Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3843014 A
Publication typeGrant
Publication dateOct 22, 1974
Filing dateMar 16, 1973
Priority dateMar 16, 1973
Publication numberUS 3843014 A, US 3843014A, US-A-3843014, US3843014 A, US3843014A
InventorsCospen J, Schiavi J
Original AssigneePechiney Ugine Kuhlmann
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Container cover
US 3843014 A
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Cospen et al.

[ Oct. 22, 1974 CONTAINER COVER [75] Inventors: Jean Cospen, Cachan; Jean Schiavi,

Paris, both of France [73] Assignee: Pechiney Ugine Kuhlmann, Paris,

France [22] Filed: Mar. 16, 1973 [21] App]. No.: 342,270

[52] U.S. Cl. 220/66 [51] Int. Cl B65d 7/42 [58] Field of Search 220/66, 24, 48, 67

[56] References Cited UNITED STATES PATENTS 3,4l7,898 l2/l968 Bozek et al. 220/66 3,638,825 2/1972 Franek et al 220/66 Primary Examiner-George T. Hlall 5 7] ABSTRACT A cover for containers whose contents are under pressure which includes a substantially flat central portion, a crimping flange portion and a neck interposed between the flange portion and the central portion and connected thereto by connecting portions without any break in continuity.

4 Claims, 4 Drawing Figures PMENTEU 021 221974 saw UP 4 Fig.1

PATENTEDnmzmm SHEEIJUF 4 Fig. 3

PATENTEDUBTZZIW 3,843,014

saw u or 4 Fig. 4

M Kg/cm ,5

6,5 I l x0 This is a continuation in part of copending application Ser. No. 250,598, filed May 5, I972. The present invention relates to a metal cover for a container under pressure such as a canfor beer or any other carbonated beverage.

Metal covers of this kind, for example, the cover described in the French Pat. No. 1,402,391, generally contain a central substantially planar part, a crimping flange and a peripheral throat connected to the flange and the center part. They must withstand a relatively high internal pressure which may go as high as 6.6 kg/cm for beer during pasteurization.

In these covers according to prior art, the central plane part is connected to the throat via a transition area of lower resistance where the thickness of the metal is rarely constant.

If the critical pressure is reached, a permanent deformation of local extent of the metal is produced, in excess of the limit of elasticity, generally called becquet or lifted up. Consequently, the use of these covers imposed a minimum safety thickness, which is, for example, 340 microns for an effective diameter (corresponding to the inner diameter of the container) of 65 mm or 330 microns for an effective diameter of 63 mm in case of a 4.5 percent magnesium aluminum alloy.

The calculations of strength of materials show that the optimal profile for the center part of the lid would be a portion of a sphere. However, in practice this configuration offers numerous disadvantages. The internal volume of the cover which must be included into the total volume of the packing is too high in relation to the limits of contents. Stacking of the containers is no longer possible. The adaptation of a system of easy opening with a pre-incision line on the center part cannot be solved in a satisfactory manner. Thus, it is necessary to rely on a substantially flat center portion.

It is accordingly an object of the present invention to provide a container cover'for containers whose contents are under pressure which overcomes the forego-.

ing disadvantages, and it is a more specific object of the invention to provide a container cover for containers whose contents are under pressure which are capable of withstanding higher pressures within the container even though the container cover be formed with a thinner cross-section.

These and other objects and advantages of the invention will appear more fully hereinafter, and, for purposes of illustration but not of limitation, an embodiment of the invention is shown in the accompanying drawings in which:

FIG. I is a diametric half-section of a metal cover embodying the features of this invention prior to crimping onto the container body;

FIG. 2 is a detailed sectional view of the embodiment illustrated in FIG. 1 crimped onto a container;

FIG. 3 is a graph showing two isobar curves C and C for a plot of the angle Y versus the radius of curvature r; and

FIG. 4 is a graph showing a plot of the pressure versus the angle X.

The invention relates to the creation of a metal container which, while comprising a substantially flat center portion, has a resistance which is satisfactory at for a thickness which is considerably less than that of the containers of prior art.

The cover according to the invention which comprises a substantially flat center portion, provided with a system of easy opening, a crimping flange and a peripheral throat connected to the flange and to the center portion by connections of substantially constant thickness, is characterized by the fact that the radius of curvature of the throat ranges between about 0.5 and 1.2 mm, that the throat is connected without breach of continuity to the center portion by a rectilinear portion of continued section of a curved part, and that the connection between the flange and the throat or neck forms with the line perpendicular to the plane surface of the neck an angle X which is at. most equal to about and with the rectilinear portion an angle Y ranging up to 34 approximately, said anglesX and Y being seleast up to pressures on the order of 7 kg/cm and this lected in such a manner that for a high value of X the value of Y will be as low as possible and vice versa.

The lower limit of about 0.5 mm for the radius of curvature of the throat is due to the fact that the danger of the formation of cracks is relatively high below this value, while the lower limit of about 3 for angle Y is dictated by considerations of a technological nature.

It could be noted that if the characterized critical pressure is exceeded, there is a sudden return of the cover without prior permanent deformation of the metal.

Under the action of the pressure prevailing in the container, the connection between the flange and the neck works at the compression while in the curved portion traction stresses build up. On the other hand, the wall of the throat or neck and the rectilinear part form a neutral undeformable zone, as opposed to the zones of preferential deformations which are typical of the covers of prior art.

Fora cover of 63 mm in effective diameter designed in 4.5 percent magnesium aluminum alloy at restored hard condition, a thickness of about 300 microns suffices to guaranteeholding at a minimum pressure of 7 kglcm while a cover of prior art of the same diameter and made with the same alloy requires a minimum thickness of .340 microns.

FIG. 1 shows a metal cover of generally circular shape for a beer can comprising a substantially planar center part 2, a crimping flange 3 and a peripheral reinforcement neck 4. The center part of the cover is provided with an easy to open system of the conventional type which is not shown.

The cover is produced, for example, by stamping a blank of aluminum alloy in hard restored condition, containing 4.5 percent magnesium and presenting the following characteristics: limit of elasticity of 32 kg/mm, break load of 36.5 kg/mm, breaking tension of 8.5 percent. The effective diameter D of the cover, corresponding to the inner diameter of the can, is 63 mm.

The distance u between the bottom planes of the neck 4 and the center part is 4.3 mm, while the distance v between the upper plane of the flange and that of the center part is 2.8 mm; in the conventional covers the distance v is in the order of 2.1 mm.

Referring to FIG. 2, it is shown that the neck 4 is connected without breach of continuity to the center part 2 by a rectilinear part in a-b section, followed by a curved portion which in turn is formed from a first circular arc b-c and a second circular arc c-d which joints the center part 2 tangentially. These parts have a substantially constant thickness.

The throat or neck 4 has a circular arc section of a radius r =0.65 mm; the rectilinear part a-b has a length L of 1 mm, the circular arc b-c has a radius of 1.25 mm 5 and the circular arc c-d has a radius of 25 mm, and the connection 6 between the flange 3 and the neck 4 has a substantially constant thickness and has a detachment 11 located below the plane of the center part 2, separating the two straight-line parts into sections 10, l2. The part 10 forms with the line perpendicular to the plane of the bottom of the neck an angle X practically 0 and with the straight-lined part a-b the angle Y is approximately 6 30 minutes.

The cover thus created has a remarkable thickness of only 300 microns with a tolerance of 10 microns, and can withstand pressures on the order of 8.1 kg/cm while the conventional covers with 340 microns in thickness do not hold above 6.9 kg/cm Now the influence of angles X and Y and of the radius of curvature r will be examined with regard to the holding of the lid.

Angle X being fixed at a value practically 0 and radius r at 0.75 mm, tests were conducted by varying angle Y. The results are shown in Table l.

TABLE 1 Maximum Pressure 7.7 7.6 7.4 7.3 7.l 7 lag/cm The difference (X-Y) being fixed at 6 and the radius r at 0.6 mm, tests were conducted by changing the angle X. The results are shown in Table 2.

TABLE 2 X 0 l4 l9.5 22 30 Maximum Pressure 8 7.9 7.7 6.8 6.4

kg/cm With angles X and Y being fixed, the former at practically 0, the latter 7, tests were conducted by changing radius 4. The results are shown in Table 3.

TABLE 3 r mm 0.475 0.55 0.60 0.65 0.70 0.75

Maximum Pressure 7.8 7.9 8 8.] 8.1 7.9 kg/cm Beyond r 0.75 mm, angle Y cannot be maintained at 7 and additional tests showed that if r were increased to 1.5 mm Y to about 19, the pressure of 7 ltg/cm would not be guaranteed if r exceeded 12 mm.

sponds to a value of Y in the vicinity of 26, if the pressure is 7 kglcm Angles X and Y are so selected that for a high value of X the value of Y is as low as possible, and vice-versa, that for a high value of Y, the value of X is as low as possible.

Preferably, values between 0 and 20 are selected for X, between 6 and 34 for Y and between 0.5 and 1 mm for r.

In this preferential area, pressure p is connected to angles X and Y as well as to the radius r, by the following formula:

FIG. .3 represents the isobar curves C and C which separate for X 0 and 20 respectively, the zone where the limit pressure p is higher than 7 kg/cm from the zone where this pressure is below 7 kg/cm The radius of curvature r is shown'in abscissas and angle Y is shown in ordinates.

Curves C, and C are extended in the area of lower values of Y by the dotted lines shown in FIG. 3 which are intended to demonstrate the increasing technological difficulties. Angles of Y 3 have, however, been produced with clean tools. In the area between I 20 and Y= 7 a solid line connects curves C and C,. It has indeed been found that the corresponding lower values of Y are compatible with higher values of r when X 20 (curve C FIG. 4 illustrates the variation of the limit pressure p as a function of the angle X for a radius r of 0.7 mm and an angle Y of 20.

The relation between the distance (u v) and the ef-v fective diameter D on the one hand, and the relation u/v on the other hand, are so selected as to meet the usualstacking requirements, of limitation of the total volume and the adaptation of an asy to open system.

After crimping the lid on the body 7 of a beer can (FIG. 2), the previously indicated dimensions remain approximately constant.

Under the action of the pressure present in the container, the center part of the cover is slightly inflated; the connection 6 works at the compression toward the crimping zone, while traction efforts building up in the part that is curved, b-c-d, from the center zone of the cover. The tip 8 of the flange 3 located perpendicularly to the flange of the body of the can 7 plays the part of a hinge, as it remains substantially stationary in view of the crimping. It could be noted that the assembly formed by the wall of the neck 4 and the straight-lined part a-b constitutes a neutral undeformable zone.

Numerous tests have shown that if the critical pressure is exceeded notably, the cover is suddenly returned, without prior deformation.

For one and the same metal or alloy, the reduction in thickness of the cover, and thus the savings in metal in relation to the conventional covers, is very considerable as they are on the order of 10 to 20 percent.

At identical thickness it is possible to use a metal or alloy of lower mechanical characteristics, which are less expensive.

For example, the cover may be made of an aluminum alloy in hard restored condition, containing 2.5 percent magnesium and having the following characteristics: limit of elasticity 27 kg/mm; break load 32.8 kg/mm breaking tension l0.5 percent; or containing 1 percent manganese and less than 1 percent magnesium and having the following characteristics: limit of elasticity =25.5 kglmm breaking load 30.5 kglmm breaking tension 9 percent. The thickness may vary in this case between 320 and 340 microns for an effective diameter of 65 mm.

With different qualities of steels, the thickness may vary from 280 to 350 microns for an effective diameter of 65 mm. It is possible to use regular or stainless steel, with the following characteristics respectively: limit of elasticity 21.5 and 30.5 kg/mm breaking load 33.5 and 51 kglmm breaking tension and percent. Cast iron and black iron also are suitable.

It will be understood that various changes and modifications can be made in the details of construction and use without departing from the spirit of the invention, especially as defined in the following claims.

We claim:

l. A cover for a container whose contents are under pressure comprising a substantially flat central portion, said central portion including a removable panel, a crimping flange portion, a peripheral neck having a radius of curvature within the range of 0.5 to 1.2 mm, a substantially rectilinear portion of continued section without break in continuity integral with and connecting the neck with the central portion, a portion integral with and connecting the crimping flange portion and the neck, with the portion connecting the crimping flange portion with the neck forming an angle X with a line perpendicular to the plane surface of the neck at most 20 and forming with the rectilinear portion an angle Y within the range of up to 34, said angles x and Y being selected in such a manner that for a high value of X the value of Y will be as low as possible and vice versa.

2. A cover according to claim 1 wherein Y is comprised between 6 and 34 and r between 0.5 and 1 mm.

3. A cover as defined in claim 1 which includes a scored portion having low resistance to tearing, said scored portion defining the removable panel, and. means to pull the scored portion from the cover to form an opening therein.

4. In a container whose contents are under pressure having an easy opening cover, the improvement comprising a cover including a substantially flat central portion, said central portion including a removable panel, a criming flange portion, a peripheral neck having a radius of curvature within the range of 0.5 to 1.2 mm, a substantially rectilinear portion of continued section without break in continuity integral with and connecting the neck with the central portion, a portion integral with and connecting the crimping flange portion and the neck, with the portion connecting the crimping flange portion with the neck forms an angle X with a line perpendicular to the plane surface of the neck at most 20 and forming with the rectilinear portion of angle Y within the range of 6 to 34.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4093102 *Aug 26, 1974Jun 6, 1978National Can CorporationEnd panel for containers
US4109599 *Nov 4, 1977Aug 29, 1978Aluminum Company Of AmericaMethod of forming a pressure resistant end shell for a container
US4217843 *Dec 8, 1978Aug 19, 1980National Can CorporationMethod and apparatus for forming ends
US4448322 *Oct 11, 1979May 15, 1984National Can CorporationMetal container end
US4606472 *Dec 9, 1985Aug 19, 1986Metal Box, P.L.C.Reinforced can end
US4790705 *Feb 11, 1987Dec 13, 1988American National Can CompanyMethod of forming a buckle resistant can end
US4809861 *Feb 11, 1987Mar 7, 1989American National Can CompanyBuckle resistant can end
US5046637 *Apr 24, 1989Sep 10, 1991Cmb Foodcan PlcCan end shells
US5356256 *Oct 2, 1992Oct 18, 1994Turner Timothy LReformed container end
US5527143 *Oct 17, 1994Jun 18, 1996American National Can CompanyReformed container end
US5590807 *Nov 1, 1993Jan 7, 1997American National Can CompanyReformed container end
US5598734 *May 25, 1995Feb 4, 1997American National Can CompanyReformed container end
US5645189 *Nov 21, 1994Jul 8, 1997Metal Container CorporationContainer end having annular panel with non-uniform radius of curvature
US5718143 *Nov 21, 1996Feb 17, 1998Metal Container CorporationMethod and apparatus for forming container end having annular panel with non-uniform radius of curvature
US5950858 *Feb 18, 1994Sep 14, 1999Sergeant; David RobertContainer end closure
US6408498Jul 26, 2000Jun 25, 2002Crown Cork & Seal Technologies CorporationCan end having a strengthened side wall and apparatus and method of making same
US6419110Jul 3, 2001Jul 16, 2002Container Development, Ltd.Double-seamed can end and method for forming
US6460723May 18, 2001Oct 8, 2002Ball CorporationMetallic beverage can end
US6499622Dec 8, 1999Dec 31, 2002Metal Container Corporation, Inc.Can lid closure and method of joining a can lid closure to a can body
US6516968Feb 19, 2002Feb 11, 2003Container Development, LtdCan shell and double-seamed can end
US6561004Nov 28, 2000May 13, 2003Metal Container CorporationCan lid closure and method of joining a can lid closure to a can body
US6702142May 22, 2002Mar 9, 2004Metal Container CorporationCan lid closure and method of joining a can lid closure to a can body
US6736283Nov 19, 2002May 18, 2004Alcoa Inc.Can end, tooling for manufacture of the can end and seaming chuck adapted to affix a converted can end to a can body
US6748789Oct 19, 2001Jun 15, 2004Rexam Beverage Can CompanyReformed can end for a container and method for producing same
US6761280Dec 27, 2001Jul 13, 2004Alcon Inc.Metal end shell and easy opening can end for beer and beverage cans
US6848875Dec 18, 2001Feb 1, 2005Crown Cork & Seal Technologies CorporationCan end and method for fixing the same to a can body
US6877607Apr 19, 2001Apr 12, 2005Crown Cork & Seal Technologies CorporationCan end
US6877941Dec 19, 2003Apr 12, 2005Crown Packaging Technology, Inc.Can end and method for fixing the same to a can body
US6935826 *Apr 17, 2003Aug 30, 2005Crown Cork & Seal Technologies CorporationCan end and method for fixing the same to a can body
US7100789Jan 10, 2003Sep 5, 2006Ball CorporationMetallic beverage can end with improved chuck wall and countersink
US7108469Oct 14, 2004Sep 19, 2006Crown Cork & Seal Technologies CorporationCan end
US7341163Sep 30, 2003Mar 11, 2008Container Development, Ltd.Can shell and double-seamed can end
US7370774 *Sep 28, 2006May 13, 2008Crown Cork & Seal TechnologiesCan end
US7380684Aug 12, 2004Jun 3, 2008Metal Container CorporationCan lid closure
US7500376Jul 29, 2005Mar 10, 2009Ball CorporationMethod and apparatus for shaping a metallic container end closure
US7506779Jul 1, 2005Mar 24, 2009Ball CorporationMethod and apparatus for forming a reinforcing bead in a container end closure
US7673768Jun 3, 2008Mar 9, 2010Metal Container CorporationCan lid closure
US7743635Jan 6, 2009Jun 29, 2010Ball CorporationMethod and apparatus for forming a reinforcing bead in a container end closure
US7748563May 17, 2004Jul 6, 2010Rexam Beverage Can CompanyReformed can end for a container and method for producing same
US7819275Sep 9, 2004Oct 26, 2010Container Development, Ltd.Can shell and double-seamed can end
US7851998 *Feb 23, 2007Dec 14, 2010Lg Electronics Inc.Light emitting device with a protective cap and method of forming a light emitting device with a protective cap
US7938290Sep 29, 2008May 10, 2011Ball CorporationContainer end closure having improved chuck wall with strengthening bead and countersink
US8157119Sep 1, 2009Apr 17, 2012Crown Packaging Technology, Inc.Can end
US8205477Jun 14, 2010Jun 26, 2012Ball CorporationContainer end closure
US8235244Apr 29, 2011Aug 7, 2012Ball CorporationContainer end closure with arcuate shaped chuck wall
US8313004Oct 14, 2010Nov 20, 2012Ball CorporationCan shell and double-seamed can end
US8328041Jun 14, 2005Dec 11, 2012Crown Packaging Technology, Inc.Can end and method for fixing the same to a can body
US8496132Mar 21, 2012Jul 30, 2013Crown Packaging Technology, Inc.Can end
US8505765 *Jul 26, 2012Aug 13, 2013Ball CorporationContainer end closure with improved chuck wall provided between a peripheral cover hook and countersink
US8727169Nov 18, 2010May 20, 2014Ball CorporationMetallic beverage can end closure with offset countersink
US20120292329 *Jul 26, 2012Nov 22, 2012Ball CorporationContainer End Closure With Improved Chuck Wall and Countersink
US20130008910 *Jun 13, 2012Jan 10, 2013Darin ClarkHigh-Strength Beverage Can Ends of Aluminum Magnesium Alloy
CN100435997CSep 29, 2004Nov 26, 2008容器开发有限公司;鲍尔公司Can shell and double-seamed can end
EP0828663A1 *Mar 25, 1996Mar 18, 1998CarnaudMetalbox plcCan end and method for fixing the same to a can body
EP1470052A1 *Jan 10, 2003Oct 27, 2004Jess N. BathurstMetallic beverage can end with improved chuck wall and countersink
EP2497717A1 *Jan 10, 2003Sep 12, 2012Ball CorporationMetallic beverage can end with improved chuck wall and countersink
WO1998034743A1 *Jan 27, 1998Aug 13, 1998Crown Cork & Seal Tech CorpCan ends
WO2003004716A2Jul 1, 2002Jan 16, 2003Container Dev LtdCan shell and double-seamed can end
WO2005032953A2Sep 29, 2004Apr 14, 2005Ball CorpCan shell and double-seamed can end
Classifications
U.S. Classification220/623
Cooperative ClassificationB65D7/42
European ClassificationB65D7/42