Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3841897 A
Publication typeGrant
Publication dateOct 15, 1974
Filing dateOct 17, 1972
Priority dateOct 17, 1972
Publication numberUS 3841897 A, US 3841897A, US-A-3841897, US3841897 A, US3841897A
InventorsHiguchi A, Imaeda N, Okazaki K
Original AssigneeToray Industries
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Artificial leather
US 3841897 A
Abstract
Artificial leather is composed of four layers: a fibrous substrate, a urethane polymer layer (III) containing finely divided inorganic particles, a thinner urethane polymer layer (II) consisting of at least about 80 percent by weight of polyurethane, and a coating layer (I) consisting of at least about 80 percent by weight of polyurethane.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Okazaki et a1.

ARTIFICIAL LEATHER Inventors: Kaoru Okazaki; Aira Higuchi;

Naoki Imaeda, all of Otsu, Japan Assignee: Toray Industries, Inc., Tokyo, Japan Filed: Oct. 17, 1972 Appl. No.: 298,449

U.S. Cl. 117/76 T, 161/89, 161/158, 161/170, 161/190, 161/DIG. 2, 260/37 N Int. Cl B44d 1/14 Field of Search 161/89, 158, 170, 190, 16l/D1G. 2; 117/76 T, 76 R References Cited UNITED STATES PATENTS 12/1969 Craven et a1 117/76 T Oct. 15, 1974 Kaneko 117/76 T Brasen 1 17/76 T Primary ExaminerGeorge F. Lesmes Assistant ExaminerJames .1. Bell Artificial leather is composed of four layers: a fibrous substrate, a urethane polymer layer (111) containing finely divided inorganic particles, a thinner urethane polymer layer (11) consisting of at least about 80 percent by weight of polyurethane, and a coating layer (1) consisting of at least about 80 percent by weight of polyurethane.

ABSTRACT 25 Claims, 3 Drawing Figures ARTIFICIAL LEATHER This invention is concerned with artificial leather and a method for its preparation. More particularly, this in- PRIOR ART In general, to obtain artificial leather,'a fibrous substrate has been prepared from a non-woven fabric, or a woven or knitted fabric impregnated with a impregnating composition. On the surface of this substrate a microporous polymeric coating layer is applied to provide a composite structure having two layers. It is said that peculiar properties of artificial leather such as water vapor permeability, water vapor absorption, surface-smoothness, appearance and feeling, etc. are obtained owing to the microporous structurementioned above, and the mechanical properties .of artificial leather depend mainly upon the structure of the fibrous substrate. The ease of forming creases, and the appearance of the creases obtained by bending or flexing, depend directly on the nature of the microporous coating layer and indirectly related to the structure of the fibrous substrate. I

Hitherto, studies of microporous structures and the relation between the structure of the microporous coating layer and the properties of leather have been re ported, but little is known with respect to the appearance of creases of artificial leather as compared to natural leather.

For instance, in British Patent No. 1,133,606, mention is made concerning a homogeneous and microporous artificial leather having good water vapor permeability and water vapor absorption, and the fibrous substrate composing one part of the artificial'leather was obtained by impregnating a fibrous material with a composition containing synthetic polymer, a definite amount of non-solvent for the synthetic polymer.' For each 100 parts of synthetic polymer there were added from to 80 parts of an inorganic compound having a mean particle diameter of 40-2,000 mu, which is virtually insoluble in the solvent and non-solvent for the synthetic polymer. The artificial leather prepared by using the above substrate is superior with respect to water vapor permeability and water vapor absorption, but the appearance of creases and the ease of their formation were the same as in artificial leathers hitherto obtained.

Although prior studies on artificial leather have been made, there has been almost no valuable achievement relating to the appearance of creases in artificial vide an artificial leather having excellent (a) mechanical and physical properties such as water vapor permeability, tear and scuff resistance, tensile strength and elongation, etc., as compared to artificial leather hitherto obtained, and (b) good appearance of creases as compared to natural leather, particularly German Box Calf,for example, upon bending or flexing. Another object of this invention is to provide a manufacturing method which is advantageous in industrial production.

The foregoing and'other objects of this invention can achieved by preparing artificial leather consisting of following coating layers (1), (II), (III), anda fibrous substrate, as will now be described in detail.

' The coating layer (1) has a thickness of about 0.001 to 0.1 mm and a 20 percent modulus of about 5 to 100 kg/cm and consists of a polymer composition containing at least about wt% of polyurethane.

The coating layer (11), obtained by the wetcoagulating method, has a thickness of about 0.01 to 0.3 mm, consists of polymer composition which contains 0 to 50 parts by weight of inorganic particles for each parts by weight of polymer (coagulation stabilizer is excluded from this polymer this definition is used through to the end). These inorganic particles have a mean particle diameter of about 0.03 to 5.0 micron, and are insoluble in water, and the polymer consists of at least about 80 wt% of polyurethane.

Coating layer (111), obtained by the wet-coagulating method, has a thickness of about 0.1 to 3.0 mm, consists'of polymer composition which contains about 50 to 300 parts by weight of inorganic particles for each 100 parts by weight of polymer (coagulation stabilizer is excluded from this polymer this definition is used through to the end), and-these inorganic particles have a mean particle of about 0.03 to 5.0 micron, and are insoluble in water, and the polymer consists of at least about 60 wt% of polyurethane.

In describing the relative proportions in coating layers.(Il) and (111) above, we have excluded any protecting agent from our consideration, but it is to be understood that an agent is usually added. This understanding will be followed throughout this specification, and in the claims.

The role of the agglutination protecting agent is to protect the microporous structure from changing to a non-porous structure.

The fibrous substrate has a thickness of about 0.3 to 3.0 mm and consists of at least a polymer and a fabric, which may be non-woven, knitted or woven. Coating layers (1), (II), (III) and the fibrous substrate are joined to one another in order, by the method to be described in detail hereinafter.

DRAWINGS In FIG. 1 an example of the cross-sections of the artificial leather of this invention is illustrated. In this FIG., (1) is the coating layer (1), (2) is the coating layer (II), (3) is the coating layer (111) and (4) is the fibrous substrate composed of a fabric impregnated with a polymer composition. The multi-coating layer consists of coating layers (I), (I1), and (111).

FIG. 2 shows the measurement of 6, the creaseforming angle referred to in tests of the artificial leather FIG. 3 is a diagrammatic illustration of a part of a method for testing flexibility resistance of artificial leather.

The polymer contained in coating layer (1) and (II) used in this invention is composed of (a) polyurethane or (b) more than about 80 wt% of polyurethane and less than about 20 wt%of a polymer selected from the group consisting of polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyacrylic acid, alkylpolyacrylate, polymethaerylic acid, alkylpolymethacrylate, and copolymers consisting of at least of one of the above mentioned polymer segments, and

The polyurethane contained in coating layers (I), (ll) and (ill) used in this invention is (e) the product of reaction of polymer diols, di-isocyanates and diamines and/or lower molecular diols, wherein the polymer diol is selected from the group consisting of poly-etherdiols, poly-ester-diols and poly-ether-ester-diols.

The polymer contained in the impregnating composition used in this invention is as follows: .(f) the polyurethane of (e) or (g) a polymer selected from the group consisting of polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate, polyacrylic acid and its esters, and polymethacrylic acid and its esters, or (h) mixtures of more than about 50 wt% of polyurethane of (e) and less than about 50 wt% of the polymers mentioned in (g).

In polymer compositions for coating layers (i), (ll), (lll) and impregnating compositions, such addition compounds as pigments, dyes, anti-oxidants, pulp powders, fiberpowders, etc. may be added.

The inorganic compounds contained in the above coating compositions (ll) and (Ill), used in this invention, are as follows: calcium carbonate, titanium oxide, zinc oxide, kaolinite, carbonates (such as .zinc'carbonate, cadmium carbonate, copper carbonate, barium carbonate, etc.),- oxides (such as chromium oxide, aluminium'oxide, antimony oxide, cobalt oxide, tin oxide, iron oxide, etc.), sulfates (such as calcium sulfate, barium sulfate, etc. phosphates (such as zinc phosphate, aluminium phosphate, calcium monohydrogen phosphate, ferrous phosphate, barium phosphate, etc.), silicates (such ascobalt silicate, magnesium silicate, potassium alumino silicate, kaolin, etc.) and mixtures of at least two of the abovementionedinorganic compounds.

Small amounts of impurities in inorganic compounds may be tolerated, so far as they do not disturb the objects of this invention. Particularly preferable inorganic compounds used in this invention are calcium carbon ate, titanium oxide, zinc oxide and kaolinite.

The inorganic compounds for coating layers (ll) and (Ill) used in this invention, must be insoluble in water and organic solvents, so that-said inorganic compounds do not dissolve out of the coating layers (ll) and (Ill). However, some substance in coating layer ([1) and (III) must dissolve during the process of coating polymer composition. (l) on the surface of coating layer (ll). This causes the surface of coating layer (ll) to'become rough, and as a result of this process, creases are formed when the artificial leather thus obtained is bent or flexed.

Considering the cause of the formation of creases .as above mentioned, the amount of inorganic compounds, and the mean particle diameter of inorganic compounds, are very important in order to obtain various kinds of creases with precision control.

The satisfactory range of the mean particle diameter of said inorganic compounds in-coating layers (ll) and (Ill) is about 0.03 to 5.0 micron, more satisfactory about 0.10 to 3.0 micron, and most satisfactory about 0.5 to 2.0 micron. In the case of a diameter larger than about 5.0 micron, the apppearance of creases is no longer that of natural leather, and the state of dispersion of inorganic compounds in polymer composition for coating layer, flexibility resistance and scuff resistance become worse, and suitable physical properties and homogeneous structure of the leather cannot be obtained. in the case of a diameter of smaller than about 0.03 micron, the appearance of creases is not that of natural leather, and water vapor permeability and softness become worse. This will be confirmed in a detailed explanation in describing the following experiments. They show the criticality of the above mentioned ranges of mean particle diameter.

The satisfactory range of the amount of inorganic compounds in coating layer (lll) is about 50 to 300 parts by weight for each parts by weight of polymer in the coating layer, more satisfactory about 80 to 200 parts, and most satisfactory about to parts. in the case of an amount of more than 300 parts in the coating layer (lll), the mechanical properties of coating layer (lll), such as tensile strength, elongation, tear and scuff resistance, etc., become worse, and the durability of the artificial leather also becomes worse. ln the case of an amount of less than about 50 parts in the coating layer (lll the appearance of creases is not that of natural leather, and the appearance and feel are similar to those of rubber, and the properties and performance of the artificial leather in this case are those of artificial leatherhitherto obtained.

The satisfactory range of thickness of coating layer (lll) is about 0.1 to 3.0 mm, more satisfactory about 0.3 to 2.0 mm, and most satisfactory about 0.5 to 1.0 mm. In the case of a thickness of coating layer (lll) largerthan about 3.0 mm, and comparatively less inorganic compounds in the coating layer (lll) at the same time, the properties of artificial leather obtained are similar to those of rubber. ln-the case of a thickness of coating layer (lll) larger than about 3.0 mm and comparatively more inorganic compounds in coating layer (ill) at the same time, the mechanical properties of the coating layer and the artificial leather become worse. In the case of a thickness of coating layer (lll) smaller than about 0.1 mm, the smoothness of the artificial leather become worse and the appearance of creases in the artificial leather obtained is not that of natural leather. A detailed explanation follows.

A satisfactory range of amounts of inorganic compounds in coating layer (ll) is about 0 to 50 parts by weight for each 100 parts by weight of polymer in coat ing layer (II), more satisfactory about 0 to 20 parts, and the most satisfactory none at all. in the case of an amount more than 50 parts in coating layer (ll), the appearance of creases of artifical leather obtained is not that'of natural leather. A detailed explanation follows.

A satisfactory range of thickness of coating layer (ii) is about 0.01 to 0.3 mm, more satisfactory about 0.03 to 0.25 mm, and the most satisfactory about 0.05 to 0.2 mm. The detailed explanation appears in the following reports of experiments.

Coating layer (l) is prepared by a dry-coagulating method. Coating layer (l) is coated on coating layer (II) and dried to remove solvent. The satisfactory range of thickness of coating layer (I) is about 0.001 to 0.1 mm, more satisfactory about 0.003 to 0.05 mm, and the most satisfactory about 0.005 to 0.02 mm. And the satisfactory range of 20 percent modulus ofcoating layer (I) is about 5 to 100 kg/cm more satisfactory about to 70 kg/cm and the most satisfactory about to 50 kglcm The method of the measurement of percent modulus is described hereinafter. In the case of a thickness of coating layer of smaller than 0.001 mm, the color and luster of the artificial leather is unsatisfactory, and creases cannot be formed, and scuff resistance decreases. In the case of a thickness of coating layer (I) larger than 0.3 mm, the appearance of creases and the feeling and appearance of the artificial leather obtained are not those of natural leather (the appearance of creases becomes too small), and water vapor permeability and flexibility resistance become worse, and the touch of the artificial leather becomes hand. In the case of a 20 percent modulus of coating layer (I) larger than 100 kg/cm the appearance of creases of artificial leather obtained is not that of natural leather, and the ease of forming creases, the ease in shoemaking, scuff resistance and flexibility resistance become worse. In the case of a 20 percent modulus of coating layer smaller than 5 kglcm the appearance of creases of artificial leather obtained is not that of natural leather, the touch of artificial leather is like rubber, and the ease of forming creases decreases. A detailed'explanation appears in the following experiments.

Coating layer (II) and (III) are prepared by a wetcoagulating method, and the detailed method of preparation of coating layer (II) and (III) is described hereinafter. In this invention coating layers (II) and (III) can be prepared from a polymer composition excluding non-solvents such as water. But when the polymer composition is used as a coating layer immediately after the polymer composition has been prepared, a small amount of non-solvent such as water in the polymer composition may be permitted.

One of the characteristics of this invention is that the artificial leather of this. invention has a multi-layer structure composed of coating layers (I), (II) and (III). This multi-layer structure with a fibrous substrate brings about the appearance of the creases like that of natural leather, particularly German Box Calf.

The satisfactory range of thickness of the multi-layer coating (I), (II) and (III) of this invention is about 0.1 to 3.6 mm, more satisfactory about 0.3 to 2.0 mm, and the most satisfactory about 0.5 to 1.5 mm. In the case of a thickness of the multi-layer of larger than about 3.6 mm, the appearance and feel of the artificial leather obtained arenot like those of natural leather. In the case of a thickness of the multi-layer of less than about 0.1 mm, the appearance of creases of the artificial leather obtained is not that of natural leather. 7

The apparent density of coating layer (III) is larger than that of coating layer (II). A satisfactory range of the apparent density difference between coating layer (III) and (II) is about 0.05 to 0.8 g/cm, more satisfactory about 0.07 to.0.6 glcm and the most satisfactory about 0.08 to 0.4 g/cm. In the case of an apparent density difference of more than 0.8 g/cm or less than 0.05 g/cm between coating layer (III) and (II), the appearance of the creases and the feel and appearance of the artificial leather obtained are not like those of natural leather, and the softness, the draping properties, the

flexibility resistance, the ease in shoemaking and the ease of forming creases of the artificial leather decreases. A detailed explanation appears hereinafter.

The relation of value of PU concentration in the polymer to the physical properties of artificial leather is shown in the detailed reports of experiments hereinafter.

The ease of forming creases is expressed by the crease-forming angle described in the following method of measurement. see FIG. 2. When the leather is bent top-coat-sidc (surface) in, in the shape of V, creases of the leather are observed at the bottom of the V-valley. A larger crease-forming angle means it was easier to form creases. Therefore, the satisfactory range of the crease-forming angle of the artificial leather obtained is more than an approximately 40 angle, more satisfactory more than an approximately 60 angle, and the most satisfactory more than approximately an angle. The crease-forming angle of German Box Calf, known as the highest class of natural upper leather, is about a 60 angle.

The fibrous substrate of this invention is prepared as follows. A well known fibrous web is needle-punched and impregnated with a polymer composition containing a polymer such as polyurethane and adding agent, and then wet-coagulated. In this process it is better that the surface of fibrous substrate be treated to flatten the fibers'in order to obtain good artificial leather of this invention having a large value of flexibility resistance. It is satisfactory to usefibers of 0.01 to 1.0 denier, because the value of flexibility resistance of the artificial leather of this invention using the fibrous substrate, composed of ultra fine fiber bundles as one of the components, in which a denier of each fiber is 0.01 to 1.0, is larger than that of the artificial leather obtained from fibers of ordinary denier. When using this ultra fine fiber to obtain good or better appearance andfeel of the artificial leather, a satisfactory thickness of the fibrous substrate is about 0.3 to 3.0 mm, and more satisfactory about 0.5 to 1.5 mm.

The satisfactory range of the viscosities of dimethyl formamide solution with 25 wt% of polyurethane used in the coating layer (I) and the impregnating composition are about 50 to 3,000 poises at 20 C, more satisfactory about to 1,500 poises, and the most satisfactory about 300 to' 800 poises. And the satisfactory range of viscosities of dimethyl formamide solution with 25 wt% of polyurethane used in coating layers (II) and (III) are about 200 to 5,000 poises, more satisfactory about 500 to 3,000 poises and the most satisfactory about 800 to 2,000 poises, all measured at 20 C. A detailed explanation is provided hereinafter.-

A satisfactory value of flexibility resistance of the artificial leather of this invention is more than about 10 X 10 times, more satisfactory more than about 15 X 10 times, and the most satisfactory more than about 20 X 10 times. Shoes made of artificial leather having less than 10 X 10 times of flexibility resistance are unsatisfactory, because cracks on the shoe surface arise easily. Therefore the above mentioned range of flexibility resistance is desirable.

A satisfactory range of water vapor permeability of the artificial leather of this invention is more than about 3 mg/cm hr., more satisfactory more than about 5 mg/cm hr., and the most satisfactory more than about 8 mg/cm hr. It is unsatisfactory to use artificial leather having less than 3 mg/cm hr. of water vapor permeability, because shoes made from'the artificial leather tendtomoisten the feet in ordinary use.

The following steps are used in the method of the artificial leather of this invention.

The coating composition (II) for coating layer (ll) is uniformly coated on a release support such as plastic film, glass plate, steel plate, or paper, so as to attain a thickness of about 0.01 to 0.3 mm of the coating layer (ll) consisting of the coating composition (ll).

Step (2) The coating composition (III) for coating layer (Ill) is uniformly coated on the coating layer (ll) in Step'(l) so as to attain a thicknessof about 0.1 to 3.0 mm of the coating layer (111) consisting of the coating composition ([11).

Step (3) r On the other hand, the non-woven, or woven or knitted fabric is impregnated with an impregnating composition and then'coagulated by immersing in a liquid which is a non-solvent for the polymer. The product of this step is immersed in a solution composed of nonsolvent and solvent for the polymer in the impregnating composition. In this way the wet-treated fibrous substrate is obtained. This is then applied to the'surface of the coating layer (lll) obtained in Step (2), and pressed lightly. Step (4) The material obtained in Step (3 coagulated in a coagulating liquid for a definite time at a definite temperature, to obtain a microporous structure of coating layer (ll) and (lll), and to unite the coating (ll) and (Ill) with the fibrous substrate.

Step (5) I v The release support is stripped from the surface of the coating layer (I1), and the solvent which is contained in the coating layer (ll), (Ill) and wet-fibrous substrate is extracted and washed and. then dried.

Slp

The coating composition (1) for coating layer (l) is coatedon the surface of the coating layer (ll) so as to attain 0.001 to 0.1 mm in thickness of the coating layer (l), and then dried.

l-lowever, in contrast to this invention, an artificial leather obtainedbythe following alternative method has no'crease on the surface atall, and the properaties such as the flexibility resistance (3 X times), the scuff resistance (300 g), the heat resistance (105 C), the surface smoothness, the color and luster of the surface and so on, become worse extremely. This alterna tive method is that the coating composition (I) of Step (6), instead of the coating composition (11) of Step (1) is coated on the release support, and then the coating composition (ll) of Step (1) is coated on'the coating layer (l) and then the coating composition (Ill) of Step (2) is coated on this, and then the treatment of Steps 3) to (5) is carried out in order.

The ease of forming creases in the artificial leather obtained by another alternate method is very unsatisfactory, and the other properties of the product, such as water vapor permeability, softness, repulsive elasticis immersed and and with this the above dried fibrous substrate is joined, and then on the dried coating layer (ll) thus obtained, the coating composition (l) is coated according to Step (6).

As mentioned above, it is preferably to adopt selected conditions and processes in order to obtain the artificial leather of this invention.

There are the following methods instead of Step (5). Namely, (a) the solvent which is contained in the coating layer (ll), (Ill) and wet-fibrous substrate is extracted and washed, and the release support is stripped from the coating layer (ll), and then dried, and (b) the solvent which is contained in the coating layer (ll), (lll) andwet-fibrous substrate is extracted and washed, and dried, and then the release support is stripped from the coating layer (ll). Said method (a) has a characteristic that the artificial leather is not deformed by heat shrinkage when extracted and washed to C). Said method (b) has a characteristic that the artificial leather is not deformed by heat shrinkage when dried (60 to 180 C) in addition to the above mentioned characteristic in method (a).

The method of Step (5), however, can be preferable industrially to either method (a) or (b), because the extracting and washing times are shortened to less than half of that in (a) or (b), the productive capacity increases more, the equipment is simpler and proper equipment will be able to resolve the problem of shrinkage.

The measurements of the values of physical properties in this invention are described as follows:

1. The thickness of coating layers" This value is measured from a microphotograph of the cross-section of each coating layer. 2. Water vapor permeability (WVP) This value is measured by the Calcium Chloride-cup method which is defined by Japanese Industrial Standard (.llS) K-6549, which measurement comprises setting a circular sample having an area of 28.3 cm on a measuring cup including 10 g of solid'calcium chloride inside, sealing tightly with melted paraffin which solidifies immediately, and maintaining for 4 hours in an atmosphere of 40 C and 90 i 5 percent of relative humidity.

The weights of the cup containing the sample at the initial time and after 4 hours are measured, and then water vapor permeability is calculated by the following ity, ease in shoemaking, wearing comfort, etc. are very v poor. This other alternate method is that the material obtained in Step l) to (2) is dried, which makes the material non-porous, and meanwhile the wet fibrous substrate in Step (3) is also dried, and on the surface of dried coating layer (Ill) an adhesive agent is coated,

equation:

(weight of sealed cup after This value is defined as the weight per unit volume (g/cm obtained by measuring the weight of the sam ple having a size of -5 cm X 5 cm with a chemical balance and calculating grams per unit volume of the sample by using the sample size and thickness. The difference of the apparent density (apparent density difference) among layers is obtained as follows.

By the wet-coagulating method each mono-coating layer is prepared individually from the corresponding composition, corresponding to each layer inthe multicoating layer, and the apparent density of each layer is measured by the above mentioned method and'the apparent density difference is calculated. The, apparent density is the average value of 10 samples.

4. modulus This value is defined as the stress at 20 percent elongation expressed as kg/cm and it may be by a measure of the softness, whose measurement comprises maintaining the sample having a size of 2 cm X 13 cm for at least 24 hours in an atmosphere of 20 C and 65 percent R.l-l., applying the sample to a tensile testing apparatus, measuring at the condition of a pulling speed of 10 cm/min, a chart speed of 10 cm/min (test length of 10 cm and test width of 2 cm) and reading the stress at 20 percent elongation from the load-elongation curve thus obtained on the chart. For example, in the case of a dry coagulating coating layer (1), a mixture of 100 parts of DMF solution with wt% polyurethane and 20 parts of carbon black dispersion of 18 percent by weight is coated on a polyethylene terephthalate film at a thickness of 2.0 mm and dried for 1 hour at 100 C. The resulting dry film is cut into pieces (above mentioned size) and the 20 percent modulus is measured under the above conditions. 5. Flexibility resistance (De Mattia Flex Test resistance) This value is defined as flexibility resistance measured by De Mattia Flex Tester whose measurement comprises folding the sample (4 X 10 cm) into two and flexing the folded sample several times in the fingers, as shown in FIG. 3, applying the sample to the De Mattia Tester to attain a test length of 3 cm and to attain an extension of 25 percent at the maximum amplitude, and flexing the sample at 18,000 times per hour. The flexibility resistance is expressed as the number of times until a surface crack develops on the sample. This test is more severe than that of the so-called Nikka Flex Tester observed at a low temperature (5 C), because the latter is a non-tension test, so the value of flexibility resistance measured by the De Mattia Test is lower than that measured by the Nikka Flex Tester. For example, in the case of side leather, the value obtained by use of the De Mattia Flex Tester is400,000 times, but that by the Nikka Flex Tester is 1,500,000 times. De Mattia Flex Test resistance is abbreviated as DM re.- sistance. DM resistance is expressed as an average of five samples. 6. Appearance of creases v This value isexpressed by the comparison with the appearance of creases in German Box Calf. This comprises bending the leather in such a way that the top coating is the inside, and evaluating the appearance of creases in comparison with that of German Box Calf by observing the length, the width, the depth and the direction of the creases. The creases of German Box Calf are qualitatively small and relatively shallow, and appear in all directions. If necessary, a photograph of creases may be used as the judgment reference.

7. Crease-forming angle" U 1 This value is defined as 6, the angle of bending is shown in FIG. 2. It is defined as the angle of bending when creases appear clearly. 6 is the crease-forming angle and is also a measure of the ease of forming creases. A larger angle 0 means that the leather forms creases more easily.

8. Scuff (scratch) resistance This value is defined as the lowest load (grams) on the following needle which hurts the surface of a sample (5 X 5 cm) cemented to the regular position of the standard Clemence Scratch Resistance Tester. The

' In this specification, various abbreviations have been and will hereinafter be resorted to for the sake of clarity and brevity. These abbreviations are as follows:

Table of Abbreviations Exp.

Comp.

Experiment Comparison Coating composition Coating layer DMF solution with 25 wt7r polyurethane DMF dispersion with 15 WIY! carbon black concentration Polyvinyl chloride Dioctyl phthalate Calcium carbonate Apparent density difference Flexibility resistance Water vapor permeability Appearance of crease Crease-forming angle DMF solution with l0 wt'lz black violet dye A-solution B-solution Heat resistance Scuff resistance Feeling and appearance Thickness Artificial leather State of dispersion of CaCO Surface smoothness Ease in shoemaking Foot fitting characteristics conc PVC DOP CaCO

A. Density Diff.

W.V.P.

App. of crease St. of Disp. of CaCO Sur. Sm.

Eas. in Shoemak.

Fit. to foot NOTE: Part(s) used in the following description means part(s) by weight unless specifically designated otherwise.

EXPERIMENTI A. Preparation of non-woven fabric 40 parts of Nylon-6 staple fibers, of 3 denier and having a-length of 51 mm, and 60 parts of polyethylene I terephthalate staple fiber of 5 denier and having a length of 51 mm, were respectively opened and then mixed. The mixed staple fiber was treated in crosslappin'g equipment to obtain a web and then was needle-punched to obtain a non-woven fabric. This nonwoven fabric was heat pressed with a calender roll to obtain a non-woven fabric having a unit area weight of 200 g/m and a thickness of 0.8 mm. B. Preparation of Iinpregnating Composition Polybutylene ad ipate having a mean molecular weight of about 2000, diphenyl methane ci-isocyanate (DPMDI), methylene-bis-aniline (MBA) and N-N-methyl-formamide (DMF) were reacted to obtain a polyurethane (PU) solution having a concentration of 25 wt% and 350 poises of viscosity at 20 C by the pre-polymer method. After adding DMF to the PU solution, an impregnating composition having 10 wt% of concentration and 2.2 poises of viscosity at 20 C was obtained. C. Preparation of Coating Composition According to the combination component and the combination amount in Table 1, each component was mixed to obtain coating composition (I), (ll) and (ill).

Coating Composition (l): PU, main component as polymer, carbon black (CB) as black pigment made by Dainichi-seika and a small amount of black-purple dye made by GElGY Co. were mixed and stirred, and then a mixture of DMF and tolune (3:1 by weight) were Table 2 (Exp. I)

PU concentration/total polymer of Coating Composition (111) and properties of the artificial leather Exp 1 1 Exp l-2 Comp l-1 Comp l-2 PU cone of C.C. (111) total polymer PU (PU+PVC) X 100 (wt%) 100.00 80.00 49.99 30.00

' C.L. l m 0.008 0.008 0.008 0.008 thickness C.L. $11 0.20 0.20 0.20 0.20 C.L. (111) (mm) 0.70 0.68 0.62 0.55 leather (mm) 1.708 1.688 1.628 1.558

A. Density Diff. between C.L.(l) and C.L.(ll) (g/cm) 0.12 0.15 0.39 0.47 modulus of C.L. (l) (kg/Cm) 24.75 24.75 24.75 24.75 F.R. (X 10) 43.3 40.5 8.2 1.6 W.V.P. (mglcm /hr) 15.5 123 3.1 1.9 softness (C) 8 A x softness (20C) x xx App. of Creases x xx C.F.A. (degree) 95 95 45 20 C.L. (l): coating layer (1) appearance just the same as that of German Box Calf (the highest grade of natural leather) 0 appearance just the same as Calf (higher grade of natural leather) A: appearance just the same as Kip (middle grade of natural leather) x appearance is the same as side leather (lower gradeof natural leather) xx no crease formed This definition is used throughout this specification. softness:

@ more soft 6' soft 'A slightly soft x not soft This definition is also used throughout this specification.

EXPERIMENT, I1

Four kinds of artificial leather were prepared under the same conditions and using the same methods as Experiment 1, except that the combination component and the amount of its coating composition (II) were changed as shown in Table 3. And coating composition 111) in Experiment l-l was used as coating composition (11]). The relation of coating composition (II) to the.

properties of artificial leather is shown in Table EXPERIMENT 111 Four kinds of artificial leather were prepared under the same conditions and using the same methods as Experiment 1, except that the combination component and the amount of its coating composition (1) were changed as shown in Table 4. And coating composition (111) in Experiment [-1 was used as coating composition ([11). The result is shown in Table 4.

EXPERIMENT IV Table 3 (Exp. 11)

Combination component and amount of coating composition (ll) and properties of artificial leather product Expll-l Expll-2 Compll-l Compll-2 PU 25% DMF soln 66.40 53.12 33.20 19.92 A Coagulation stabilizer 2.16 1.73 1.08 0.65 501 DMF 27.78 22.16 13.89 8.33 B PVC 0 3.32 8.30 11.62 D01 0 1.66 4.15 5.81 sol DMF 0 v 14.58 36.30 50.82 CH 2.50 2.50 2.50 2.50 CaCO;, 0 0 0 0 P (C.C. (11). wt%) 100.00 80.00 50.00 30.00 total polymer 3 O X 0 0 0 0 PU PVC App. of crease x xx C.F.A. (degrees) 98 84 40 20 F.R. (X10 times) 43.5 39.5 7.5 1.0 W.V.P. (mg/em hr.) 15.3 10.5 5.1 1.5 softness O A x Table 4 (Exp. Ill) Combination component and amount of coating composition (I) Explll-l Explll-Z CompllI-l Complll-2 PU 25% DMF soln 28.38 22.75 14.19 8.51 PVC 0.00 1.42 3.55 4.97 DOP 0.00 0.7l 1.78 2.48 DMF 0.00 14.24 35.70 49.98 CB 28.38 24.12 l7.74 l3.48 B.V. dye 0.68 0.58 0.43 0.32 DMF I toluene (3/1) 42.56 36.18 26.6! 20.22

PU cone of C.C.(l) l00.00 80.02 49.98 29.98 total polymer (wt%) App of Crease x xx C.F.A. 95 88 42 15 HR. (*C) 250 230 I20 70 F.R. (X 10 times) 45.5 3.8.2 15.! 0.3 S.R. (g) 1500 I300 300 500 Feel and App 7: xx

TABLE 5 (EXP. IV) Amount of (30.001 in 0.0. (110000 properties of artificial leather product Comp.

Exp.

Exp. Exp. 'Exp. Exp. Exp. Comp.

1v-1 IV 1 IV-2 IV-3 1v-4 IV-5 tv-e I -2 20 50 so 120 100 200 300 40 0.00s 0.008 0.008' 0.000 000s 01008 0.008 0.00 0. 20 0. 20 0. 20 0. 20 0. 20 0.20 0. 20 0. 2 0.51 0.55. 0.00 0. 0.70 0. 70 0.73 0.? 1.418 1 45s 1. 50s 1. .598 1.003 1.008 1.038 1. O O O 0 X 0.01 0.06 0. 0a 0. 12 0. 1s 0. 20 0. 24 0. 20 24. so I 24. a0 24. 80 24.80 24. so 24. 80 24.80 24. 80 X 0 O O O X 20 05 so 105 110 s5 so so 40.1 45.0 43.7 45.5 48.0 43.0 37.8 10.0 a 5. 155 m g 17 1 is A O 0 O X X 0 O 8 X X A 0 0 X EXPERIMENT V According to Experiment l, four kinds of artificial leather were prepared except that in coating composition (ll) 0, 40, 70 and 100 parts of inorganic compound per 100 parts of total polymer were used respectively.

EXPERIMENT Vl According to Experiment l, 8 kinds of artificial leather were prepared except that in coating composition (ll) and (Ill), 0.01, 0.03, 0.10, 0.50, 2.00, 3.00,

5.00 and 10.00 micron of mean particle diameter of inorganic compound particle were used, and that EXPERIMENT v'n Titanium oxide, zincoxide, kaolinite and zinc carbonate instead of calcium carbonate in Experiment l were mixed into coating composition (II) and (Ill) respectively as shown in Table 7, and 4 kinds of artificial leather were prepared according to Experiment I except that in coating composition (ll) 20 parts of inorganic compound for 100 parts of total polymer were used. And as for coating composition (III) the same combination amount as in Experiment L] was used. The result is shown in Table 7, which shows that these four kinds of inorganic compounds above mentioned and calcium carbonate used in Experiment I to Vl are particularly superior.

'I ABLE 0 (0x2; vi

Mean particle diameter of C8003 in 0.0. (II) and (III) and the properties of the artificial leather Comp. Exp. Exp. Exp. Exp. Exp. Exp Comp.

VI-l VI-l VI-2 VI-3 VI-4 VI5 VI VI-2 Morin particle diameter of CaCOa (micron) 0; 01 0. 03 0. 10 0. 50 2. 00 3. 00 5. 00 8. 00 Thick of (LL. (1) 1m. 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.009 'lhick. 01' (LL. (H) (mm 0.18 0.10 0. 20 0. 20 0.20 0.22 0.22 0.24 'lhick. 0! (LL. (Ill) (m 0. 63 0. 65 0. 68 0.70 0. 70 0. 71 0. 72 0. 72 Thick. 0! AL. (mm.) 1.510 1 549 1. 589 1. 609 1.609 1.639 1.649 1.669

Comp. Exp. E. Exp. Exp. Exp. Exp. ump.

V St. of disp .0f 03003. f. it. A O O O A X A. density diff. between C.L. (III) and (II) (g./cm. 0. 16 0. 15 0.17 0.15 0.18 0. l3 (1. l3 0. ll! 20% modulus of C.L. (I) (kg/cm!) 25.5 25. 5 25.5 25.5 25.5 25. 5 25.5 .15. 5 App. 01crease X O D O A X C.F.A. (degree) 20 60 80 105 100 110 (ll) 30 F.R. (X104 times) a a 10. 4 38. 5 45. 5 16.0 2. 5 40. l 35. 5 2. 5

W.V.P. (mg lcm. hr.) 5. 5 10. 5 13.0 15. 5 16. 16.0 16.0 1;. ll

Sur. sm... t .o X O 0 A Table 7 (Exp. VII) Kind of inorganic compound in C.C. (11) and (111) and the properties for artificial leather ExpVll-l ExpVll-Z ExpVl1-3 ExpV11-4 Kind of inorganic compound (inorg. comp.) ZnO Ti0 ZnCO Kaolinite mean particle diameter 1.5 0.9 1.3 0.9

(micron) St. of Disp. of inorg. comp. M thick. of C.L. (1) (mm) 0.01 0.01 0.01 0.01 thick. of C.L. (11) (mm) 0.20 0.18 0.20 0.19 thick. of C.L. (111) (mm) 0.68 0.68 0.66 0.67 thick. ofA.L. (mm) 1.59 1.57 1.57 1.57 A. density Diff. (g/cm 0.17 0.18 0.15 0.15

(C.L. (11), (Ill) 20% modulus of C.L. (1) 23.5 23.5 23.5 23.5

(kg/m I App. of crease Q C.F.A. (degree) 105 10 9 105 FR. (X 1.0 times) 40.5 38.5 41.8 42.0 W.V.P. (mg/cm hr.) 15.5 14.5 15.0 15.0 softness n 0 v 0 Sr. Sm. 8 8 g Eas. in Shoemak. Fit. to foot EXPERIMENT Vlll Eight kinds of PU shown in Table 8 were used in coating composition (1). 25 percent of PU solution was prepared by picking up the proper ratios of NCO/OH on the addition reaction and by changing the mean molecular weight of polymer diol. The values of various 20 percent moduli of PU thus obtained are shown in Table 8. Thus 20 percent modulus of coating layer (1) was changed as shown in Table 8. Eight kinds of artificial leather were prepared according to Experiment I and Experiment l-l except for using polyurethane mentioned above for coating composition (1).

20 percent modulus of coating layer (1) was effective to appearance of creases, crease-forming angle, and flexibility resistance of artificial leather as shown in Table 9. To obtain good results above mentioned, from to 100 kg/cm of 20 percent modulus of coating layer (1) was satisfactory, more satisfactory from to 70 kg/cm and the most satisfactory from to 50 kg/cm EXPERIMENT [X With the same conditions as in Experiment I and Experiment I-1 except that coating layer (11); and (111) v, mean particle diameter of inorganic compound particlc. As shown in Table 10, the resulting artificial leather had from 0.00 to 1.00 g/cm of apparent density difference between coating layer (Ill) and (II). Table 10 shows that in order to obtain good artificial leather with satisfactory properties at the same time, it is necessary to make the apparent density difference from 0.05 to 0.80 g/cm,

Table 8 (Exp. V111) Various kinds of PU and their 20% Modulus 20% Kinds of PU (NCO/(OH) Viscosity Modulus mole ratio 25% PU/DMF (kg/cm) soln (poise) PEG-DPMDl-TMD 2 700 3 PEG-DPMDl-MBA 2 750 5 PTHF-DPMDl-TMD 2 660 10 PCL/PEA-DPMDl 2 720 15 MBA PEA-DPMDl-MBA 3 650 50 PBA-DPMDl-MBA 4 680 PCL/PEA-DPMDI- 5 705 MBA PCL-DPMDl-MBA 5 700 200 viscfllity: 20C

M.W.: molecular weight PEG: polyethylene glycol PTHF: poly-tetramethylene oxide glycol (MW 1500) PCL: poly-caprolactone (MW 1500) PBA: poly-butylenc adlpule (MW 1500) PEA: polyethylene ndipute (MW 1500) PCL/PEA: 50/50 (molt: ratio) DPMDI: dlphcnyI-mcthanc di-isocyanulc TMI): trimethylcnc diumim:

MBA: methylene his-aniline I W i V N (EXP. VIII) Hm m w 20% modulus of C.L. (I) and the properties of artificial leather Comp. Exp. Exp. Exp. Exp. Exp. Exp. Corn VIII-1 VI[I1 VIII-2 VI 11-3 VIII-i V1 [[43 Vl [1-6 ll 1 3 5O 70 100 200 0. 008 0. 008 0. 008 0. 008 0. 008 (l. 008 0. 008 0. 008 0. 0. 19 O. 20 0. 21 0. .20 0. 18 i). 20 0. 1i! 0. 71 0. 70 0.70 0. 0. 00 0. 0. 70 0. 71 1. 618 1. 598 1. 608 1. 608 1. 508 1. 588 1. K 1. 508 0.16 0.15 0. 17 0.17 0.13 0.15 0.14 X O 0 O O X 15 60 110 110 05 70 15 44. 5 44.2 43. 6 45. 0 4& 5 42. 7 40. 1 0. 5 15. 0 15. 0 15. 3 16. 5 15. 5 15. 0 15. 5 15. 2 O O X TABLE 10 (EXP. IX)

Apparent density difference of (IL. (111) and (II) and properties of artificial leather Comp. Exp. Exp. Exp. Exp. Exp. Exp. Comp. IX-l IX-l IX-2 IX-3 IX-4 IX-5 IX6 IX-2 A. d nsit difl. between (LL. (III) and (H) (gJem) 0. 00 0. 05 0.07 0. 08 0. 40 0. 60 0. 80 1. ()0 Thick. of CL. (1) Ohm.) 0.009 0. 009 0. 009 0. 009 0.009 0. 009 0. 009 0. 009 Thick. of C.L. (H) mm 0. 20 0. 19 0. 20 0. 18 0. 20 0. 19 0. 20 0. 22 Thick. of CL. (111) (mm 0. 69 0; 70 0. 70 0. 70 0. 55 0. 53 0. 21 0. 109 Thick. of AL. (mun) 1. 599 1. 599 1. 609 1. 589 1. 559 1. 429 1. 119 1. 02 20% modulus of O.L. (I) (kg/c1113); 23.8 23. 8 23. 8 23. 8 23.8 23.8 23. 8 23.8 App. of crease- X A- O A X (LEA. (degree) 15 60 9a 65 25 RR. (X10 times)- 2. 0 18. 5 30. 7 .46. 5 48. 0 35. 0 20. 0 5. 0 W.V.P. (mgJcmfl/hrz}- 15. 0 15. 2 15. 5 15. 0 15. 0 10. 0 8. 4 2. 1 Soi'tness X A 8 0 A X Repulsive elasticity X A O A X Eas. in shoemak- X O O O O X Fit. to foot X A O O A X Repulsive elasticity: X=strongest; A=stronger; Q=strong; =weak.

EXPERIMENT x Using the conditions of Table 1 ll eight kinds of artificial leather (from Experiment X-l to X-6, Comparison X-l and Comparison X-2 as shown in Table 11-1 ing layer (ll) and (III) was kept as shown in Table l l-i which is a favorable value according to this invention. Table l l-l shows that it is necessary to make the thickness of coating layer (1) from 0.001 to 0.1 mm. On the conditions of Table l 1'-2, eight kinds of artificial leather (from Experiment X-7 to X-l2 and Comparison X-3 to X-4 as shown in Table l l-2) were prepared according to Experiment I and Experiment l-l. except that the thickness of coating layer (II) was changed and that the value of the thickness of coating layertl) and ill) was kept as shown in Table l l2 which is a favorable value according to this invention. Table l l-2 shows that it is necessary to make the thickness of coating layer (ll) from about 0.01 to about 0.30 mm.

Using the conditions of Table. l l-3, eight kinds of artificial leather (from Experiment X-l3 to X-l8 and Comparison X-5 to X-6 as shown in Table ll-3) were prepared according to Experiment I and Experiment [-1 except that the thickness of coating layer (ill) was changed and that the value of the thickness of coating layer (1) and (11) was kept as shown in Table ll-3, which is a favorable value according to this invention. Table l l-3 shows that it is necessary to make the'thickness of the coating layer (Ill) from about 0.10 to about 3.00 mm. It was found that the favorable thickness of fibrous substrate was from about 0.3 to 3.0 mm and that a more favorabie thickness was from about 0.5 to 1.5' mm for shoes, bags, sheets, interior materials, etc), for ease of processing, although the optimum thickness differs according to use. it was also found that the thickness of the fibrous substrate affected the creasefs mi s ns r v s 9 cr ses.. lai ail nr ss tance, softness, appearance and feel, and that the range of the thickness above mentioned gave good results.

An artificial leather consisting of coating layer (1), (ill) and fibrous substrate without coating layer (II) was prepared, but flexibility resistance of this artificial leather was very poor (0.2 X 10 times), and shoes made of this artificial leather were so poor that cracks occurred in about one day when the shoes were worn. Also, their scuff resistance was very weak (200 g), and the shoes were easily scratched when worn.

sRra NI XI Artificial leather was prepared according to Experiment I andv Experiment [-1 except that the kinds and the amounts of polymer excluding PU used in coating composition (I), (ii) and (ill) were changed. Polyvinyl chloride, copolymer of vinyl chloride and vinyl acetate, and pclybutyl acrylate were used as the polymer above mentioned. The amount of each polymer was 0, 20 and 50 wt% in the case of coating composition (l) and (ii), and 0, 40 and 60 wt% inthe case of coating composition (lll). in the case of coating composition (l) and (I!) it was found from this experiment that no differenceamong these kinds of polymer was observed, and that it was necessary to keep the amount of polymer except for PU less than about 20 wt% to obtain good artificial leather according to this invention. And in the case of coating composition (ill), it was found that no difference among these kinds of polymer was also observed, and that it was necessary to keep the amount of polymer, except for PU, less than about 40 wt% to obtain good artificial leather of this invention.

Addition of these polymers excluding PU improved scuff resistance (by 100 to 200 g in comparison with zero addition). ease in shoemaking and repulsive elasticity. An artificial leather with poor properties was obfiaineg by using polystyrene as the polymer above mentione Exp. Comp.

X-(i X-Z nomoonu Exp.

E X-a 4 .55 15) ma moamo .0(L.-

Exp.

Exp. X-2

Exp. X-l

TABIYE ii i (EXF'X Thickness of C.L. (I) and properties of artificial leather Comp. X-l

mwmm mAmAvwAmA Exp. Comp X-12 X-4 Exp. X-ll p. Exp.

.X-IO

eial leather Comp. Exp. Ex

X-3 X-7 X-B =bad; X=Worse.

TABLE 11-2 (EXP. x Thickness of C.L. (II) and properties of artlfi mL OM84 0. 0L%0 4 mmmmmw mmmAAAA 0 L .mom woooo Exp. Comp. X-18 X-6 Exp. X-17 Exp. Exp. X-14 X-15 Exp. X-13 mmmjmxmfmAAxA 5 852 0 98 954 5 AA m mmiJ maam .20 2 O v.3

WBMWJMO EWOOOO 0 OM53 0.1 v 1 95 307 wLJWW5 J L5 m .2 11

mmmmmmxwwmmwoxx o..o. 1

Lobtaincd from ylene oxide glycol, phthalic acid EXPERIMENT Polyfit her-ester PU ting composition (.l), a. polymer diol: ether-ester-dio.

poly-tctra-meth an artificial leather was prepared accor ding to Experiment! and coating composition (III). according to Experiment l-l.

g PU used in CO3 was choscn.

c b. di-isocyanate 7 r w c. di-amine and/or lower molecular d d m Q m a a v r .lm H.. m E 1 o ,0. m M a ,d m a v 7. I l e e u e. r. U C T e mm. k s h 6. O. a 0 P m n d m 2 f r.. e m :4 m 0 0( l. ,c l. h W y f. uh m e W 6M w... MM mmmwww m y .6. c ..m.n wrmnb m.l. a wmmm m aw d H o d. d Mr md dU Dimm r/ b nub aw 4 o 6 m w b .l g g m e e m m fi .IA eil g v. .m m 1 m w e. .m 0 av. .0 0 m m P m d m e 1 u pt A c e t B k vm m, D: O m w A .m PH 0 e t. m (.P. w F a r 0 .H. n a O l. T. 6 w a w .m r P. r )P m I 0.. b .L e e d .l O t t 0 T. m n l D.. Uiu m n V. P a a e f l H a W n 6 6 m m m e 0 m .h m a ub a Wax vwemkzvzr y m m W d m P m w m a b Q a 1 2 The followin (II) and (-III) case of (2), with good softness and water vapor permeability, in the case of (3), with good flexibility resistance and softness, and in the case of (4), with good scuff resistance, softness and water vapor permeability.

EXPERIMENT XIII In this experiment the viscosity of the DMF solution with 25 wt% of PU used for coating layer (I), (II) and (Ill), and the viscosity of DMF solution with 25 wt% of PU used for impregnating composition were changed. Namely, for coating layer (I) and the impregnating composition both of these viscosities were 10, 50, I00, 300, 800, 1,500, 3,000 and 5,000 poises at C, and for coating layer (II) and (III) they were 100, 200, 500, 800, 2,000, 3,000, 5,000 and 8,000 poises at 20 C. By using said DMF solution with wt% of PU, coating compositions (I), (II), (III) and the impregnating composition were prepared. The polymer used for coating compositions (I), (II), (III) and impregnating composition was the same kind as PU as used in Experiment I. Thus artificial leathers were prepared according to Ex periment l and Experiment [-1. As a result it was found that, when the viscosities'mentioned below were used, the resulting artificial leather had a satisfactory appearance of creases, a large crease-forming angle, superiorflexibility resistance, strong scuff resistance, wonderful softness, great repulsive elasticity, etc., all at the same time.

Namely, the satisfactory extent of the viscosity of the DMF solution with 25 wt% of PU used for the coating layer (I) and'the impregnating composition was from about 50 to 3,000 poises at20 C, more satisfactoryfrom about 100 to 1,500 poises and most satisfactory .from about 300 to800 poises. And the satisfactory range of viscosity of the DMF solution with 25 wt% of PU used for the coating layers (II) and (III) was from about 200 to 5,000 poises at 20 C, more satisfactory from about 500 to 3,000 poises, and the most satisfac tory from about 800 to 2,000 poises.

In the preparation of coating layers (II) and (III), it is important to obtain a microporous structure by the wet-coagulating method. And it is also important that the state of dispersion of the inorganic compound in the coating composition should be substantially homogeneous. For the reason mentioned above, it is considered that good results were obtained in the range of viscosities mentioned above.

EXPERIMENT XIV By making a web of polyethylene terephthalate staple fibers of ultra fine fiber bundle in which each fiber had a denier of 0.08, and needle-punching the web, a nonwoven fabric was made. Artificial leather was prepared according to Experiment I. Coating composition (III) in Experiment H was used as coating composition (Ill).

The resulting artificial leather was superior in softness and flexibility resistance X 10 times) and the appearance and feel of this artificial leather were I just the same as that of German Box Calf. The appearance of creases and the crease-forming angle were almost the same as Experiment I. The ease in shoemaking was superior. The shoes from this artificial leather gave no discomfor when worn.

tance was from 1,300 to 1,500 g.

EXPERIMENT XV The surface of wet-treated fibrous substrate was flattened by the dispersion liquid of poly-ethyl acrylate and water (30:70 by weight), and then on this surface, coating layers (II) and (III) were applied and pressed. Thus, artificial leather was prepared according to Experiment I. Coating composition (III) in Experiment l-l was used EXPERIMENT XVI Flattening treatment of surface of the fibrous sub- S a in in n??? is P 9s9a$ 9l Q There are many ways of carrying this treatment into effect, and the following examples are representative. (Experiment was carried out according to Experiment I and Experiment [-1 '1. The surface of wet-treated fibrous substrate in Experiment I was flattened by coating with PU and/or a dispersion liquid composed of alkyl-poly-acylate and water. On this flattened surface, the surface of coatinglayer-(lll)-side of multi-layer material of coating layer (II) and (III) was applied, and pressed lightly, then immersed into water to coagulate. Then, on the surface of coating layer (ll), coating layer (I) was applied. Thus, artificial leather was prepared.

2. In the process wet-treated fibrous substrate and a multi-layer material of coating layers (II) and (III) was joined and pressed, a part of coating layer (III) was buried into the fibrous substrate by regulating the pressure during the pressing operation, and the surface of coating layer (II) was smoothed, and then this material was immersed in water to cause coagulation. Finally, on the surface of coating layer (ll), coating layer (1) was applied. Thus, artificial leather was prepared.

3. Drying the wet-treated fibrous substrate, on one side of this fibrous substrate, the layer of the solution of the polymer used in (1) or the dispersion liquid of the polymer used in l) was applied and dried. The flattening of the surface of the fibrous substrate was thus accomplished. On this flattened surface of the fibrous substrate, the multi-layer of coating layers (II) and (III) was applied and then, on the surface of coating layer (ll), coating layer (I) was applied. Thus, artificial leather was prepared.

The artificial leather obtained by the method of (l) and (2) above mentioned had superior flexibility resistance, scuff resistance, and water vapor permeability. The properties of the artificial leather obtained by the method of (3) were as superior as those of l) and (2) except for water vapor permeability.

to 3.0 micron and being-essentially insoluble in water.

Example H 65 X 10 times 16.0 mg/cm hr. 1800 g Flexibility resistance: Water vapor permeability: Scuff resistance:

The following is claimed:

1. Artificial leather comprising a fibrous substrate having a thickness of about 0.3 to 3.0 mm, said substrate comprising a fabric impregnated with a polymer, 1 and coating layers (Ill), (11) and (l) adhered in that order to the surface of said substrate,

a. the coating layer (llI) having a thickness of about 0.1 to 3.0 mm, and comprising a wet coagulated polymer composition which contains about 50 to 300 parts by weight of inorganic particles per 100 parts by weight of polymer, said inorganic particles having a mean particle diameter of about 0.03 to 5.0 micron and being essentially insoluble in water, and the polymer in this polymer composition consisting of at least about 60 percent by weight of polyurethane,

b. the coating layer (ll) having a thickness of about 0.01 to 0.3 mm, and comprising a wet coagulated polymer composition which contains about to 50 parts by weight of inorganic particles per 100 parts by weight of polymer, said inorganic particles having a mean particle diameter of about 0.03 to 5.0 micron and being essentially insoluble in water, and the polymer in this polymer composition consisting of at least about 80 percent by weight of polyurethane, and

c. the coating layer (I) having a thickness of about 0.001 to 0.1 mm and having a 20 percent modulus of about to 100 kglcm and comprising a drycoagulated polymer composition, consisting essentially of at least about 80 percent by weight of polyurethane. v

2. Artificial leather as claimed in claim 1, wherein the thickness of said fibrous substrate is about 0.5 to 1.5 mm, the thickness of said coating layer (1) is about 0.003 to 0.05 mm, the 20 percent modulus of said coating layer (1) is about to 70 kg/cm the thickness of said coating layer (11) is about 0.03 to 0.25 mm, said coating layer (11) contains about 0 to parts by weight of inorganic compound particles per 100 parts by weight of polymer, these inorganic particles having a mean particle diameter of about 0.1 to 3.0 micron, and being essentially insoluble in water, the thickness of said coating layer (111) is about 0.3 to 2.0 mm, said coating layer (llI) contains about .80 to 200 parts by weight of inorganic compound particles per 100 parts by weight of polymer, and these inorganic compound particles having a mean particle diameter of about 0.1

3. Artificial leather as claimed in claim 1, wherein the thickness of said coating layer (1) is about 0.005 to 0.02 mm, the 20 percent modulus of said coating layer (1) is about .15 to 50 kg/cm the thickness of said coating 6 layer (11) is about 0.05 to 2.0 mm, said coating layer (11) is essentially free of inorganic particles, the thickness of said coating layer (ill) is about 0.5 to 1.0 mm,

said coating 1a 'ei iiu when. about 120 to 160 parts by weight of inorganic compound particles per 100 parts by weight of polymer, and these inorganic compound particles have a mean particle diameter of about 0.5 to 2.0 micron and are essentially insoluble in water. 4. Artificial leather as claimed in claim I, wherein said polymer contained in said coating layers (1) and (II) is composed of more than wt% of polyurethane and less than 20 wt% of another polymer selected from the group consisting of polyvinyl chloride, polyvinylidene chloride, poly-vinyl acetate, poly-acrylic acid, alkyl-polyacrylate, poly-methacrylic acid, alkylpoly-methacrylate, a copolymer consisting of at least one of the above mentioned polymer segments, and mixtures of the above mentioned polymer, and said polymer contained in said coating layer (111) is composed of more than about 60 percent'by weight of polyurethane and less than about 40 percent by weight of such other polymer.

5. Artificial leather as claimed in claim 1, wherein the polyurethane contained in said coating layer (1), (11) and (H1) is the reaction product of a polymer diol, diisocyanate and di-amine and/or lower molecular diol, wherein the polymer diol is at least one kind of polymer diol from the group composed of poly-ether-diol, polyester-diol and poly-ether-ester-diol, and the polymer contained in impregnating composition is selected from the group consisting of the polyurethane in this claim, and one kind of other polymer from the group composed of polyvinyl chloride, copolymer of vinyl chloride and vinyl acetate, poly-acrylic acid and its ester, and poly-methacrylic acid and its ester, and a mixture of more than about 50 percent by weight of polyurethane and less than about 50% by weight of such other polymer.

6. Artificial leather as claimed in claim 1, wherein a dimethylformarnide solution with 25 percent by weight of polyurethane is used in said coating layer (1) and said impregnating composition, having a viscosity of about 50 to 3,000 poises at 20 C, and dimethyl formamide solutions with 25 wt% are used in said coating layers (II) and (111), having a viscosity of about 200 to 5,000 poises at 20 C.

7. Artificial leather as claimed in claim 6, wherein the viscosities of dimethyl-formamide solution with 25 wt% of polyurethane used in said coating layer (l) and said impregnating composition are about to 1,500 poises at 20 C, and the viscosities of dimethyl formamide solution with 25 wt% of polyurethane used in said coating layers (11) and (III) are about 500 to 3,000 poises at 20 C. st Artificial leather as claimed in claim 6, wherein the viscosities of dimethyl formamide solution with 25 wt% of polyurethane used in said coating layer (1) and said impregnation composition are about 300 to 800 poises at 20 C, and the viscosities of dimethyl formamide solution with 25 wt% of polyurethane used in said coating layers (11) and (Ill) are about 800 to 2,000 poises at 20 9. Artificial leather as claimed in claim 1, wherein the inorganic compound contained in said coating layer (11) and (111) is selected from the group consisting of calcium carbonate, zinc oxide, titanium oxide, zinc carbonate and kaolinite, and mixtures thereof.

10. Artificial leather as claimed in claim I, wherein the apparent density difference between coating layers illi) andXIlYisEEoTiiU65 the apparent density difference between said coating' layers (Ill) and (II) is about 0.08 to 0.4 g/cm, and the apparent density of said coating layer (Ill) is larger than that of said coating layer (ll).

13. Artificial leather as claimed in claim 1 having a crease-forming angle of more than about 40.

14. Artificial leather as claimed in claim 1 having'a crease-forming angle of more than about 60.

15. Artificial leather as claimed in claim 1 having a crease-forming angle of more than about 80.

16. Artificial leather as claimed in claim 1, wherein the water vapor permeability is more than about 3.0 mg/cm hr. and the flexibility resistance is more than about X 10 times.

17. Artificial leather as claimed in claim 1,.wherein the water vapor permeability is more than about 5.0

rug/cm hr. and the flexibility resistance is more thanabout X 10 times.

18. Artificial leather as claimed in claim 1, wherein the water vapor permeability is more than about 8.0 mg/cm hr. and the flexibility resistance is more than about 20 X 10 times.

19. Artificial leather as claimed in claim 1, wherein the entire thickness of the multi-layer composed of said coating layers (H) and (Ill), not including said fibrous substrate, is about 0.1 to 3.6 mm.

20. Artificial leather as claimed in claim 1, wherein the entire thickness of the multi-layer composed of said coating layers (ll) and (Ill), not including said fibrous substrate, is about 0.3 to 2.0 mm.

21. Artificial leather as claimed in claim 1, wherein the entire thickness of the multi-layer composed of said coating layers (ll) and (ill), not including said fibrous substrate, is about 0.5 to 1.5 mm.

22. Artificial leather as claimed in claim 1, wherein the surface of the fibrous substrate is treated to flatten same.

23. Artificial leather as defined in claim 1, wherein layer (III) is thicker than layer (ll).

24. Artificial leather as defined in claim 1, wherein layer (ll) is thicker than layer (1).

25. Artificial leather as defined in claim 1, wherein layer (ii!) is thicker than layer (II) and wherein layer (II is thicker than layer (I).

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3481767 *Dec 29, 1966Dec 2, 1969Du PontProcess for applying a polyurethane finish composition to synthetic microporous polymeric materials
US3537871 *Nov 24, 1967Nov 3, 1970Kaneko TadayoImitation leather
US3632417 *Apr 1, 1969Jan 4, 1972Du PontMicroporous synthetic sheet material having a finish of a polyester polyurethane and cellulose acetate butyrate
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3922402 *Mar 29, 1974Nov 25, 1975Kuraray CoProduction of artificial leather
US3974320 *Aug 6, 1973Aug 10, 1976Akzo N.V. Of Arnhem, HollandSynthetic leather product and method of production
US4018954 *Oct 29, 1974Apr 19, 1977Kuraray Co., Ltd.Sheet material
US4216251 *Aug 18, 1978Aug 5, 1980Kuraray Co., Ltd.Method of producing a leather-like sheet material having a high-quality feeling
US7132024 *Mar 11, 2003Nov 7, 2006San Fang Chemical Industry Company, Ltd.Artificial leather composite reinforced with ultramicrofiber nonwoven fabric
US7442429 *Apr 26, 2005Oct 28, 2008Kuraray Co., Ltd.Grain-finished artificial leathers
US7494697May 11, 2006Feb 24, 2009San Fang Chemical Industry Co., Ltd.Substrate of artificial leather including ultrafine fibers and methods for making the same
US7662461Mar 31, 2006Feb 16, 2010Milliken & CompanySynthetic leather articles and methods for producing the same
US7762873May 13, 2008Jul 27, 2010San Fang Chemical Industry Co., Ltd.Ultra fine fiber polishing pad
US7794796Jan 2, 2007Sep 14, 2010San Fang Chemical Industry Co., Ltd.a substrate supported on in-extensible woven cloth and firmly located on a coating machine, a highly solid-containing water-based polyurethane resin is coated on the substrate to form a middle layer with tiny open cells, drying middle layer, removing woven cloth; excellent strength against peeling
US7824737Jun 17, 2009Nov 2, 2010Milliken & CompanySynthetic leather articles and methods for producing the same
US7872069Mar 21, 2007Jan 18, 2011Milliken & Companysubstrate of textile materials, leathers, thermoplastic resins, thermoset resins coated with a polyurethane and an active hydrogen-terminated colorant,
US8431648Jan 17, 2011Apr 30, 2013Milliken & CompanyCoated substrates and polymer dispersions suitable for use in making the same
US20100247895 *Mar 30, 2010Sep 30, 2010Tomoyuki UemuraArtificial leather for automobile interior materials and method for producing the same
US20100330334 *Jan 15, 2010Dec 30, 2010San Fang Chemical Industry Co., Ltd.Artificial leather and method for manufacturing the same
US20110020590 *Mar 24, 2009Jan 27, 2011Kuraray Co., Ltd.Split leather product and manufacturing method therefor
EP0523806A1 *Jul 14, 1992Jan 20, 1993Unitika Ltd.Moisture permeable and waterproof coated fabric and method for manufacturing same
EP1312272A2 *Nov 14, 2002May 21, 2003Küsters, PeterPolymer membrane, method of its production and use thereof
Classifications
U.S. Classification428/151, 428/423.3, 428/218, 428/216, 428/152, 428/334, 428/341, 428/327, 428/425.9, 428/332
International ClassificationD06N3/12, D06N3/14
Cooperative ClassificationD06N3/14
European ClassificationD06N3/14