Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3843975 A
Publication typeGrant
Publication dateOct 29, 1974
Filing dateApr 9, 1973
Priority dateApr 9, 1973
Publication numberUS 3843975 A, US 3843975A, US-A-3843975, US3843975 A, US3843975A
InventorsTronzo R
Original AssigneeTronzo R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Prosthesis for femoral shaft
US 3843975 A
Abstract
A prosthesis for femoral shaft having a ball at one end, a medullary stem at the other end, a neck connecting the ball to the stem, a head at the connection between the stem and the neck and including means for fastening the prosthesis to the femur and outrigger knives on the head on either side of the head oriented to dig into the femur, from the side so that the bone fits between the knives.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

llited States Patent 1 Tronzo t1 1] 3,843,975 1 1 *Oct. 29, 1974 PROSTHESIS FOR FEMORAL SHAFT [76] Inventor: Raymond G. Tronzo, 133 S. 36th St., Philadelphia, Pa. 19104 The portion of the term of this patent subsequent to May 7, 1991, has been disclaimed.

[22] Filed: Apr. 9, 1973 [21] Appl. No.: 348,936

[ Notice:

[52] US. Cl. 3/1, 128/92 CA [51] Int. Cl. A6lf l/24 [58] Field of Search 128/92 C, 92 CA, 92 R,

[56] References Cited UNITED STATES PATENTS FOREIGN PATENTS OR APPLICATIONS 1,215,737 12/1970 Great Britain 128/92 C OTHER PUBLICATIONS Vitallium Surgical Appliances Catalog, Austenal Com- Hahn 3/1 pany, I-lowmet Corp. New York, N.Y., copyright 1964, Young Mechanical Knee/No. 6661, page 31.

New Stainless Steel Intramedullary Femoral Head-- Neck Prosthesis M1776-Leinbach Modification of J. Gosset type, advertisement, page 16 of American Ossacryl Co., The Journal of Bone & Joint Surgery, Vol 37A, Jan. 1955.

Primary ExaminerRichard A. Gaudet I Assistant Examiner-Ronald L. Frinks Attorney, Agent, or Firm-Jackson, Jackson & Chovanes [5 7 ABSTRACT A prosthesis for femoral shaft having a ball at one end, a medullary stem at the other end, a neck connecting the ball to the stem, a head at the connection between the stem and the neck and including means for fastening the prosthesis to the femur and outrigger knives on the head on either side of the head oriented to dig into the femur, from the side so that the bone fits between the knives.

1 Claim, 3 Drawing Figures 1 PROSTHESIS FOR FEMORAL SHAFT DISCLOSURE OF INVENTlON The invention contemplates a prosthesis for making femoral shaft for use primarily in the total prosthesis of a hip joint but permissibly on the partial prosthesis. It is for use in making implants in mammals such as human beings and higher animals in veterinary surgery, particularly experimental animals such as dogs.

In making a femoral shaft, the ball on the femur is removed by surgery and must be replaced by an implant or prosthesis.

Most of the implants are part of total hip joint replacements, but on occasion they may be used as femoral head components exclusively.

My invention particularly involves a new prosthesis making an intermedullary fixation by inserting this prosthesis in the sawed-off femur so that it will com plete an artificial hip joint.

One purpose is to insert a new femoral component having a medullary extension at one end, a head at the top of the medullary extension, outrigger knives from the head extending toward the bone and a neck connected with a ball at the top.

A further purpose is to coat the medullary extension with a porous material having three sizes of pores, small, medium and large,and distributing them according to the later development of this application.

In the invention FIG. 1 is a section showing the prosthesis inserted in the femur bone.

FIG. 2 is a front view of the prosthesis by itself.

FIG. 3 is a side view of the prosthesis.

ln the invention the femur is cut off by removing its ball from the top and cutting down so that the new prosthesis will complete the joint making the substitute femur of the same approximate length as the original femoral neck and head. I

In the new prosthesis, a medullary stem 12 is provided at one end and a ball 14 which will mate in a socket in the acetabulum, either the natural socket or a substitute socket is provided at the other end. The ball is joined to the medullary extension by a neck 16. Adjoining the top of the medullary extension and connecting the medullary extension to the neck, is a head 18. The greater trochanter 29 is attached to the prosthesis by screws in holes 22.

On either side of this head and oriented toward the femur are outriggers 24 which are knives having triangular blending knife edges 26 to a point 28 for extramedullary fixation.

There is a socket 30 on the top of the head and suitably threaded to receive a tool (not shown) which is adapted to be hit with a hammer at its upper end to force the medullary component 12 into the medullary cavity of the femur and also the knife edges of outriggers 24 into the bone so that the correct position can be assumed by the head to receive the screws 20, and thereby prevent rotation of the prosthesis within the femur. The effect is to engage the bone at the side.

The size of the medullary extension will be varied lengthwise and widthwise so that several sizes will be available to suit the individual patients femur. Accordingly, the stem will be tightly fitted to the femur for immediate fixation on a press-fit basis, thus allowing bone to grow appropriately into the graded pores.

LII

On the medullary extension but preferably not on the knives, the head, the neck and the ball, I preferably put a porous coating whichis at least 100 microns thick, preferably at least one-sixteenth of an inch and most desirably at least one-eighth of an inch. All four sides or any one side may be coated with a porous surface, preferably the back, and the two lateral ones, leaving the medial one plain. This is done to facilitate removal. This porous coating is preferably made of metallic powders applied by metallic spray technique such as that described in Welding Handbook, Third Edition, although it could be made of ceramic or plastic applied by suitable technique.

The important thing from the standpoint of the present invention is that the porosity is at least 20 to 50 percent, preferably 30 to 40 percent and most desirably 33 percent of the total surface.

The pores in size must be divided between small, intermediate and large pores, and at the surface from 20 to 40 percent of the pore area, preferably from 30 to 36 percent and most desirably 33 percent must be in each category, large, intermediate and small pores. For the purpose of this invention small pores have a diameter between 50 and 200 microns, preferably to 125 and most desirably about microns. 'Pores smaller than this are largely ineffective for bone growth.

The intermediate pores are in the range of from 200 to 800 microns in diameter.

The large pores are larger than 800 microns in diameter and not larger than 3500 microns.

Additional disclosure regarding the porous bone implant is contained in my application, Ser. No. 228,052, filed Feb. 22, 1972 for Bone lmplant with Porous Exterior Surface, now abandoned and Ser. No. 342,461, filed Mar. 19, 1973 for Bone Implant with Porous Exterior Surface.

It will be understood that the medullary extension of the prosthesis has a tendency to promote interlocking of bone growth, the small pores anchoring initially with the bone having a tendency to receive initial bone growth, but the intermediate and large pores have a tendency to receive more substantial and firm bone growth.

The coating may be of particles of stainless steel, for example 8 percent of nickel and 18 percent of chromium or for example 16 percent chromium, the balance in each case being iron.

The coating may also to advantage be Vitallium, a cobalt chromium molybdenum alloy of which one example is the following:

cobalt 62 /2% chromium 31.2%

molybdenum 5.l%

manganese 0.5%

silicon 0.3%

carbon 0.4%

The Vitallium alloys have the following range:

cobalt 62.0 65.0%

chromium 27.0 35.0%

molybdenum 5.0 5.6%

manganese 0 0.6%

iron 0 l% nickel 0 2% silicon 0 0.6%

carbon 0 0.4%

The powder metallurgy material may also be of titanium or titanium alloy.

As an option, I may have plastic or ceramic porous material on the prosthesis.

In view of my invention and disclosure, variations and modifications to meet individual whim or particular need will doubtless become evident to others skilled in the art, to obtain all or part of the benefits of my invention without copying the apparatus shown, and I therefore claim all such insofar as they fall within the reasonable spirit and scope of my claims.

Having thus described my invention, what I claim as new and desire to secure by Letters Patent is:

1. In a prosthesis for a femoral shaft fixation, a ball at one end, a medullary stem at the other end, a neck connecting the ball and the stem, a head at the connection between the stem and the neck and including means for fastening the medullary stem to the bone and outrigger knives on the head, oriented for insertion into the bone, having on the outside surface of the medullary stem from 20 to 50 percent pore area, at least microns in depth of pores, between 20 and 40 percent of the surface pore area being small pores of between 50 and 200 microns diameter, between 20 and 40 percent of the surface pore area being intermediate pores of between about 200 and 800 microns in diameter, and between 20 and 40 percent of the surface pore area being large pores exceeding 800 and not exceeding 3500 microns in diameter.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3605123 *Apr 29, 1969Sep 20, 1971Melpar IncBone implant
GB1215737A * Title not available
Non-Patent Citations
Reference
1 * New Stainless Steel Intramedullary Femoral Head Neck Prosthesis M 1776 Leinbach Modification of J. Gosset type, advertisement, page 16 of American Ossacryl Co., The Journal of Bone & Joint Surgery, Vol. 37A, Jan. 1955.
2 *Vitallium Surgical Appliances Catalog, Austenal Company, Howmet Corp. New York, N.Y., copyright 1964, Young Mechanical Knee/No. 6661, page 31.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4153953 *Apr 14, 1978May 15, 1979Grobbelaar Charl JProsthetic hip joint
US4163292 *Nov 21, 1977Aug 7, 1979Averett James E JrHip prosthesis
US4550448 *Feb 18, 1985Nov 5, 1985Pfizer Hospital Products Group, Inc.Bone prosthesis with porous coating
US4770661 *Jan 18, 1982Sep 13, 1988Indong OhConversion femoral endoprosthesis
US4795471 *Mar 1, 1988Jan 3, 1989Indong OhConversion femoral endoprosthesis
US4834756 *Oct 15, 1985May 30, 1989Pfizer Hospital Products Group, Inc.Bone prosthesis with porous coating
US4919679 *Jan 31, 1989Apr 24, 1990Osteonics Corp.Femoral stem surgical instrument system
US5019108 *Feb 2, 1990May 28, 1991Bertin Kim CModular implant
US5163961 *Apr 17, 1991Nov 17, 1992Harwin Steven FCompression-fit hip prosthesis and procedures for implantation thereof
US5167666 *Jul 8, 1988Dec 1, 1992Kernforschungszentrum Karlsruhe GmbhEndoprosthesis for the femoral part of a hip joint
US5192324 *Jan 2, 1990Mar 9, 1993Howmedica Inc.Bone prosthesis with porous coating
US5314494 *Mar 31, 1993May 24, 1994Orthopaedic Technology B.V.Endo-prosthesis, a femoral head prosthesis and an acetabulum prosthesis
US5441537 *Dec 4, 1992Aug 15, 1995Howmedica Inc.Containing bonded spherical particles
US6010535 *Apr 30, 1998Jan 4, 2000Shah; Mrugesh K.Joint replacement system
US7611513 *Mar 30, 2004Nov 3, 2009Benoist Girard SasGreater trochanteric re-attachment device
US7796791Nov 7, 2003Sep 14, 2010Conformis, Inc.Methods for determining meniscal size and shape and for devising treatment
US7799077Oct 7, 2003Sep 21, 2010Conformis, Inc.Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US7881768Apr 24, 2007Feb 1, 2011The Board Of Trustees Of The Leland Stanford Junior UniversityAssessing the condition of a joint and devising treatment
US7981158Jun 9, 2008Jul 19, 2011Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools
US8036729Jan 22, 2004Oct 11, 2011The Board Of Trustees Of The Leland Stanford Junior UniversityAssessing the condition of a joint and devising treatment
US8062302Jun 9, 2008Nov 22, 2011Conformis, Inc.Surgical tools for arthroplasty
US8066708Feb 6, 2007Nov 29, 2011Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools
US8077950Aug 10, 2010Dec 13, 2011Conformis, Inc.Methods for determining meniscal size and shape and for devising treatment
US8083745Mar 14, 2008Dec 27, 2011Conformis, Inc.Surgical tools for arthroplasty
US8105330Jun 9, 2008Jan 31, 2012Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools
US8112142Jun 27, 2007Feb 7, 2012The Board Of Trustees Of The Leland Stanford Junior UniversityAssessing the condition of a joint and devising treatment
US8122582Jan 28, 2009Feb 28, 2012Conformis, Inc.Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8234097Feb 24, 2010Jul 31, 2012Conformis, Inc.Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US8265730Jun 15, 2001Sep 11, 2012The Board Of Trustees Of The Leland Stanford Junior UniversityAssessing the condition of a joint and preventing damage
US8306601Aug 13, 2011Nov 6, 2012The Board Of Trustees Of The Leland Stanford Junior UniversityAssessing the condition of a joint and devising treatment
US8323348 *Feb 22, 2005Dec 4, 2012Taiyen Biotech Co., Ltd.Bone implants
US8337501May 10, 2010Dec 25, 2012Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools
US8337507Dec 22, 2008Dec 25, 2012Conformis, Inc.Methods and compositions for articular repair
US8343218Dec 22, 2008Jan 1, 2013Conformis, Inc.Methods and compositions for articular repair
US8366771May 10, 2010Feb 5, 2013Conformis, Inc.Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8369926Jan 31, 2011Feb 5, 2013The Board Of Trustees Of The Leland Stanford Junior UniversityAssessing the condition of a joint and devising treatment
US8377129Oct 27, 2009Feb 19, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8439926Mar 5, 2009May 14, 2013Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools
US8460304Oct 27, 2009Jun 11, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8480754Feb 25, 2010Jul 9, 2013Conformis, Inc.Patient-adapted and improved articular implants, designs and related guide tools
US8500740Apr 16, 2010Aug 6, 2013Conformis, Inc.Patient-specific joint arthroplasty devices for ligament repair
US8529630Sep 24, 2012Sep 10, 2013Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools
US8545569Jan 5, 2004Oct 1, 2013Conformis, Inc.Patient selectable knee arthroplasty devices
US8551099May 10, 2010Oct 8, 2013Conformis, Inc.Surgical tools for arthroplasty
US8551102Sep 24, 2012Oct 8, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8551103Sep 24, 2012Oct 8, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8551169Sep 24, 2012Oct 8, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8556906Sep 24, 2012Oct 15, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8556907Sep 24, 2012Oct 15, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8556983Mar 9, 2011Oct 15, 2013Conformis, Inc.Patient-adapted and improved orthopedic implants, designs and related tools
US8561278Sep 24, 2012Oct 22, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8562611Sep 24, 2012Oct 22, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8562618Sep 24, 2012Oct 22, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8568479Sep 24, 2012Oct 29, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8568480Sep 24, 2012Oct 29, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8585708May 11, 2010Nov 19, 2013Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools
US8617172Jul 20, 2012Dec 31, 2013Conformis, Inc.Joint arthroplasty devices and surgical tools
US8617242Feb 14, 2008Dec 31, 2013Conformis, Inc.Implant device and method for manufacture
US8623026Aug 10, 2011Jan 7, 2014Conformis, Inc.Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
US8634617Dec 6, 2011Jan 21, 2014Conformis, Inc.Methods for determining meniscal size and shape and for devising treatment
US8641716Jul 19, 2012Feb 4, 2014Conformis, Inc.Joint arthroplasty devices and surgical tools
US8657827Nov 22, 2011Feb 25, 2014Conformis, Inc.Surgical tools for arthroplasty
US8682052Mar 5, 2009Mar 25, 2014Conformis, Inc.Implants for altering wear patterns of articular surfaces
US8690945May 11, 2010Apr 8, 2014Conformis, Inc.Patient selectable knee arthroplasty devices
US8709089May 3, 2010Apr 29, 2014Conformis, Inc.Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US8735773Jun 10, 2011May 27, 2014Conformis, Inc.Implant device and method for manufacture
US8768028May 11, 2010Jul 1, 2014Conformis, Inc.Methods and compositions for articular repair
US8771365Jun 23, 2010Jul 8, 2014Conformis, Inc.Patient-adapted and improved orthopedic implants, designs, and related tools
US8808303Dec 19, 2011Aug 19, 2014Microport Orthopedics Holdings Inc.Orthopedic surgical guide
USRE43282Aug 19, 2008Mar 27, 2012The Board Of Trustees Of The Leland Stanford Junior UniversityAssessing the condition of a joint and devising treatment
USRE43482Apr 9, 2008Jun 19, 2012Nuvana Medical Innovations, LlcIntramedullary rod apparatus and methods of repairing proximal humerus fractures
EP0075378A1 *Apr 14, 1982Mar 30, 1983Crucible Materials CorporationProsthesis device and method of manufacture
EP1479350A2 *Apr 23, 1997Nov 24, 2004Nuvana Medical Innovations, L.L.C.Intermedullary rod apparatus for repairing proximal humerus fractures
EP2292188A2Nov 25, 2003Mar 9, 2011Conformis, Inc.Patient selectable surgical tools
EP2292189A2Nov 25, 2003Mar 9, 2011Conformis, Inc.Patient selectable surgical tools
EP2324799A2Nov 22, 2005May 25, 2011Conformis, Inc.Patient selectable knee joint arthroplasty devices
EP2335654A1Nov 24, 2004Jun 22, 2011Conformis, Inc.Patient selectable knee joint arthoplasty devices
EP2520255A1Nov 21, 2006Nov 7, 2012Vertegen, Inc.Devices and methods for treating facet joints, uncovertebral joints, costovertebral joints and other joints
EP2649951A2Feb 6, 2007Oct 16, 2013ConforMIS, Inc.Patient selectable joint arthroplasty devices and surgical tools
EP2671520A2Feb 6, 2007Dec 11, 2013ConforMIS, Inc.Patient selectable joint arthroplasty devices and surgical tools
EP2671521A2Feb 6, 2007Dec 11, 2013ConforMIS, Inc.Patient selectable joint arthroplasty devices and surgical tools
EP2671522A2Feb 6, 2007Dec 11, 2013ConforMIS, Inc.Patient selectable joint arthroplasty devices and surgical tools
EP2710967A2Feb 6, 2007Mar 26, 2014ConforMIS, Inc.Patient selectable joint arthroplasty devices and surgical tools
EP2754419A2Feb 15, 2012Jul 16, 2014Conformis, Inc.Patient-adapted and improved orthopedic implants, designs and related tools
Classifications
U.S. Classification623/23.27
International ClassificationA61B17/32, A61F2/30, A61F2/36
Cooperative ClassificationA61F2/367, A61F2002/30841, A61F2/3662, A61F2/30739, A61B17/32, A61F2/30767
European ClassificationA61F2/30B7, A61F2/36D