally from the injection well to the production well, but the benefits of this invention become greater as the angle the solvent proceeds through the formation approaches 90 from the horizontal. Ideally, the interface between the solvent and aqueous fluid driving it should be horizontal. This configuration allows gravity stabilization to have its maximum effect on the system.

The process of this invention is operable in a variety of petroleum reservoirs containing petroleum of widely differing gravities. One preferred embodiment, however, isto recover tar sand oil using a solvent comprisare soluble in carbon disulfide and less soluble or insoluble in most other solvents.

A very important advantage of using carbon disulfide is the lack of an emulsification of the separate water and carbon disulfide phases. The phases separate into distinct layers easily separable from each other. This feature is advantageous for many reasons. For example, emulsification within the formation could lead to a reduction in permeability due to what is commonly known as emulsion blockage. The lack of emulsification when carbon disulfide is used prevents this problem from occurringAlso, emulsification could destroy piston-like displacement. Another advantage of the lack of emulsion forming tendency between carbon disulfide and water occurs when the solvent, bitumen and water are produced and separation of the carbon disulfide is desired. Emulsion formation would distinctly hamper these operations.

The size of solvent slug to be used will depend on the solvent chosen and the degree of recovery desired. The degree of recovery desired is a matter of economics and may be determined by those skilled in the art without engaging in inventive effort. As an aid in determining the size of slug needed the following procedure may be used but is not intended to limit the scope of our invention or tie it to any routine calculation procedure. The size of a slug of carbon disulfide, for example, may be calculated by a formula such as:

amount of bitumen per acre-foot of formation Solubility of bitumen in carbon disulfide (CS X acre -feet in formation degree of depletion desired X X (decimal) amount of carbon disulfide required Routine laboratory experimentation may be used to determine the solubility of a given bitumen in carbon disulfide and core analysis will yield information on the amount of bitumen per acre foot of formation. Thus, the size of solvent slug for any field may be determined.

which carbon disulfide reacts with water, about 400F.

ing a major amount of carbon disulfide. A particularly pointed out previously, it is a characteristic of the bitumen constituents of tar sand oil or petroleum that they The temperature of the displacing or driving water should not be so low that, in combination with dissolved salt content, its density exceeds that of the solvent.

A fairly thick reservoir is preferred in the process of this invention to allow as near to a vertical miscible flood as possible. The placement of the injection and production wells is related. They should be situated so that the injection of the solvent and the aqueous drive fluid takes place at'a point in the reservoir above the point where the production is taken from the reservoir. The lateral as well as vertical spacing of the production and injection points should be such that a blanket of solvent followed by water will cover the largest area of the reservoir consistent with economics. The above factors should be understood as given to explain how to maximize the effectiveness of this invention. However, the invention should not be construed as limited to any particular well configuration or reservoir type.

MINING TECHNIQUES In one embodiment of the invention a dump flood may be performed. This involves drilling a large diameter hole into the crestal portion of a tar sand formation, for example. A solvent heavier than water, such as carbon disulfide and/or carbon tetrachloride or mixtures thereof, is dumped into the cavity. The solvent will gravitate into the formation and be imbibed by the formation displacing the oil toward producing wells completed lower in the formation. An aqueous fluid such as water is introduced into the cavity to maintain a layer over the solvent. This prevents evaporation of the solvent. Dump flooding is particularly useful where the formation is near to the surface of the earth where highinjection pressures could result in breakthrough of injected fluids through the overburden to the surface. Near to the surface could include, for example, depths of 200 to 300 feet ormore.

A similar mining technique could also be used where the tar sands outcrop at the surface. A dam of earth, for example, could be constructed surrounding the outcrop providing a receptacle for the injection of solvent and water. Production wells drilled down dip from the outcrop would withdraw the combined solvent-tar extract.

As a rule of thumb so-called mining techniques are normally considered to be feasible where the ratio of the distance from the surface of the earth to the thickness of the tar sand reservoir or pay is one or less.

IN SITU RECOVERY TECHNIQUES For deeper formations other embodiments of our invention involve having at least one production well and one injection well. The preferred configuration is that the point of injection be far enough above the point of production to allow a somewhat vertical traverse for fluids entering the reservoir through the injection well and being produced through the production well. A slug of solvent heavier than water, carbon disulfide, for example, is introduced through the injection well followed by an aqueous fluid to push the solvent through the reservoir to the production well.

A variation of this includes using one well having upper and lower perforation and whichis internally equipped so as to avoid fluid communication in the well between the upper and lower perforations. The heavy solvent is injected through the upper perforations and produced through the lower perforations along with petroleum driven ahead of the solvent. If desired, the solvent may be followed by an aqueous fluid.

The process of our invention may be illustrated by reference to the accompanying FIGURE which depicts one embodiment of our invention. Other embodiments will, of course, occur to those having had the benefit of the teachings contained herein.

A reservoir containing a very viscous petroleum is penetrated by an injection well 11 and production wells 12 and 13, the injection well having communication with the reservoir through perforations 14 above the perforations 15 in the injection wells. The FIGURE represents a point in time well into the recovery program where a slug of carbon disulfide 16 has been injected into the reservoir through the injection well followed by an aqueous fluid 17 which is presently being injected into the injection well. The petroleum 18 is moving towards the production well perforations where it is produced. The interface shown between the carbon disulfide slug l6 and the petroleum 18 is, of course, not as distinct as shown in this illustration.

EXPERIMENTAL The superior performance of a carbon disulfide slug followed by water in removing tar sand oil has been demonstrated in laboratory experiments. A weighed quantity of tar sand was placed in a glass tube 1.5 inches in diameter above a glass wool filter to retain the sand. Sufficient carbon disulfide was introduced into the tube to completely saturate and cover the tar sand. Water was then placed above the carbon disulfide-tar sand layer. The water formed a distinct layer of water above the carbon disulfide-tar sand system. The assem- Virtually all of the tar and injected carbon disulfide were recovered from the original tube. The carbon di sulfide extracted tar sand oil mixture was vacuum distilled. No frothing or foaming occurred during the operation even though the solution actually boiled. All of the carbon disulfide was removed and only pure, heavy, viscous tar oil remained.

We claim:

l. A process for recovering petroleum from a reservoir comprising:

a. introducing a slug of solvent for the petroleum into the reservoir which solvent has a density greater than water,

b. introducing, following the solvent, an aqueous fluid into the reservoir, to force the solvent through the reservoir wherein the interface between the solvent and the driving fluid approaches a substantially horizontal position, and

c. producing the petroleum and solvent at a point below the point of introduction of the solvent.

2. A process as in claim 1 wherein the solvent has a viscosity less than the aqueous fluid.

3. A process as in claim 1 wherein the reservoir is a tar sand reservoir.

4. A process as in claim 3 wherein the solvent comprises carbon disulfide.

5. A process as in claim 3 wherein the solvent comprises a chlorinated hydrocarbon.

6. A process as in claim 3 wherein the solvent comprises a mixture of carbon disulfide and a chlorinated hydrocarbon.

7. A process for recovering petroleum from a reservoir which comprises:

a. removing any earthen cover from a portion of a petroleum reservoir near the surface of the earth,

b. contacting the reservoir with a solvent heavier than water at the point where the reservoir was exposed,

c. introducing an aqueous fluid into the reservoir at the point the solvent was contacted with the reservoir wherein the interface between the solvent and the driving fluid approaches a substantially horizontal position, and

d. removing the solvent and petroleum at a point in the reservoir below the point the solvent was contacted with the reservoir.

8. A process as in claim 7 wherein the reservoir is a tar sand reservoir.

9. A process as in claim 8 wherein the solvent comprises carbon disulfide.

10. A process as in claim 8 wherein the solvent comprises a chlorinated hydrocarbon.

11. A process as in claim 8 wherein the solvent comprises a mixture of carbon disulfide and a chlorinated hydrocarbon.

12. A process for recovering petroleum from a subterranean reservoir wherein there is at least one injection well penetrating and in communication with the reservoir and at least one production well penetrating and in communication with the reservoir at a point below the point of communication of the injection well which comprises:

a. introducing a slug of solvent for the petroleum into the reservoir via the injection well which solvent has a density greater than water,

b. introducing, following the solvent, an aqueous fluid into the reservoir, to force the solvent through the reservoir wherein the interface between the solvent and the driving fluid approaches a substantially horizontal position, and

c. removing the petroleum and solvent through the production well.

13. A process as in claim 12 wherein the reservoir is a tar sand reservoir.

14. A process as in claim 13 wherein the solvent comprises carbon disulfide.

15. A process in claim 13 wherein the solvent comprises a chlorinated hydrocarbon.

16. A process as in claim 13 wherein the solvent comprises a mixture of carbon disulfide and a chlorinated hydrocarbon.

17. A process for recovering petroleum from a reser-' voir comprising:

a. introducing a slug of solvent for the petroleum into the reservoir,

b. introducing, following the solvent, a fluid to drive the solvent through the reservoir, which fluid is less dense than the solvent, more viscous than the solvent, inert chemically to the solvent and immiscible with the solvent wherein the interface between the solvent and the drivingfluid approaches a substantially horizontal position, and

c. producing the petroleum and solvent at a point below the point of introduction of the solvent.

18. A process as in claim 17 wherein the reservoir is a tar sand reservoir.

19. A process as in claim 18 wherein the solvent comprises carbon disulfide.

20. A process as in claim 18 wherein the solvent comprises a chlorinated hydrocarbon.

21. A process as in claim 18 wherein the solvent comprises a mixture of carbon disulfide and a chlorinated hydrocarbon.

. 22. A process for recovering petroleum from a petroleum bearing formation which comprises downwardly displacing through said reservoir with an aqueous fluid, a solvent for said petroleum which has a density greater than said aqueous fluid, toward a production pointbelow the point of introduction of the solvent.

23. A process for recovering tar oil from a tar sand reservoir comprising: Y

a. introducing a slug of carbon disulfide into the reservoir, b. introducing following .the carbon disulfide an aqueous fluid to drive the carbon disulfide through the reservoir, and p c. producing the tar oil and carbon sulfide at a point below the point of introduction of the carbon disulfide.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2708481 *Jul 26, 1951May 17, 1955Texas CoRecovery of hydrocarbons from subsurface reservoirs
US2842204 *Aug 29, 1955Jul 8, 1958Core Lab IncMethod of increasing oil recovery
US3003554 *Dec 5, 1957Oct 10, 1961Pan American Petroleum CorpSecondary recovery process with controlled density fluid drive
US3131760 *Dec 8, 1959May 5, 1964Jersey Prod Res CoGas recovery
US3157231 *Jul 6, 1961Nov 17, 1964David H DarleyProcess and apparatus for extracting and recovering oil in situ
US3241614 *Jul 8, 1963Mar 22, 1966Socony Mobil Oil Co IncCleaning of wellbores
US3249157 *Jun 6, 1963May 3, 1966Continental Oil CoRecovery process for producing petroleum
US3729053 *Jan 5, 1972Apr 24, 1973Amoco Prod CoMethod for increasing permeability of oil-bearing formations
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7926561Oct 30, 2008Apr 19, 2011Shell Oil CompanySystems and methods for producing oil and/or gas
US8097230Jul 5, 2007Jan 17, 2012Shell Oil CompanyProcess for the manufacture of carbon disulphide and use of a liquid stream comprising carbon disulphide for enhanced oil recovery
US8136590May 17, 2007Mar 20, 2012Shell Oil CompanySystems and methods for producing oil and/or gas
US8136592Aug 8, 2007Mar 20, 2012Shell Oil CompanyMethods for producing oil and/or gas
US8394180Feb 14, 2008Mar 12, 2013Shell Oil CompanySystems and methods for absorbing gases into a liquid
US8459368Apr 25, 2007Jun 11, 2013Shell Oil CompanySystems and methods for producing oil and/or gas
US8511384Jul 18, 2008Aug 20, 2013Shell Oil CompanyMethods for producing oil and/or gas
US8596371Mar 15, 2012Dec 3, 2013Shell Oil CompanyMethods for producing oil and/or gas
US8656997Apr 14, 2009Feb 25, 2014Shell Oil CompanySystems and methods for producing oil and/or gas
US8722006May 14, 2007May 13, 2014Shell Oil CompanyProcess for the manufacture of carbon disulphide
US20110108269 *Nov 18, 2008May 12, 2011Claudia Van Den BergSystems and methods for producing oil and/or gas
US20110180254 *Jul 14, 2009Jul 28, 2011Claudia Van Den BergSystems and methods for producing oil and/or gas
CN101449027BMay 18, 2007Mar 12, 2014国际壳牌研究有限公司Systems and methods for producing oil and/or gas
WO2007137153A2 *May 18, 2007Nov 29, 2007Shell Oil CoSystems and methods for producing oil and/or gas
Classifications
U.S. Classification166/400, 166/275
International ClassificationC09K8/58, E21B43/16
Cooperative ClassificationC09K8/58, E21B43/16
European ClassificationE21B43/16, C09K8/58