Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3844952 A
Publication typeGrant
Publication dateOct 29, 1974
Filing dateMay 3, 1972
Priority dateMay 3, 1972
Publication numberUS 3844952 A, US 3844952A, US-A-3844952, US3844952 A, US3844952A
InventorsBooth G
Original AssigneeProcter & Gamble
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Detergent compositions
US 3844952 A
Abstract
Laundry detergent and fabric softener compositions containing various detergent-compatible disubstituted polyol softeners and, in a preferred embodiment, polyalkyleneimine anti-static agents.
Images(13)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Booth [111 3,844,952 51 Oct. 29, 1974 DETERGENT COMPOSITIONS [75] Inventor: Gary Edwin Booth, Cincinnati, Ohio [73] Assignee: The Procter & Gamble Company, Cincinnati, Ohio [22] Filed: May 3, 1972 [21] Appl. No.: 249,815

[56] References Cited UNITED STATES PATENTS 1,959,930 5/1934 Schmidt et a1 252/8.9 X

2,272,489 2/1942 Ulrich 260/239 2,403,960 7/1946 Stoops et al. 117/1395 2,668,785 2/1954 Jefferson et a1. 117/1395 2,929,788 3/1960 Freese et al. 252/875 X 3,454,494 7/1969 Clark et a1. 252/8.8 3,637,495 l/1972 Eckert et a1. 252/8 8 3,676,341 7/1972 Gerecht et a1. 252/8.75 3,697,423 10/1972 Sundby et a1. 252/8.8

Primary Examinerl-lerbert B. Guynn Attorney, Agent, or Firm.lack D. Schaeffer; Thomas H. OFlaherty; Richard C. Witte [5 7 ABSTRACT Laundry detergent and fabric softener compositions containing various detergent-compatible disubstituted polyol softeners and, in a preferred embodiment, polyalkyleneimine anti-static agents.

17 Claims, No Drawings I DETERGENT COMPOSITIONS BACKGROUND OF THE INVENTION The present invention relates to laundering compositions containing certain disubstituted polyol fabric softeners and certain polyamine anti-static agents. These materials can be used in the presence of detergents to soften fabrics concurrently with laundering.

Textile softeners and anti-static agents are used commercially to'improve the handle of fabrics and to reduce the annoyance of static electrical charges on fabric surfaces. A variety of cationic materials, such as the dimethyl-di(hydrogenated ta1low)ammonium halide salts, are widely used in the textile industry for this purpose. Similar cationic fabric softener and antistatic compositions are available for home use and usually consist of a solution or suspension of a cationic nitrogen compound similar to those used industrially. It has long been recognized that these cationic materials, although highly effectjvegvvhen properly applied, are incompatible with the anionic organic detergent compounds widely used in home laundering processes. For this reason, the user of such materials has heretofore been constrained to wait until the final rinse of the laundering process before adding the fabric softening and anti-static material to the laundering bath, or washing machines having specially designed fabric softener dispensers have had to be developed.

The aforementioned problem regarding the stepwise use of fabric softening agents in laundering operations would be obviated were fabric softening and anti-static agents which are compatible with modern built anionic detergent compositions available. Such agents could then be added to the laundering bath in conjunction with the detergent as a mixed composition to provide fabric cleansing, softening and anti-static benefits concurrently. Since this problem is widely recognized by the formulators of detergents and fabric softeners, a variety of materials have been suggested for use as detergent-compatible fabric softeners and anti-static agents. For example, U.S. Pat. No. 3,454,494 discloses a textile softener composition which is compatible with anionic detergents comprising an acid salt of a condensation product ofa fatty acid and an aliphatic polyfunctional amine co-condensed with a polyoxyalkylene compound. South African application 69/3923 discloses fabric softeners comprising certain N-2-hydroxy higher alkyl amines'said to be suitable for use as detergent-compatible fabric softeners. Polyalkyleneimine fabric softeners can be used in built anionic detergent compositions.

Nonionic fabric softeners are compatible with anionic detergents inasmuch as there are no functional groups in such compounds which are capable of interacting with the anionic portion of the detergents. For example, Canadian Patent No. 871,667 discloses the use of 1,2alkanediols as fabric softeners in conjunction with anionic detergents. However, these nonionic fabric softeners provide only marginal fabric softening benefits and are incapable of providing the anti-static benefits which are an important consideration to the user of such products.

U.S. Pat. No. 2,409,056 relates to non-alkylated polyamines and their use in soap to prevent rancidity. U.S. Pat. Nos. 2,296,226; 2,382,185; 2,185,480; and 2,272,489 describe the preparation of various alkylated and alkanoylated polyamines and suggest their use as fabric softeners in textile processing, but do not suggest the use of these materials in conjunction with anionic detergents and detergcncy builders.

To date, however, no truly effective fabric. softener and anti-static material which-is compatible with the widely used anionic detergent compounds and detergency builders has been suggested and the prior art materials disclosed for this purpose suffer from a variety of disadvantages. For example, the use of polyalkyleneimine softeners exclusively can lead to yellowing of some white'fabrics, 1,2-Diglycol based softeners do not provide substantial anti-static benefits. Many of the detergent-compatible softeners suggested in the art are excessively water-soluble, and good deposition on the fabrics is not achieved with such materials. Accordingly, it is an object of this invention to provide improved built laundry detergent compositions which possess significant fabric softening and anti-static properties A further object herein is to provide a process for simultaneously washing and softening fabrics while neutralizing static charge on said fabrics. These and other objects are obtained by the present invention as will become apparent from the following disclosure.

SUMMAR YOF THE INVENTION The present invention encompasses fabric softening laundry detergent compositions comprisingz-(l) from about 5 to about percent, preferably from about 5 to about 30 percent, by weight of a water-soluble organic detergent compound as hereinafter detailed; and (2) from about.2 to about 15 percent, preferably about 3.5 to about 10 percent, by weight of an a, w-disubstituted derivative of a non-cyclic, hygroscopic polyol, said derivative having the formula wherein x is an integer of at least 3, preferably 4, and each R is an alkyl or alkanoyl group containing at least 16, preferably 18 to 22, carbon atoms. In a preferred embodiment, the above-disclosed detergent composition also contains as a detergentand buildercompatible anti-static component from about 0.5 to about 1.5 percent by weight of a polyalkyleneimine compound containingthe moiety Especially preferred detergent compositions herein contain as an additional component about 85percent, preferably 25 to 75 percent by weight, of a watersoluble detergency builder salt. Optionally, a minor amount of laundry adjuncts such as optical brighteners, enzymes, perfumes and the like can be present in the compositions herein.

In addition, this invention encompasses a method of softening fabrics in aqueous laundering baths containing built organic detergent compositions, especially those containing anionic detergent compounds, comprising adding an new-disubstituted polyol of the type disclosed herein to said bath at a concentration of disubstituted polyol of at least about 20 ppm, preferably from about 75 ppm to about 300 ppm. Fabric softening is thereby provided concurrently with cleansing. In a preferred method, a polyalkyleneimine compound of the type disclosed above is concurrently added to the laundering bath at a concentration of polyalkyleneimine of at least about ppm, preferably ppm to about ppm, to provide an anti-static fabric finish concurrently with the cleansing and softening.

The foregoing benefits can also be achieved by adding the herein described disubstituted polyol and polyalkyleneimine materials to a substantially detergentfree aqueous laundry rinse bath at the concentrations noted above.

DETAILED DESCRIPTION OF THE INVENTION The disubstituted (a term which includes dialkylated and dialkanoylated)polyol softeners of this invention are derivatives of linear, hygroscopic polyols and have the general formula wherein .r is an integer of at least about 3, preferably 3 to 7, most preferably 4, and each R is an alkyl or alkanoyl group containing at least l6 carbon atoms. The above formula depicts the (Jaw-disubstituted polyols which are preferred herein.

The disubstituted polyols herein have two aspects of criticality in addition to the limitations on x and R noted above. First, they must have a substantially linear (i.e., noncyclic) configuration in the polyol portion of the molecule; substituted cyclic polyols (e.g., the Sorbitans) have been found not to be useful as fabric softeners. Apparently, the linear configuration of the disubstituted polyols herein allows them to interact more strongly with fabric surfaces than the cyclic polyols and provide the more complete surface coating necessary to impart softness.

Secondly, the disubstituted polyols herein must be derivatives of unsubstituted polyol compounds which are, themselves, hygroscopic, i.e., those which absorb 20 to 100 percent by weight of water on standing at a temperature of about 70F and a relative humidity of about 20 to 99 percent.

As noted'above, the arm-disubstituted polyols useful herein are limited to those which are derivatives of hygroscopic linearpolyols. There are a variety of such polyols (polyhydric alcohols; also termed alditols) there are various straight chain octitols and nonitols which can be prepared by controlled cleavage of complex natural sugars, followed by reduction of aldehyic and ketonic functionalities to alcohol groups.

It is to be understood that, of the foregoing linear polyhydric alcohols, only those which are hygroscopic are suitable for use in the preparation of the cam-disubstituted polyol fabric softeners herein. Thus, the requisite hygroscopic nature of the polyol provides a basis for selection of appropriate polyols which can be converted to di-substituted polyol fabric softeners in the manner hereinafter described. Preferred hygroscopic polyols for this purpose include sorbitol (most preferred), xylitol, and iditol.

The disubstituted (which includes dialkylated and dialkanoylated) derivatives of the foregoing polyols suitable for use as fabric softeners in the present invention are prepared by standard procedures well-known in the art. For example, the dialkylated polyols herein can be prepared by reacting 20 moles of an alkyl halide with 1 mole of polyol, preferably in the presence of a metal catalyst such as magnesium or copper, in the general manner of the Williamson ether synthesis. For this purpose, alkyl chlorides, bromides, and iodides having from about 16 to about 22 carbon atoms, preferably 18 to 22 carbon atoms, in their molecular structure are suitable. I

The preferred disubstituted polyols used herein are those wherein each R group is alkanoyl. These can be prepared in standard fashion by reacting 2 moles of a carboxylic acid or acid halide with 1 mole of a polyol. When acid halides are employed the reaction is preferably done in the presence of an organic base (e.g., pyridine, morpholine and the like) so that the reaction proceeds with the formation of the desired disubstituted polyol and the base hydrohalide. Acid chlorides, bromides, and iodides are suitable for this purpose; acid chlorides are preferred. Alternatively, lower alkyl esters of acids can be admixed at a mole ratio of 2:1 with the polyols and heated with the liberation of a lower alcohol and the formation of the disubstituted polyol. For this purpose, the methyl, ethyl and propyl esters of acids having an alkyl carbon chain of from about C to about C preferably about C to about C are suit able herein.

Disubstituted polyol materials prepared in the foregoing manner will have two substituent groups in the molecule; substitution can occur at any of the hydroxyl groups of the polyol. However, the major products of such reactions have been found to be disubstituted polyols wherein the a and 0) hydroxyl groups are substituted. It is to be understood that while the a,w-disubstituted polyols are the preferred fabric softeners herein, they may be contaminated with minor portions of the other disubstituted polyols. This in no way limits their use herein. However, the major proportion of the substituted polyols must be a,wdisubstituted.

Exemplary acids, esters acid halides and alkyl halides suitable for preparing the disubstituted polyols herein include palmitic acid and its acid halides, ethyl palmitate, stearic acid and its acid halides, ethyl stearate, eicosanoic acid and its acid halides, methyl eicosanate, docosanoic acid and its acid halides, and ethyl docosanate. Alkyl halides suitable herein include l-hexadecyl chloride, l-octadecyl bromide, l-eicosyl chloride, 1- docosyl bromide, l-octadecyl chloride, l-eicosyl iodide, l-octadecyl iodide and eicosyl chloride. Stearic acid and its acid chloride are preferred herein from an economic standpoint. Eicosanoic acid and docosanoic acid are preferred from the standpoint of preparing disubstituted polyols which exhibit optimum softening performance.

From the foregoing it can be seen that a variety of alkyl halides, organic acids and acid halides and esters having from about C to about C preferably from about C to about C carbon atoms in the alkyl or alkanoyl groups can be used with linear, hygroscopic polyols of the formula HOCH (CHOH),CH OH, wherein .r is an integer as defined above, to provide disubstituted polyols of the type used herein. Exemplary disubstituted polyols suitable for use in the present invention include the diesters: 1,6-distearoyl sorbitol, 1,6-bis-eicosanoyl sorbitol, 1,6-bis-docosanoyl sorbitol, l,5-distearoyl xylitol, 1,5-bis-eicosanoyl xylitol, 1,5- bis-docosanoyl xylitol, 1,6-distearoyl iditol, 1,6-biseicosanoyl iditol and 1,6-bis-docosanoyl iditol. Exemplary diether-type disubstituted polyols useful herein include: l,6-distearyl sorbitol, l,6-bis-eicosanyl sorbitol, 1,6-bis-docosanyl sorbitol, 1,5-bis-eicosanyl xylitol, 1,5-distearyl xylitol, 1,5-bis-docosanyl xylitol, 1,6- distc aryl iditol, 1,6-bis-eicosanyl iditol and l,6-bisdocosanyl iditol. The preferred cam-disubstituted polyol softeners herein are 1,6-distearoyl sorbitol, 1,6- bis-eicosanoyl sorbitol and l,6-bis-docosanoyl sorbitol. From a cost standpoint, the 1,6-distearoyl sorbitol is most preferred; From a performance standpoint, the 1,6-bis-eicosanoyl and 1,6-bis-docosanoyl sorbitols are preferred.

While the disubstituted polyols herein provide superior fabric softening benefits, they provide only marginal anti-static effects to the treated fabrics. Accordingly, in a preferred embodiment herein a detergentand builder-compatible compatible anti-static agent is used concurrently with the disubstituted polyol and the desired softening and antistatic benefits are thereby provided. The polyalkyleneimines having the hereinabove disclosed formula are employed herein as the 1 NCHgCHzN- wherein y is an integer greater than 1, usually about 2 to 100,000, and R represents hydrogen and alkyl or alkanoyl groups, as noted above. Branched chains occur along the polymeric backbone, and the relative proportions of primary, secondary and tertiary amino groups present in the polymer will vary, depending on the manner of preparation. The distribution of amino groups in a .typical polyethyleneimine is approximately as follows:

The polyethyleneimine can only be characterized in terms of molecular weight. Such polymers can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such .as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.

Specific methods are described in U.S. Pat. Nos. 2,182,306; 3,033,746; 2,208,095; 2,806,836; and 2,553,696.

The alkylated and alkanoylated polyethyleneimines used herein are obtained by heating alkyl halides or organic acids or acid halides with the polyethyleneimine in the manner described in US. Pat. Nos. 2,296,226; 2,272,489; and 2,185,480, incorporated herein by reference. Other polyalkyleneimines are prepared in like fashion. in the case of the alkanoylated polyalkyleneimines, the alkanoyl groups are attached to the polymer backbone by amide linkages. Various ratios of alkylating or alkanoylating agent to polyalkyleneimine backbone can be employed so that varying percentages of the nitrogen atoms are thereby substituted. Polyalkyleneimines having various percentages of the nitrogen functionalities substituted with alkyl or alkanoyl groups are designated hereinafter as 20 percent stearoylated polyethyleneimine, 50 percent docosylated polybutyleneimine," etc, according to the percentage of'nitrogen groups in the polymer which are substituted. The percentage nitrogen substitution can be determined, for example, by an examination of the proton magnetic resonance or the infrared spectrum of the polymer. The alkylated and alkanoylated polyalkyleneimines, having molecular weights in the range of about 200 to about 1 million, are useful herein. The

lower molecular weight, less highly substituted polyalk yleneimines of this group are substantially watersoluble while the higher molecular weight members are water-dispersible; both the water-soluble and waterdispersible polyalkyleneimines are suitable for the present use. Preferred herein are alkylated and alkanoylated polyalkyleneimines, especially polyethyleneimines, having a molecular weight in the range of about 600 to 100,000, wherein from about 10 to about percent of the nitrogen groups are alkylated or alkanoylated. Polyethyleneimine having a molecular weight range of about 200 to 2,000, most preferably 600 to 1,200, and which is from about 15 to about 40 percent stearoylated, most preferably 20 percent stearoylated, is especially preferred for use herein as the detergent compatible anti-static agent.

The cam-disubstituted polyol fabric softeners described above are simply admixed with the polyalkyleneimines and are employed with all manner of soap and organic detergent compounds in conjunction with all manner of detergency builder salts to provide the softening, cleansing and anti-static compositions of this invention. Surprisingly, although the disubstituted polyols and polyalkyleneimines compete for deposition on the fabric surface, a portion of both kinds of materials apparently deposits thereon to provide the desired softening and anti-static benefits concurrently. The following describes typical soaps, synthetic organic detergent compounds and builder salts suitable for use with the disubstituted polyol softeners of this inventon or with the combination of disubstituted polyols and polyalkyleneimines, but is not intended to be limiting thereof.

ORGANIC DETERGENTS The organic detergent compounds which can be utilized with the combination of detergentand soapcompatible oz,w-disubstituted polyols and polyalkyleneimines in the laundering compositions and processes encompassed by this invention include the following:

A. Anionic Soap and Non-Soap Synthetic Detergents This class of detergents includes ordinary alkali metal soaps such as the sodium, potassium, ammonium and alkanolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms and preferably from about 10 to about carbon atoms. Suitable fatty acids can be obtained from natural sourcessuch as, for instance, plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease, lard, and mixtures thereof). The fatty acids also can be synthetically prepared (e.g., by the oxidation of petroleum, or by hydrogenation of carbon monoxide by the Fischer-Tropsch process). Resin acids are suitable such as rosin and those resin in tall oil. Naphthenic acids are also suitable. Sodium and potassium soaps can be made by direct saponification of the fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap.

This class of detergents also includes water-soluble salts, particularly the alkali 'metal salts, of organic sulfuric reaction products having in their molecular struc ture an alkyl substituent containing from about 8 to about 22 carbon atoms and a sulfonic acid or sulfuric acid ester moiety. (Included in the term alkyl is the alkyl portion of higher acyl substituent.) Examples of this group of synthetic detergents which form a part of the preferred built detergent compositions of the present invention are the sodium or potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C C carbon atoms) produced by reducing the glycerides oftallow or coconut oil; sodium or potassium alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms in straight chain or branched chain configuration, e.g., those ofthe type described in US. Pat. Nos. 2,220,099 and 2,477,383 (especially valuable are linear straight chain alkyl benzene sulfonates in which the average of the alkyl groups is about 13 carbon atoms and commonly abbreviated as C LAS); sodium alkyl glyceryl ether sulfonates, especially those ethers of higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; sodium or potassium salts of sulfuric acid esters of the reaction product of 1 mole of a higher fatty alcohol (e.g. tallow or coconut oil alcohols) and about 1 to 6 moles of ethylene oxide; sodium or potassium salts of alkyl phenol ethylene oxide ether sulfate with about 1 to about l0 units of ethylene oxide per molecule and in which the alkyl radicals contain about 8 to about 12 carbon atoms.

Anionic phosphate surfactants are also useful in the present invention. These are surface active materials having substantial detergent capability in which the anionic solubilizing group connecting hydrophobic moieties in an oxy acid of phosphorus. The more common solubilizing groups, of course, are SO,H, SO H, and CO H. Alkyl phosphate esters such as (R- O) PO H and ROPO H in which R represents an alkyl chain containing from about 8 to about 20 carbon atoms are useful.

These esters can be modified by including in the molecule from one to about 40 alkylene oxide units, e.g.,- ethylene oxide units. Formulae for these modified phosphate anionic detergents are in which R represents an alkyl group containing from about 8 to 20 carbon atoms, or an alkylphenyl group in which the alkyl group contains from about 8 to 20 carbon atoms, and M represents a water-solublecation such as hydrogen, sodium, potassium, ammonium or substituted ammonium; and in which n is an integer from I to about 40.

Another class of suitable anionic organic detergents particularly useful in this invention includes salts of 2-acyloxyalkane-l-sulfonic acids. These salts have the formula where R is alkyl of about 9 to about 23 carbon atoms (forming with the two carbon atoms an alkane group); R is alkyl of l to about 8 carbon atoms; and M is a water-soluble cation.

The water-soluble cation, M, in the hereinbefore described structural formula can be, for example, an alkali metal cation (e.g., sodium, potassium, lithium), ammonium or substituted-ammonium cation. Specific examples of substituted ammonium cations include methyl-, dimethyl-a and trimethylammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and those derived from alkylamines such as ethylamine, di-

ethylamine, triethylamine, mixtures thereof, and the like.

Specific examples of B-acyloxy-alkane-l-sulfonates, or alternatively 2-acyloxy-alkane-l-sulfonates, useful herein to provide superior cleaning levels under substantially neutral washing conditions include the sodium salt of 2-acetoXy-tridecane-l-sulfonic acid; the potassium salt of 2-propionyloxy-tetradecane-lsulfonic acid; the lithium salt of 2-butanoyloxytetradecane-l-sulfonic acid; the sodium salt of 2- pentanoyloxy-pentadecane-l-sulfonic acid; the sodium salt of 2-acetoxy-hexadecane-l-sulfonic acid; the potassium salt of 2-octanoyloxy-tetradecane-l-sulfonic acid; the sodium salt of 2-acetoxy-heptadecane-lsulfonic acid; the lithium salt of 2-acetoxy-octadecanel-sulfonic acid; the potassium salt of 2-acetoxynonadecane-l-sulfonic acid; the sodium salt of 2-acetoxy-uncosane l-sulfonic acid; the isomers thereof.

Preferred fi-acyloxy-alkane-l-sulfonate salts herein are the alkali metal salts of B-acetoxy-alkane-l-sulfonic acids corresponding to the above formula wherein R, is alkyl of about 12 to about 16 carbon atoms, these salts being preferred from the standpoints of their excellent cleaning properties and ready availability.

Typical examples of the above-described B-acetoxy alkanesulfonates are described in the literature: Belgium Patent No. 650,323 discloses the preparation of certain 2-acyloxy alkanesulfonic acids. Similarly, U.S. Pat. Nos. 2,094,451 and 2,086,215 disclose certain salts of ,B-acetoxy alkanesulfonic acids. These patents are hereby incorporated by reference.

Another preferred class of anionic detergent compounds herein, both by virtue of superior cleaning properties and low sensitivity to water hardness (Ca-l-land Mg-l-lions) are the alkylated B-sulfocarboxylates, containing about to about 23 carbon atoms, and having the formula wherein R is C,, to C alkyl, M is a water-soluble cation as hereinbefore disclosed, preferably sodium ion, and R is short-chain alkyl, e.g., methyl, ethyl, propyl, and butyl. These compounds are prepared by the esterification of a-sulfonated carboxylic acids, which are commercially available. using standard techniques. Specific examples of the alkylated a-sulfocarboxylates preferred for use herein include:

ammonium methyl-a-sulfopalmitate,

triethanolammonium ethyl-a-sulfostearate,

sodium methyl-a-sulfopalmitate,

sodium ethyl-a-sulfopalmitate,

sodium butyl-a-sulfostearate,

potassium methyl-a-sulfolaurate,

lithium methyl-a-sulfolaurate, as well as mixtures thereof.

A preferred class of anionic organic detergents are the B-alkyloxy alkane sulfonates. These compounds have the following formula:

from I (preferred) to 3 carbon atoms, and M is a watersoluble cation as hereinbefore described.

Specific examples of B-alkyloxy alkane sulfonates, or alternatively 2-alkyloxy-alkane-I-sulfonates, having low hardness (calcium ion) sensitivity useful herein to provide superior cleaning levels under household washing conditions include:

potassium-B-methoxydecanesulfonate,

sodium 2-methoxytridecanesulfonate,

potassium 2-ethoxytetradecylsulfonate,

sodium 2-isopropoxyhexadecylsulfonate,

lithium 2-t-butoxytetradecylsulfonate,

sodium B-methoxyoctadecylsulfonate, and

ammonium B-n-propoxydodecylsulfonate.

Other synthetic anionic detergents useful herein are alkyl ether sulfates. These materials have the formula RO(C H,O),SO M wherein R is alkyl or alkenyl of about 10 to about 20 carbon atoms, x is l to 30, and M is a water-soluble cation as defined hereinbefore. The alkyl ether sulfates useful in the present invention are condensation products of ethylene oxide and monohydric alcohols having about 10 to about 20 carbon atoms. Preferably, R has 14 to 18 carbon atoms. The alcohols can be derived from fats, e.g., coconut oil or tallow, or can be synthetic. Lauryl alcohol and straight chain alcohols derived from tallow are preferred herein. Such alcohols are reacted with l to 30, and especially 6, molar proportins of ethylene oxide and the resulting mixture of molecular species, having, for example, an average of 6 moles of ethylene oxide per mole of alcohol, is sulfated and neutralized.

Specific examples of alkyl ether sulfates of the present invention are sodium coconut alkyl ethylene glycol ether sulfate; lithium tallow alkyl triethylene glycol ether sulfate; and sodium tallow alkyl hexaoxyethylene sulfate.

Preferred herein for reasons of excellent cleaning properties and ready availability are the-alkali metal coconutand tallow-alkyl oxyethylene ether sulfates having an average of about 1 to about 10 oxyethylene moieties. The alkyl ether sulfates of the present invention are known compounds and are described in U.S. Pat. No. 3,332,876, incorporated herein by reference.

Additional examples of anionic non-soap synthetic detergents which come within the terms of the present invention are the reaction product of fatty acids esteritied with isethionic acid and neutralized with sodium hydroxide where, for example, the fatty acids are derived from coconut oil; sodium or potassium salts of fatty acid amides of methyl tauride in which the fatty acids, for example, are derived from coconut oil. Other anionic synthetic detergents of this variety are set forth in U.S. Pat. Nos. 2,486,921; 2,486,922; and 2,396,278.

Additional examples of anionic, non-soap, synthetic detergents, which come within the terms of the present invention, are the compounds which contain two anionic functional groups. These are referred to as dianionic detergents. Suitable di-anionic detergents are the disulfonates, disulfates, or mixtures thereof which may be represented by the following formulae;

3)2 2. R( 4)2 2, N 3) O z, A

where R is an acyclic aliphatic hydrocarbyl group having 15 to 20 carbon 'atoms and M is a water-solubilizing cation, for example, the C to C disodium 1,2-

alkyldisulfates, C to C dipotassium-l,2-alkyldisulfonates or disulfates, disodium 1,9-hexadecyl disulfates, C to C2,, disodium-l,2-alkyldisulfonates, disodium 1,9-stearyldisulfates and 6,10- octadecyldisulfates.

The aliphatic portion of the disulfates or disulfonates is generally substantially linear, thereby imparting desirable biodegradable properties to the detergent compound.

The watersolubilizing cations include the customary cations known in the detergent art, i.e., the alkali metals, and the ammonium cations, as well as other metals in group 11A, 118, 111A, IVA and N8 of the Periodic Table except for boron. The preferred watersolubilizing cations are sodium or potassium. These dianionic detergents are more fully described in British Letters Patent No. 1,151,392.

Still other anionic synthetic detergents include the class designated as succinamates, This class includes such surface active agents as disodium N-octadecylsulfosuccinamate; tetrasodium N-( l,2-dicarboxyethyl)-N- octadecyl-sulfo-succinamate; diamyl ester of sodium sulfosuccinic acid; dihexyl ester of sodium sulfosuccinic acid; dioctyl esters of sodium sulfosuccinic acid.

Other suitable anionic detergents utilizable herein are olefin sulfonates having about 12 to about 24 carbon atoms. The term *olefin sulfonates" is used herein to mean compounds which can be produced by the sulfonate of a-olef1ns by means of uncomplexed sulfur trioxide, followed by neutralization of the acid reaction mixture in conditions such that any sultones which have been formed in the reaction are hydrolyzed to give the corresponding hydroxy-alkanesulfonates. The sulfur trioxide can be liquid or gaseous, and is usually, but not necessarily, diluted by inert diluents, for example by liquid S0 chlorinated hydrocarbons, etc., when used in the liquid form, or by air, nitrogen, gaseous S0 etc., when used in the gaseous form.

The a-olefins from which the olefin sulfonates are derived are mono-olefins having 12 to 24 carbon atoms, preferably 14 to 16 carbon atoms. Preferably, they are straight chain olefins. Examples of suitable l-olefins include l-dodecene; l-tetradecene; l-hexadecene; loctadecene; l-eicosene and l-tetracosene.

In addition to the true alkene sulfonates and a proportion of hydroxy-alkanesulfonates, the olefin sulfonates can contain minor amounts of other materials, such as alkene disulfonates depending upon the reaction conditions, proportion of reactants, the nature of the starting olefins and impurities in the olefin stock and side reactions during the sulfonate process.

A specific anionic detergent which has also been found excellent for use in the present invention is de-- scribed more fully in the U.S. Pat. No. 3,332,880, incorporated herein by reference.

B. Nonionic Synthetic Detergents Nonionic synthetic detergents may be broadly defined as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. The length ofthe hydrophilic or polyoxyalkylene radical which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.

For example, a well known class of nonionic synthetic detergents is made available on the market under the trade name of Pluronic. These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of the molecule which, of course, exhibits water insolubility, has a molecular weight of from about 1500 to 1800. The addition of polyoxyethylene radicals to this hydrophobic portion tends to increase the water solubility of the molecule as a whole and the liquid character of the product is retained up to the point where polyoxyethylene content is about percent of the total weight of the condensation product. 1

Other suitable nonionic synthetic detergents include:

1. The polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to 12 carbon atoms in either a straight chain or branched chain configuration, with ethylene oxide, the said ethylene oxide being present in amounts equal to 5 to 25 moles of ethylene oxide per mole of alkyl phenol. The alkyl substituent in such compounds may be derived from polymerized propylene, diisobutylene, octene, or nonene, for example.

2. Compounds derived from the condensation of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine. For example, compounds containing from about 40 to about percent polyoxyethylene by weight and having a molecular weight of from about 5,000 to about 1 1,000 resulting from the reaction of ethylene oxide groups with a hydrophobic base constituted of the reaction product of ethylene diamine and excess propylene oxide, said base having a molecular weight of the order of 2,500 to 3,000, are satisfactory.

3. The condensation product of aliphatic alcohols having from 8 to 22 carbon atoms, in either straight chain or branched chain configuration with ethylene oxide, e.g., a coconut alcohol-ethylene oxide condensate having from 5 to 30 moles of ethylene oxide per mole of coconut alcohol, the coconut alcohol fraction having from 10 to 14 carbon atoms.

4. Nonionic detergents include nonyl phenol condensed with about 10 to about 30 moles of ethylene oxide per mole of phenol;-the condensation products of coconut alcohol with an average of either about 5.5 or about 15 moles of ethylene oxide per mole of alcohol, and, the condensation product of about 15 moles of ethylene oxide with one mole of tridecanol.

Other examples include dodecylphenol condensed with 12 moles of ethylene oxide per mole of phenol; dinonylphenol condensed with 15 moles of ethylene oxide per mole of phenol; dodecyl mercaptan condensed with 10 moles of ethylene oxide per mole of mercaptan; bis-(N-2-hydroxyethyl)lauramide; nonyl phenol condensed with 20 moles of ethylene oxide per mole of nonyl phenol; myristyl alcohol condensed with 10 moles of ethylene oxide per mole of myristyl alcohol', lauramide condensed with 15 moles of ethylene oxide per mole of lauramide; and di-isooctylphenol condensed with 15 moles of ethylene oxide.

5. A detergent having the formula R R R N- O (amine oxide detergent) whereinR is analkyl group containing from about 10 to about 28 carbon atoms, from O to about 2 hydroxy groups and from O to about 5 ether linkages, there being at least one moiety of R which is an alkyl group containing from about 10 to about 18 carbon atoms and ether linkages, and each R and R are selected from the group consisting of alkyl radicals and hydroxyalkyl radicals containing from 1 to about 3 carbon atoms.

Specific examples of amine oxide detergents include: dimethyldodecylamine oxide, dimethyltetradecylamine oxide, ethylmethyltetradecylamine oxide, cetyldimethylamine oxide, dimethylstearylamine oxide, cetylethylpropylamine oxide, diethyldodecylamine oxide, diethyltetradecylamine oxide, di-propyldodecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, bis- (2-hydroxyethyl)-3-dodecoxy-l-hydroxypropylamine oxide, (Z-hydroxypropyl)methyltetradecylamine oxide, dimethyloleyamine oxide, hydroxydodecyl)amine oxide, and the corresponding decyl, hexadecyl and octadecyl homologs of the above compounds.

6. A detergent having the formula R R R P O (phosphine oxide detergent) wherein R is an alkyl group containing from about 10 to about 28 carbon atoms, from O to about 2 hydroxy groups and from 0 to about 5 ether linkages, there being at least one moiety of R which is an alkyl group containing from about to about l8 carbon atoms and 0 ether linkages, and each of R and R are selectedfrom the group consisting of alkyl radicalsand hydroxyalkyl radicals containing from 1 to about 3 carbon atoms.

Specific examples of the phosphine oxide detergents include: dimethyldodecylphosphine oxide, dimethyltetradecylphosphine oxide, ethylmethyltetradecylphosphine oxide, catyldimethylphosphine oxide, dimethylstearylphosphine oxide, cetylethylpropylphosphine oxide, diethyldodecylphosphine oxide, diethyltetradecylphosphine oxide, dipropyldodecylphosphine oxide, bis- (hydroxymethyl)dodecylphosphine oxide, bis-(2- hydroxyethyl)dodecylphosphine oxide, (2- hydroxypropyl)methyltetradecylphosphine oxide,

dimethyloleylphosphine oxide, and dimethyl-(2- hydroxydodecyl)phosphine oxide and the corresponding decyl, hexadecyl', and octadecyl homologs of the above compounds.

7. A detergent having the formula (sulfoxide detergent) wherein R is an alkyl radical containing from about l0 to about 28 carbon atoms, from 0 to about 5 ether linkages and from 0 to about 2 hydroxyl substituents at least l moiety of R being an alkyl radical containing 0 ether linkages and containing from about 10 to about l8 carbon atoms, and wherein R is an alkyl radical containing from I to 3 carbon atoms and from l to 2 hydroxyl groups: e.g., octadecyl methyl sulfoxide, dodecyl methyl sulfoxide, tetradecyl methyl sulfoxide, 3-hydroxytridecyl methyl sulfoxide, 3-methoxytridecyl methyl sulfoxide, 3hydroxy-4- dodecoxybutyl methyl sulfoxide, octadecyl 2- hydroxyethyl sulfoxide, and dodecylethyl sulfoxide.

C. Ampholytie Synthetic Detergents Ampholytic synthetic detergents can be broadly described as derivatives of aliphatic or aliphatic derivadimethyl-(Z- falling within this definition are sodium 3- (dodecylamino)propionate, sodium 3- (dodecylamino)propane-lsulfonate, sodium 2- (dodecylamino)ethyl sulfate, sodium 2- (dimethylamino )octadecanoate, disodium 3-( N- carboxymethyldodecylamino)propane-l-sulfonate, disodium octadecyl-iminodiazetate, sodium l-carboxymethyl-Z-undecylimidazole, and sodium N,N-bis(2- hydroxyethyl)-2-sulfato-3-dodecoxypropylamine.

D. Zwitterionic Synthetic Detergents Zwitterionic synthetic detergents can be broadly described as derivatives of aliphatic quaternary ammonium and phosphonium or tertiary sulfonium compounds, in which the cationic atom may be part of a heterocyclic ring, andin which the aliphatic radical may be straight chain or branched, and wherein one of the aliphatic substituents contains from about 3 to 18 carbon atoms, and at least one aliphatic substituent contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfato, phosphato, or phosphono. Examples of compounds falling within this definition are 3-(N,N-dimethyl-N-hexadecylammonio)-2- hydroxypropane-l-sulfonate, 3-(N,N-dimethyl-N- hexadecylammonio)propanel -sulfonate, 2-( N,N- dimethyl-N-dodecylammonio)acetate, 3-(N,N- dimethyl N-dodecylammonio)-propionate, 2-(N,N- dimethyl-N-octadecylammonio)ethyl sulfate, 2-(trimethylammonio)ethyl d'odecylphosphonate, ethyl 3- (N,N-dimethyl-N-dodecylammonio)propylphosphonate, 3-( P,P-dimethyl-P-dodecylphosphonio )propanel sulfonate, 2-(S-methyl-S-tert-hexadecylsulfonio)ethane-l-sulfonate, 3-(S-methyl-S- dodecylsulfonio)propionate, sodium 2-(N,N-dimethyl- N-dodecylammonio)ethyl phosphonate, 4-(S-methyl- S-tetradecylsulfonio)butyrate, l-(2-hydroxyethyl)-2- undecylimidazolium-l-acetate, 2 -(trimethylammonio)octadecanoate, and 3-N,N-bis-(2-hydroxyethyl-N- octodecylammonio )-2-hydroxypropane- 1 -sulfonate.

Some of these detergents are described in the following US. Nos. 2,129,264; 2,178,353; 2,774,786; 2,8l3,898; and 2,828,332. The ammoniopropane sulfonates containing about 8 to about 21 carbon atoms are one class of detergent compounds preferred herein by virtue of their relatively low calcium ion (hardness) sensitivity.

Builder Salts The detergent compositions herein can contain water-soluble detergency builder salts, either of the organic or inorganic types, and these are wholly compatible with the a,w-disubstituted polyol softeners and the polyalkyleneimine antistatic agents, and with the hereinabove disclosed organic detergent compounds to provide the combined built detergent-fabric softener-antistatic compositions of this invention.

Non-limiting examples of suitable water-soluble inorganic alkaline detergency builder salts are the alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates, silicates and sulfates. Specific examples of such salts are sodium and potassium tetrabo- 115 rates, perborates, bicarbonates, carbonates, tripolyphosphates, pyrophosphates, orthophosphates and hexametaphosphates.

Examples of suitable organic alkaline detergency builder salts are: l) water-soluble aminopolyacetates, e.g., sodium and potassium ethylenediaminetetraacetates, nitrilotriacetates and N-(2-hydroxyethyl)- nitrilodiacetates; (2) water-soluble salts of phytic acid, e.g., sodium and potassium phytates see US. Pat. No. 2,739,942; (3) water-soluble polyphosphonates, including specifically, sodium potassium and lithium salts ofethane1hydroxy-l,1-diphosphonic acid, sodium potassium and lithium salts of methylene diphosphonic acid, sodium, potassium and lithium salts of ethylene diphosphonic acid, and sodium potassium and lithium salts of ethane-l,l,2-triphosphonic acid. Other examples include these alkali metal salts of ethane-2- carboxy- 1 l -diphosphonic acid, hydroxymethanediphosphonic acid, carbonyldiphosphonic acid, ethane- 1-hydroxy-1,l,2-triphosphonic acid, ethane-2-hydroxy 'l ,l ,Z-triphosphonic acid, propane-1,1,3,3-tetraphosphonic acid, and propane-1,1,2,3-tetraphosphonic acid, and propane-1 ,2,2,3-tetraphosphonic acid; watersoluble salts of polycarboxylate polymers and copolymers as described in US. Pat. No. 3,308,067.

The polycarboxylate materials described in US. Pat. No. 2,264,103, are also suitably employed herein. For example, aconitic acid, mellitic acid and the tetraand penta-carboxylic acids prepared by the malonic acid synthesis are also suitable for use herein as builders, as are the phloroglucinoltrisulfonates, (ethylenedioxy) diacetates, and oxydisuccinates. Especially preferred are the water-soluble alkali metal salts of these com pounds.

Mixtures of organic and/or inorganic builders can be used and are generally desirable. One such mixture of builders is disclosed in Canadian Patent No. 755,038, e.g., ternary mixtures of sodium tripolyphosphate, trisodium nitrilotriacetate and trisodium ethane-1- hydroxy-l,ldiphosphonate. The above-described builders can also be utilized singly in this invention. Preferred builders herein include sodium tripolyphosphate, sodium citrate, sodium nitrilotriacetate and sodium mellitate. (The term sodium" encompasses disodium, trisodium, etc., depending on the number of anionic counterion groups in the anionic portion of the builder molecular.)

The ratio of water-soluble organic detergent compound: builder in the built detergent compositions herein can be in the range of from about 1:100 to 1:] (wt), preferably about 1:10 to 1:20 (wt).

As noted above, it is a method aspect of this invention to add a composition comprising a a,udisubstituted polyol of the type disclosed above, preferably containing a polyalkyleneimine as herein described, to aqueous, detergent-containing laundering baths in concentrations of disubstituted polyol of about 20 ppm, and greater, and concentrations of polyalkyleneimines ofabout ppm, and greater, to achieve simultaneous fabric cleansing, softening and anti-static benefits. In this method aspect, the combination of disubstituted polyol and polyalkyleneimine is preferably added as a component of a detergent composition, as herein detailed. However, fabric softener compositions compris ing from about 10 to about 50 percent by weight of the a,w-disubstituted polyol, from about 50 to about 90 percent of a solid or liquid carrier, and preferably from Useful carriers in such compositions include liquids in which the disubstituted polyols and polyalkyleneimines are stable as solutions or suspensions. Inert solid carriers (preferably water-soluble) can also be employed. Such carriers must be compatible with laundry detergents, builders, bleaches and like materials employed in common laundering operations. Exemplary liquid carriers suitable in such compositions include water (preferred), the lower alcohols, e.g., methanol, ethanol, propanol, iso-propanol and the like, the lower ketones, e.g., acetone, and mixtures thereof. Solid carriers include sodium carbonate, sodium bicarbonate, sodium silicate, sodium phosphate, sodium tripolyphosphate, as well as any of the other water-soluble solid materials disclosed hereinabove as builders. Such softener-antistatic compositions are stable and effective when added to laundering baths containing any of the hereinbefore detailed detergents and builders.

The detergent compositions of this invention can be in any of the usual physical forms for such compositions, such as powders, beads, flakes, bars, tablets, pastes and the like. The instant compositions can contain other materials commonly used in laundry detergents in minor amounts. For example, various soil suspending agents, corrosion inhibitors, dyes, proteins, fillers, optical brighteners, suds boosters, suds depressants, germicides, anti-tarnishing agents, cationic materials, enzymes and the like, well-known in the art for use in detergent compositions can be used herein; water can also be present. The compositions are prepared and utilized in the conventional manner.

Built detergents and soaps are used in the basic pH range, usually from about pH 8 to l 1.5. Some detergent materials can be employed in the acid pH range. The pH of the washing system is immaterial for the purposes of this invention in that the softener and anti-static compositions of this invention function well over the entire range of acidity and basicity. Most generally, the pH of the aqueous laundry baths in which the compositions herein are used is in the range from about pH 5 to pH 12.

Laundering bath temperatures are likewise immaterial in that the compositions of this invention can be used at all common laundry temperatures from about 50F to 212F, most preferably F to 125F, with good results.

The following illustrates the preparation of a typical disubstituted polyol fabric softener of the type used in this invention.

Preparation of l,6-distearoyl Sorbitol 182.17 g. (1.0 mole) of sorbitol (commercial grade) and 599.02 g. (2.0 moles) of methyl stearate are admixed in the presence of about 1 liter of methanol. 0.1

Mole of sodium methoxide is added and the mixture is stirred and refluxed for 48 hours. The methanol is evaporated and the resulting pasty mass, which comprises percent 1,6-distearoyl sorbitol, is suitable for use as a fabric softener herein.

In the above procedure, the methyl stearate is replaced by an equivalent molar amount of the methyl esters of eicosanoic acid and docosanoic acid, respec- 17 tively, and 1,6-bis-eicosanoy1 sorbitol and 1,6-bisdocosanoyl sorbitol are secured.

1,6-Disteary1 sorbitol is prepared by admixing 2 moles of octadecyl bromide with one mole of sorbitol in the presence of copper filing and heating the mixture until HCl evolution ceases. The resulting mass is waterwashed and the water evaporated to yield 1,6-disteary1 sorbitol.

In the above procedure the the sorbitol is replaced by an equivalent amount of xylitol and 1,6-distearyl xylitol is secured.

The following examples are typical combined built detergent-softener and detergent-softener-antistatic formulations containing the a,co-disubstituted polyols and the substituted polyalkyleneimines described hereinabove. The formulations are for the purposes of illustration and are not intended to be limiting to the types of formulations encompassed by this invention.

Composition A Weight Percent 7.8 sodium linear dodecylhenzenesulfonate sodium talltm'alkylsulfate 49,4 sodium tripolyphosphate 5.9 sodium silicate 13.7 Na,SO

02 sodium carhoxymethylcellulose 2.2 nonionic suds controlling agents 7.0 1,6-distearoyl sorbitol bal. moisture The above composition is used in an aqueous laundry bath at a rate of 1.5 cups (==77 g.) per gallons of water and concurrently cleanses'and softens nylon, polyester and cotton fabrics.

Composition B Weight Percent dimethyldodecylphosphine oxide condensation product of 1 l moles o1- ethylene oxide with 1 mole of coconut fatty alcohol 10 tetrasodium methylenediphosphate 60 sodium tripoly phosphate 05 sodium carboxymethylcellulose 4.0 sodium silicate 9.0 Lb-his-eicosanoyl sorbitol bal. moisture The above composition is used as a rate of 1 cup/l0 gallons of water and cleanses and softens white cotton men's shirts without yellowing.

The following examples illustrate the detergentsoftener compositions herein containing the polyalkyleneimine anti-static agents.

Composition C Including perfumes. enzymes and optical hrigliteuers.

The above composition is used at a rate of 1 cup/ 10 gallons of water and concurrently cleanses, softens and neutralizes static charge on cotton, linen, nylon and polyester fabrics.

Composition D Weight Percent 30 sodium salt of 20:80 coconutztallow fatty acids 10 sodium silicate (builder) 40 tetrasodium pyrophosphate (builder) 6.0 sodium chloride 4.0 1.6-distearoyl sorbitol 1.0 2071 stearoylated 10% methylated polybutyleneimine (avg. mol. wt. 20,000) 0.05 additives" (optional) bal. moisture Including perfumes and optical hrighleners.

The above composition is used at a concentration of 1.5 cups/ 10 gallons of water and cleanses and provides antistatic and softening benefits to cotton, nylon, polyester and cotton/polyester blend fabrics.

1n the above composition the builders are deleted and replaced by an equivalent amount of the sodium salt of coconut: tallow fatty acids. The unbuiltcomposition is used at a concentration of 1.5 cups/1O gallons of water and cleanses, softens and provides anti-static benefits to nylon, and polyester fabrics.

The following compositions are used at a rate of about g./10'gallons of water to provide cleansing and softening of cotton, nylon and polyester fabrics while concurrently providing an anti-static effect:

Composition E Weight Percent sodium tallow alkyl sulfate sodium linear dodecylhenzenesulfonate sodium tripolyphosphate 10 sodium carbonate 10 sodium sulfate 5 0 potassium dichlorocyanurate (bleach) 'i Lo-his-eicosanoyl sorbitol 5 2071 stearoylated polyethyleneimine (avg.

mol. wt. 25,000)

perfume moisture Composition F (liquid) Weight Percent lneluding perfumes and optical brighteners.

1n the above composition the distearyl sorbitol is replaced by an equivalent amount of dipalmityl sorbitol, biseicosyl sorbitol and bis-docosyl xylitol, respectively, with equivalent results.

Composition G (liquid) Weight Percent 60 sodium linear-dodecylhenzenesulfonate 6,0 dimethyldodecylamine oxide trisodium ethane- I -h \'droxyl .1-

diphosphonate l0 tripotassium toluenesulionate 3 sodium silicate (ratio SiO :Na of 2:1 5.0 potassium dichlorocyanurate (bleach) H) 03 sodium carhoxymethylcellulose .20 3-morphoIino'lS-dipheny11'uran (optical hrightener) 7.5 l.6bis-docosanoyl sorbitol 1.5 50% docosanoylated polypropyleneimine (avg'. mol. wt. 10.000) 0.10 perfume hal. water Composition H Weight Percent 10 sodium salt of sQ -sulfonated tetradecene l0 dimethyl coconutalkylammonio acetate 60 trisodium ethane-hydroxy triphosphonate 10 sodium carbonate 6.0 1.6-distearyl sorhitol:l.5-distcaryl iditol (90:10 wt. mixture) 1.0 507: hexanoylated polyhutyleneimine (avg.

mol. wt. 200.000) hal. moisture Composition 1 t Weight Percent 7.5 sodium linear octadecylbenzenesulfonate 2.0 sodium tallowalkylsult'ate 2.2 hydrogenated marine oil fatty acid suds depressant 30 sodium tripolyphosphate Z0 trisodium nitrilotriacetate 40 10 sodium silicate (ratio SiQ Na O of 2:1) 13 sodium sulfate 10 Lo-his-docosanoyl xylitol 30 20% docosylated pol \'methylencimine (avg.

mol. wt. 3.000) 0.20 perfume hal. moisture Composition J Weight Percent 10 sodium linear dodecylbemenesullonate 10 condensation product of 1 mole of nonyl phenol with 12 moles of ethylene oxide 10 sodium tripolyphosphate 30 trisodium ethane-l-hydrox \'-l.l-

diphosphonate 10 trisodium nitrilotriacetate 6.0 sodium silicate (ratio of sio zNa O of 2:1 l0 trisodium phosphate 0.5 sodium carhoxymethylcellulose 4.0 l.o-his-docosanoyl sorbitol 1.0 4071 stearoylated polyethyleneimine (avg. mol.

\Vt. 25.000) 0.1 ."i'phenyI-Z.S-diphenylthiophene (optical hrightener) 0.2 3-diethanolamino-2.541i-pmethoxyphenylfuran (optical brightener) bal. moisture Composition K (For Cool Water Use) Weight Percent 5.0 sodium tallowalkylsulfate 12 3( N.N-dimethyl-N-dodecylammonio Z-hydroxy-propane- 1 -sulfonate 5.0 sodium salt of SO;,-suli'onated a-trideeene 25 sodium tripolyphosphate l5 trisodium nitrilotriacetate 10 sodium silicate (S1O :Na O 1.6:1) 10 sodium sulfate 0.3 sodium carhoxymethylhydroxyethyleellulose 10.0 10:1 mixture of Lo-distearoyl sorbitol and 1.5-distearoyl sorbitol 2.0 571 stearoylated polyethyleneimine (avg.

- mol. wt. 20.000) 0.1 3-deca( oxyethylene )-2.5-diphenylfuran 0.05 perfume bal. moisture Composition L (For Cool Water Use) Weight Percent 5.0 sodium oetyl sulfate 5.0 3(N,N-dimcthyl-N-hexadecylammonio)- propane- 1 -sulfonatc 10 dimethyldodecylphosphine oxide 50 trisodium ethane-l-hydroxy-l.l

diphosphonate 10 trisodium nitrilotriacetate 10 sodium tripolyphosphate 10 sodium silicate (Na O:SiO 1:2.5)

0.3 sodium carhoxymethylcellulose 10 sodium sulfate 20 1.6-dipalmitoyl sorbitol 5.0 25% stearoylated polyethyleneimine (avg.

molt wt. 1.000.000) hal. moisture Composition M Weight Percent lb-distearoyl sorbitol sodium tripolyphosphate (carrier) The above composition is added to laundry baths containing a commercial anionic laundry detergent at a rate of 0.5 oz./10 gallons of water and cotton, nylon and polyester fabrics are softened concurrently with washing.

1n the above composition the 1,6-distearoyl sorbitol is replaced by an equivalent amount of 1,6-biseicosanoyl sorbitol and 1,6-bis-docosanoyl sorbitol, respectively, and equivalent results are secured.

The following examples illustrate the preferred combined fabric softening and anti-static compositions of the instant invention which can be added to laundry baths containing detergent compositions.

Composition N Weight Percent 2 207: stearoylated polyethyleneimine (mol.

wt. of polycthylencimine 600-1200) Lo-distearoyl sorbitol sodium carbonate (carrier) The above composition is added to a laundry bath containing compositions A through L, above, respectively at a rate of about 1 oz./l6 gallons of water and nylon, polyester and cotton fabrics are softened and provided with an anti-static finish concurrently with washing.

In the above composition, the sodium carbonate is replaced by an equivalent amount of sodium sulfate, sodium tripolyphosphate and sodium nitrilotriacetate, respectively, and equivalent results are secured.

In the above composition, the 20 percent stearoylated polyethyleneimine is replaced by an equivalent amount of 60% stearoylated polyethyleneimine, 100 percent stearoylated polyethyleneimine and 50 percent hexanoylated polybutyleneimine, respectively, and equivalent results are secured.

Composition Weight Percent 25 Ln-distearnyl sorbitol l.l) polyethyleneiminc (PEI) 1.0 2071 stcaroylatcd polyethylencimine (mol. wt.

of polyethylcneiminc 600-I200) (2071 SPEl) hal. water (carrier) The 1,6-distearoyl sorbitol, PEI, and 20% SPEl are suspended in the water. The composition is shaken and admixed with a laundering bath containing a commercial laundry detergent at a rate of about 1 oz. ofthe said composition to about 10 gallons of water. Cotton, polyester, nylon and polyester-cotton blended fabrics in the laundering bath are concurrently cleansed and softened. The static electric charge on the fabrics is neutralized.

In the above composition the l,6-distearoyl sorbitol is replaced by an equivalent amount of l,6-bisdocosanoyl xylitol. 1,6-bis-docosanoyl iditol, l,6-bispalmitoyl sorbitol, l,5-bis-palmitoyl iditol, l,6-bispalmityl sorbitol, LS-bis-palmityl iditol and l,6-biseicosanoyl xylitol, respectively, and equivalent results are secured,

What is claimed is:

l. A detergent composition consisting essentially of: (1) from about to about 30 percent by weight of a water-soluble organic detergent compound; (2) from about 25 to about 75 percent by weight of a watersoluble dctergency builder; (3) from about 2 to about l5 percent by weight of an ocurdisubstituted derivative ofa non-cyclic, hygroscopic polyol, said derivative having the formula III "I wherein .r is an integer-of from 3 to 7 and each R is an alkyl or alkanoyl group containing at least l6 carbon atoms; and (4) from about 0.5 to about 1.5 percent by weight of a polyalkyleneimine compound containing the moiety wherein y is an integer from 1 to 4, z is an integer greater than '1, and R is selected from the group consisting of hydrogen and alkyl and alkanoyl substituents containing from about 1 to about 22 carbon atoms, said 5 polyalkyleneimine having from about 5 to about 100 molecular structure an alkyl substituent containing about 8 to about 22 carbon atoms and a substituent selected from the group consisting of sulfonic and sulfuric acid ester moieties; and the polyalkyleneimine has from about to about 60 percent of the nitrogen atoms substituted with the alkyl or alkanoyl substituents and has a molecular weight of from about 600 to 100,000.

3. A composition according to claim 1 wherein the organic detergent compound is an alkali metal salt of a fatty acid containing from 8 to 24 carbon atoms; and the polyalkyleneimine has from about 10 to about 60 percent of the nitrogen atoms substituted with the alkyl or alkanoyl substituents and has a molecular weight of from about 600 to 100,000.

4. A composition according to claim 1 wherein the organic detergent compound is sodium linear dodecylbenzene sulfonate; and the polyalkyleneimine has a molecular weight of from about 600 to 1,200.

5. A composition according to claim 4 wherein the disubstituted polyol is a member selected from the group consisting of l,6-distearoyl sorbitol, 1,6-biseicosanoyl sorbitol and 1,6-bis-docosanoyl sorbitol.

6. A composition according to claim 5 wherein the polyalkyleneimine has the nitrogen atoms substituted with stearoyl.

7. A composition according to claim 1 wherein the polyalkyleneimine compound is polyethyleneimine having a molecular weight in the range from 600 to 1200 and which is percent stearoylated.

8. A composition according to claim 1 wherein the water-soluble detergency builder is selected from the group consisting of sodium nitrilotriacetate, sodium citrate, sodium tripolyphosphate, and sodium mellitate.

9. A fabric softening composition consisting essentially of: (1) from about 10% to about 50 percent by weight of an moo-disubstituted derivative of a noncyclic, hygroscopic polyol, said derivative having the formula LAHJ,

it). A composition according to claim 9 wherein the disubstituted polyol is a member selected from the group consisting of 1,6-distearoyl sorbitol, l,6-biseicosanoyl sorbitol and l,6- bis-docosanoyl sorbitol.

B1. A composition according to claim 9 containing as an additional component from about 0.5 to about 2 percent by weight of a polyalkyleneimine compound containing the moiety wherein y is an integer from 1 to 4, z is an integer greater than I, and R is selected from the group consisting of hydrogen and alkyl and alkanoyl substituents containing from about i to about 22 carbon atoms, said polyalkyleneimine having from-about 5 to about 100 percent of the nitrogen atoms substituted with said alkyl or alkanoyl substituents, the polyalkyleneimine having a molecular weight of from about 200 to 1 million, and being water-soluble or water-dispersible.

12. A composition according to claim 11 wherein the polyalkyleneimine has a molecular weight of from about 200 to 2000 and from about 15 to 40 percent of the nitrogen atoms are substituted with stearoyl substit- 13. A processfor softening fabrics consisting essentially of adding an a,w-disubstituted derivative of a wherein x is an integer of from 3 to 7 and each R is an alkyl or alkanoyl group containing at least 16 carbon atoms to an aqueous laundry bath containing fabrics at a concentration of at least about 20 ppm, and laundering the fabrics. V

14. A process according to claim 13 wherein the disubstituted polyol is added to the laundry bath concurrently with a detergent composition.

15. A process according to claim 13 wherein the disubstituted polyol is a member selected from the group consisting of 1,6-distearoyl sorbitol, l,6-bis-eic0sanoyl sorbitol and l,6-bis-docosanoyl sorbitol.

16. A process according to claim 13 wherein a polyalkyleneimine compound containing the moiety wherein y is an integer from 1 to 4, z is an integer greater than 1, and R is selected from the group consisting of hydrogen and alkyl and alkanoyl substituents containing from about 1 to about 22 carbon atoms, said polyalkyleneimine having from about 5 to about percent of the nitrogen atoms substituted with said alkyl or alkanoyl substituents, thepolyalkyleneimine having a molecular weight of from about 200 to 1 million, and being water-soluble or water-dispersible is added to the laundry bath concurrently with the disubstituted polyol at a concentration of at least about 10 pp 17. A process according to claim 16 wherein the polyalkyleneimine has a molecular weight of from about 200 to 2000 and from about 15 to 40 percent of the nitrogen atoms are substituted with stearoyl substituents. =l= l l

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1959930 *May 13, 1931May 22, 1934Ig Farbenindustrie AgHydroxy-alkyl ethers of polyhydric alcohols and their production
US2272489 *Aug 1, 1936Feb 10, 1942Gen Aniline & Film CorpNitrogenous condensation products and a process of producing same
US2403960 *Apr 10, 1943Jul 16, 1946Carbide & Carbon Chem CorpAntistatic treatment of vinyl resin articles
US2668785 *Apr 3, 1950Feb 9, 1954Atlas Powder CoFilamentous textile having a processing finish
US2929788 *Mar 7, 1955Mar 22, 1960Gen Mills IncDetergent compositions composed of alkylaryl sulfonates and n-alkyl beta-aminopropionates
US3454494 *Aug 3, 1965Jul 8, 1969Standard Chem Products IncTextile softener compositions
US3637495 *Jul 26, 1967Jan 25, 1972Henkel & Cie GmbhAgent for the posttreatment of laundry
US3676341 *Mar 15, 1971Jul 11, 1972Colgate Palmolive CoTextile softening compositions
US3697423 *Jul 21, 1971Oct 10, 1972Colgate Palmolive CoWash cycle softener
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3992332 *Aug 22, 1974Nov 16, 1976Hemson Joseph ZenonLiquid composition for fabric treatment
US4069159 *Feb 2, 1976Jan 17, 1978E. I. Du Pont De Nemours And CompanyAntistat and softener for textiles
US4087387 *May 10, 1976May 2, 1978Lever Brothers CompanyFoam cleaning composition
US4265772 *Aug 8, 1979May 5, 1981The Procter & Gamble CompanyAntistatic, fabric-softening detergent additive
US5196128 *Feb 8, 1991Mar 23, 1993Ethyl CorporationLaundry rinse containing N-octadecyl-N,N-dimethylamine oxide and N-dihydrogenatedtallow-N,N-dimethylammonium chloride
US5269952 *Dec 21, 1992Dec 14, 1993E. I. Du Pont De Nemours And CompanyAntistatic finish for dyeable surfactant-containing poly(m-phenylene isophthalamide) fibers
US5460736 *Oct 7, 1994Oct 24, 1995The Procter & Gamble CompanyFabric softening composition containing chlorine scavengers
US5571287 *Aug 12, 1994Nov 5, 1996Colgate-Palmolive CompanySoap composition containing sodium pyrophosphate
US5904735 *Aug 4, 1997May 18, 1999Lever Brothers CompanyDetergent compositions containing polyethyleneimines for enhanced stain removal
US5955415 *Aug 4, 1997Sep 21, 1999Lever Brothers Company, Division Of Conopco, Inc.Detergent compositions containing polyethyleneimines for enhanced peroxygen bleach stability
US6066610 *Sep 19, 1997May 23, 2000S. C. Johnson & Son, Inc.Low pH amphoteric fabric cleaning solution
US7763579 *Sep 23, 2005Jul 27, 2010The Sun Products CorporationMethod of preparing a laundry product
US9150993Jul 2, 2013Oct 6, 2015Conopco, Inc.Methods and compositions for fabric cleaning
US20080242580 *Sep 23, 2005Oct 2, 2008Stephen Leonard BriggsMethod of Preparing a Laundry Product
US20080261850 *Sep 20, 2005Oct 23, 2008Stephen Leonard BriggsLaundry Product
US20100017973 *Dec 21, 2007Jan 28, 2010Basf SeHydrophobically modified polyalkylenimines for use as dye transfer inhibitors
US20110119841 *Jun 8, 2009May 26, 2011Julie BennettFabric cleaning
WO2000040686A1 *Jan 7, 1999Jul 13, 2000The Procter & Gamble CompanyDetergent compositions having a protein
WO2000040687A1 *Jan 7, 1999Jul 13, 2000The Procter & Gamble CompanyFabric care composition containing a protein
WO2009153184A1 *Jun 8, 2009Dec 23, 2009Unilever PlcImprovements relating to fabric cleaning
Classifications
U.S. Classification510/333, 510/325, 510/515, 510/499, 510/506, 510/332, 510/501, 510/527, 510/328, 510/505, 510/324, 510/327
International ClassificationC11D3/37, D06M13/48, C11D3/20, C11D3/00, D06M15/53
Cooperative ClassificationC11D3/2065, C11D3/3723, D06M15/53, D06M13/48, C11D3/001, C11D3/221, C11D3/2093
European ClassificationC11D3/20B3, C11D3/22B, C11D3/20F, C11D3/00B3, D06M15/53, D06M13/48, C11D3/37B9