Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3845756 A
Publication typeGrant
Publication dateNov 5, 1974
Filing dateJun 28, 1972
Priority dateSep 29, 1971
Publication numberUS 3845756 A, US 3845756A, US-A-3845756, US3845756 A, US3845756A
InventorsS Olsson
Original AssigneeSiemens Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ergometer device
US 3845756 A
Abstract
An ergometer device consists of an exercise machine such as a pedalling device, braking means to control the force exerted by the operator upon the pedalling device, and control means to control the amount of application of the braking means. The control means are adjusted by means of a control signal which is developed by a continuous comparison of the pre-selected heartbeat rate as against the actual rate of the subject's heartbeat together with the alteration of the rate during the time period of use of the device.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 1111 3,845,756

Olsson 1 Nov. 5, 1974 [5 ERGOMETER DEVICE 3,518,985 7/1970 Quinton 128/205 R 3,589,193 6 1971 Th 1 73/379 R [75] Inventor? sven'cumar Sgvard 3,599,628 8/1971 7811;212:112 et a]. 128/206 F sonmtuna Swaden 3,602,502 8/1971 Hampl .1 272/69 [73] Assignee: Siemens Aktiengesellschaft, Munich,

Germany Primary ExaminerWilliam E. Kamm [22] Filed: June 28, 1972 Attorney, Agent, or Firm-Richards & Geier [21] Appl. No.: 266,891

Related US. Application Data [57] ABSTRACT [63] Continuation-in-part of Ser, No. 184,391, Sept. 29,

19711 abandoned- An ergometer device consists of an exercise machine such as a pedalling device, braking means to control [52] US. Cl. 128/2.06 R, 73/379 R, 272/73, the force exerted by the Operator upon the pedamng 272/DIG' 6 device, and control means to control the amount of [5l] Int. Cl Afilb 5/04 application of the braking means The Control means [58] held of Search" 128/2 2 S1 R1 T1 are adjusted by means of a control signal which is de- 128/206 F1 R; 272/69 731 1316- 6; veloped by a continuous comparison of the pre- 73/379 R selected heartbeat rate as against the actual rate of the subjects heartbeat together with the alteration of the [56] References Cted rate during the time period of use of the device.

UNITED STATES PATENTS 3,395,698 8/1968 Morehouse 128/205 R 4 Claims, 3 Drawing Figures 2A SIGNAL AMPLtFlER 9 COUNT? 14 l DIFFERENTIAL at I 1 MULTIFLYING STEP 7 I MEMBERS I I 17 18 1 G' B A K MULTlPLiCATlON 1 11 14-118 3- J'BA I 1 2' 4 -BRAKE i 'E'R- SERVO UNIT =(+'e')K-AB LOADING l 1.0m:

UNIT INTEGRATOR BRAKE FORCE ADJUSTING 01-:v1ce 6 PATENTEDIIIIII 5 I974 3.845.756

saw 1 or 3 SIGNAL 9 COUNTER 14 AMPLIFIER f i \12 f I e 10- c r------ 1 13 I DlFFERENTlAL 4t :MULTIPLYING STEP MEMBERS 11 ,15

LOADING 1 LOAD UNIT\ INTEGRATOR BRAKE FORCE I I ADJUSTING DEVICE 6 22 23 Fig. 1

PAIENIEIINUV 5 I914 3 845 756 SIIEEI 20F 3 AMPLIFIER H I {44 '50 I x I I L .I AMPLIFIER 25 43 I2 .L I I f I I I IS 55T59 R 57 55 i 41 AMPLIFIER I -42 I FIELD EFFECT I TRANSISTORS -43/ l I I I I I VOLTAGE DIVIDERS Fig. 2

SHEET 3 BF 3 PAIENIEDunv 5 1914 4 0? mm moZmEzh z KOCEMZMQ KOPOE ERGOMETER DEVICE The present application is a continuation in part of an earlier patent application filed Sept. 29, 1971, Ser. No. 184,391. This earlier patent application is now abandoned.

This invention relates to an ergometer wherein the work to be applied by the person being examined is regulated depending upon a selected heart frequency value to a value corresponding to this selected frequency value.

An ergometer is a device utilized in various therapies particularly in recovery therapy of a patient after a heart attack or determination of the physiological performance capacity of a subject. The devices generally include a force exerting device (such as a pedalling device known as an ergometer bicycle), a braking device to permit application of differential forces upon the force exerting device, and control means to selectively apply the braking device.

In conventional devices of this type the work which is to be applied is not dependent upon the pedalling frequency of the user. Thus bicycles are so constructed that with increasing pedalling frequency the braking action is diminished while with diminishing pedalling frequency the braking action is increased. The patient can be then provided with predetermined constant work and his physiological operating capacity can be then determined by his actual heart frequency.

An ergometer of this type is not set to a constant work magnitude, rather the work is measured which the subject is capable of rendering at a given preselected heartbeat rate. The use of such ergometers affords notable benefits. For example, it is of decisive importance in rehabilitation after a heart attack that subjects heartmay be subjected r021 precise preselected workload, i.e. that the heart shall function at a preselected rate, and that the rate, for the subjects safety (against overload), shall not be exceeded, or shall not be exceeded in order to assure an optimum rehabilitation result. The ergometer can be operated without any additional medical supervision, as it is automatically provided that subject proper is never overloaded in a manner to threaten subjects health even in case of extremely low physiological performance capacity; consequently it is especially well suited for use in en masse examinations. The ergometer bicycle can also be .used in work-physiological examinations in order to dete rinine th e bodily labor involved in a given type of activity. For this purpose it is only requisite that in the performance of such activity the rate of heart pulsation of subject be determined and the work to be done on the ergometer be adapted accordingly.

ln heretofore utilized ergometers of the described type the regulation of the work to be accomplished to a value corresponding to the preselected heart frequency value, takes place solely by a regulating signal dependent upon the discrepancy between the desired and actual value of thesubjects heart frequency. Practice has demonstrated that in a control process of this kind based merely upon the difference between the theoretical and the actual, the heart rate does not approach the pre-selected ideal FIGURE asymptotically, but that, rather, it builds up to such ideal rate for oscillating above and below it several times. When the ideal rate is exceeded, heart rates occur which can affect subjects circulation, especially when subject has poor circulation, to an extent that could endanger the health and in extreme cases the life of the subject.

An object of the present invention is to avoid these drawbacks of existing devices.

Another object is the provision of an ergometer wherein dangerously high heart frequencies produced by exceeding the theoretical rates cannot occur.

Other objects of the present invention will become apparent in the course of the following specification.

in the accomplishment of the objectives of the present invention it was found desirable to affect the control by means of a control signal (S produced by a continuous comparison between the pre-selected heart rate (f, and both the subjects actual rate at any given moment (I) and the temporary alteration (df/dt) of such actual rate.

In the ergometer according to the present invention, the strength of the control signal is not only affected, as in the known ergometers, by the ideal rate/actual rate discrepancy, but in addition also by any momentary alteration of the actual rate. lf the effect of the actual rate alteration upon signal strength is such that the signal at any time is, in response to the degree of the actual rate alteration, more or less markedly dimished, (marked decline when there is a rapid increase in heart rate, slight decline when heart rate increase is less rapid), itis possible to bring it about that subjects actual heart rate shall approach subjects pre-selected heart rate asymptotically. The dangerously high rates far exceeding the theoretical or ideal, cannot then, as a matter of course, any longer set in.

ln an advantageous embodiment of the invention, the control signal (S is obtained by formation of the difference between a deviation signal proportional to the difference (f f) between subjects ideal and actual rate and the rate-alteration signal that is proportional to the first heart rate differential. Thus the control signal is suitably formed pursuant to the equation:

where K and A are constants, and B; represents a variable proportionality factor dependent upon the heart rate and the heart rate alteration polarity. Given positive polarity of the heart rate variation (af/dt O) the factor B; should increase as rates increase and remain constant when polarity is negative (df/dr 0), for all rates. Selection of such variable B factor will take into account the fact that like any other motor the heart accelerates less as load increases, that is, as the heart rate increases a further increase in rate within a given time period declines.

The B, factor can be continuously altered. It will be sufficient however if factor 8; holds within definite rate levels to a constant figure. Sufficiently satisfactory results are obtained when factor 8,, ion function of heart rate f and the heart rate alteration sign df/dt, is established as:

u) zlfldl 0 B,= l atf llO beats/min B 2 atf= l l() to l30 do. B =3 atf= to do. B,= 4 utf= lSO to l7ll do. B,= 5 at f do.

H,= l for all heartbeat rates.

An espectially desirable asymptotic behavior of the heartbeat frequency is obtained when the control signal (S already at an ideal rate/actual rate variation (f, f) .of IO beats/min drops to zero. To this purpose it has been found advisable so to establish the constants K and A (with a corresponding B selection) of the variation or frequency alteration signal, that the zero posi- -t rt. q thssga r l isnal i t s teatthsm tl that hrieflyl PEI-59219941 and .itt tsaisa l'esti a t beat.

a) df/dl 90 beats/min when f I I heats/min df/dr 45 do. do. f= no to I30 do. df/d! 30 do. do. I30 to I50 do. df/dl 22.5 do. do. f= 150 to 170 do. dfld! l8 do. do. f 170 do.

b) df/dt 90 do. for a ll heartbeat rates.

The invention will appear more clearly from the following detailed description when taken in connection with the accompanying drawings showing by way of example only, a preferred embodiment of the invention idea.

In the drawings:

FIG. 1 is a basic diagram of the circuit of the present invention.

FIGS. 2 and 3 are detailed switch circuits of the diagram of FIG. 1.

The same structural parts are indicated with the same numerals throughout the FIGURES.

FIG. 1 shows a subject 1, who treads the pedals 2 of an ergometer bicycle 3. The tread motion of subject 1 can, by means of a brake 5 which engages transmission chain 4 of the sheel 3, be more or less forcefully brakes. Setting of the desired brake force is then done by means of a brake force adjusting device 6.

An EKG electrode 7 applied to subjects body IS used to taking the subjects heart signals. The signals are fed to a heartbeat frequency amplifier, which at its output produces an electric signal corresponding to the actul frequency rate at the time.

The output signals of the frequency amplifier 8 are carried over the line 9 direct and over line 10 via a differential stage 11 to a control signal counter 12. Over an additional line 13 there is attached to signal counter 12 additionally a frequency transmitter 14 for the ideal frequency fl..

The control signal counter 12 consists essentially of a first differential step 15 for the formation of a signal corresponding to the ideal rate/actual rate deviation (1", f), with an after-attached multiplication member 16 for multiplication of the signal by the constant factor K, the signal being formed from either multiplying member 17 and 18 for multiplication of the output signal of differential step 11 by the factor 8;, and from the constant factor A and a second differential step 19 for the formation of the difference S (f f) K (df/dt) A 8,. Factor B; can be set manually, or automatically via control line, in function of the frequency f, to the previously described magnitudes.

The output signal S (control signal) of the control signal calculator 12 is conveyed to a motor servo unit 21, which, via a loading unit 22, controls the brake force regulating device 6 in function of the signal strength at the time prevailing. There is further connected up with motor servo unit 21 a load integrator 23 to calculate the work done by subject 1 during a preset time.

Construction element 24 represents a frequency indicator device that indicates the actual heartbeat frequency.

The scr bed mb qtm at a th ura a s qt operates in such a mannerthatevery dangerously rapid rate asymptotically approaches the desired ideal count. If the timed duration with ratained approximation of the actual to the ideal rate is to be reduced to a minimum, this can suitably be brought about by in addition connecting up the second differential counter to the first heart-rate differential. mm

According to FIG. 2 the outgoing signals of the heart frequency amplifier 8 are transmitted to the differentiating stage 11 (RC-member) through an operational amplifier 25 operating as an impedance changer. The differentiated signal (df/dt) is amplified in a further operational amplifier 26. Each of the operational amplifiers 25 and 26 has an RC-circuit 27, 28 for flattening the available outgoing signal.

The outlet of the operation amplifier 25 is connected through voltage dividers 29 to 32 (ohmic resistances) with the operational inlets of operation amplifiers 33 to 36 in the regulated signal calculator 12. The voltage dividers 29 to 32 are then so set that for heart frequencies f l00 beats/min. all operational amplifiers 33 to 36 have a negative outgoing potential. However from I I0 beats/min. the operational amplifier 33 is switched to a positive outgoing potential, from I30 beats/min. the operational amplifier 34 is switched to a positive outgoing potential, from beats/min. the operational amplifier 35 and from beats/min. the operational amplifier 36 are switched to a positive outgoing potential. Each switching of an operational amplifier 33 to 36 to positive outgoing potential results in the connection of a corresponding field effect transistor 41 to 44 through a r earw ardly switched diode 37 to 40.

The operational inlets of t r ansistors 41 to 44 are conh nected by further diodes 45 to 48 with the outlet of an operational amplifier 49. This operational amplifier is concerned with the existing polarity of the change in heart frequency. When the change in heart frequency has a negative polarity (af/dt 0), the amplifier produces a negative outgoing signal which via diodes 45 to 48 prevents an actuation of transistors 41 to 44 through the operational amplifier 33 to 36. On the other hand, when the change in heart frequency has a positive polarity (df/dt 0) the now positive outgoing voltage of the operational amplifier 49 frees the transistors 41 to 44 for actuation through the operational amplifiers 33 to 36.

Each actuation of a transistor 41 to 44 by an operational amplifier 33 to 36 causes the corresponding transistor to become conducting. This again results in a parallel connection of an ohmic resistance 50 to 53 connected in series with the corresponding transistor 41 to 44, with an ohmic resistance 54 switched at the outlet of the operational amplifier 26. The ohmic resistances 50 to 54 are selected to be equal to each other, so that in point 55 there is an amplification of the signal (df/dt) in the ratio l:2:3:4:5 for the individual heart frequency ranges of I10, llO to 130,130 to I50, 150 to 170, 170 beats/min.

The frequency changing signal produced in point 55 is transmitted to an operational amplifier 56. The operational amplifier 56 receives in point 57 the actual value signal of the heart frequency amplifier 8 via an ohmic resistance 58 and also receives in point 59 the desired value signal of the desired value giver 14 (setting of the desired value by the resistance potentiometer 60). The frequency change signal and the actual value signal are opposed to the desired value signal. Thus at the outlet of the operational amplifier 56 the desired regulating signal 8,, is produced.

As shown in FIG. 3 the regulating signal S is transmitted to the inlet of an operational amplifier 61 in the motor servo unit 21. The motor servo unit is provided with a motor generator 62 operating alternately as a motor or as a generator. When the motor-generator operates as a generator, its speed is tested and a signal is produced corresponding to this speed. This signal is transmitted as counter coupling signal to the opera tional amplifier 61 switched as an integrator.

The outgoing signal of the operational amplifier 61 is broken up by a multivibrator 63 which consists in the usual manner of transistors 64 and 65, as well as ohmic resistances, diodes and condensers. The multivibrator 63 has on the outlet side field effect transistors 66 and 67 one of which is always closed while the other is conducting. When the transistor 66 is conducting the motor-generator 62 receives current through the transistors 68 and 69 for motor operation. When the transistor 67 is conducting the voltage is tested at the motor-generator 62, so that then the motor-generator 62 operates as a generator. A group of zener diodes 70 is used for limiting the speed of the motor-generator 62.

The motor-generator 62 drives mechanically the inlet potentiometer 71 of the loading unit 22. The loading unit 22 operates as an impedance changer and is used for adapting a direct current generator 72 acting as a regulatable brake 5 the outgoing output of which can go up to 400 watts, to the potentiometer 71. The loading unit consists of a differential amplifier which regulates the current of the generator 72 in such manner that this current is proportional to the setting of the potentiometer 71. The generator 72 is regulated to a constant voltage by the foot movements of the subject 1 and transmits, for example, a voltage of 85 volts.

The motor-generator 62 also drives the loading integrator 23 a second potentiometer 73 mechanically coupled with the potentiometer 71. The potentiometer 73 is located at the inlet of an operational amplifier 74 with an integrating condenser 75. Thus the inlet of the operational amplifier 74 receives via the potentiometer 73 a current proportional to the load of the subject.

A further operational amplifier 76 is switched after the amplifier 74 and is used to supply an outgoing impulse at a predetermined outgoing voltage value of the amplifier 74 produced on the basis of integration. The outgoing impulse starts a multivibrator 77 which discharges the integrating condenser 75 through a field effect transistor 78 and thus releases any further integration. Each outgoing impulse produced by the operational amplifier 76 is also transmitted through a transistor amplifier 79 to a counting relay 80 which counts the impulses and the indication of which at the end of the measured time period constitutes a direct measure of the work carried out by the subject.

l claim:

1. An ergometer comprising, in combination, force exerting means adapted to be operated by a subject. braking means controlling the force to be exerted upon the force exerting means, and control means for deter mining the amount of braking force to be applied, a heart frequency measuring means enclosing electrodes connectable to the subject for producing an electrical signal corresponding to the real heart frequency f of the subject, an ideal heart frequency generating means for setting an ideal heart frequency f and producing an electrical signal corresponding to this ideal heart frequency f a differentiator connected to the output of the heart frequency measuring means for producing the first derivative df/dt of the real heart frequency signal, and further comprising an electronic control signal calculator means connected to the outputs of said heart frequency measuring means, said ideal heart frequency generating means and said differentiator for calculating from the outgoing signals of said heart frequency measuring instrument, said ideal heart frequency generator and said differentiator a control signal S pursuant to the equation where K and A are constants and B, is a variable proportionality factor, said calculator means including means to provide said proportionality factor as a func tion of both the real heart frequency fand the polarity of the real heart frequency alteration df/dr, which factor B in the presence of a positive polarity of the heart frequency alteration (df/dt 0) increases with higher real heart frequencies, remains constant in the presence of negative polarity (af/dr 0), said control signal S is connected to the input of said brake control means for controlling said brake control means to produce a higher amount of braking force when the strength of the control signal increases, and a lower amount of braking force when the strength of the control signal decreases.

2. An ergometer as described in claim 1, wherein the said producing means includes control means connected to the outputs of said heart frequency measuring instrument and said differentiator for automatically controlling the factor B in function of the real heart frequencyfand the polarity of the heart frequency alteration df/dt as follows:

u) dflzll 0 8, l at f llU beats/min B,= 2 do. f= llt) to I30 do. B =3 do. f= I30 to I50 dov b,= 4 do. f= I50 to 170 do. H 5 do. f I70 do.

h) df/dl 0 B,= -I for all real heart frequency rates.

(If/dz heats/min (If/(ll 45 do. f= I I0 to I30 do. (If/t1! 30 do. f= I3Il to I50 do. (If/d! 22.5 do. f= ISO to I70 do. (If/d! I I8 f I70 do.

do. (If/d1 9t) beats/min for all real heart frequency rates.

4. An ergometer as described in claim 2, wherein said providing means of said electronic control signal calculator means for controlling the factor B; comprising in combination first circuit means, operational amplifiers, connected to the output of the real heart frequency measuring instrument, and producing one output signals when the real heart frequencyf increases in said stepsf l l ,f= 110 to l30,f= 130 to 150,f= 150 to l70, f 170 beats/min, and second circuit means connected to the output of said differentiator for producing an output signal corresponding to the polarity of the signal df/dt, third circuit means connected to outputs of the first and second circuit means and connecting the output signals of the first circuit means to switching means, such as switching transistors only in that case when at the same time, at the output of the second circuit means exists an output signal corresponding to a positive polarity of df/dt, said switching means setting amplifying means connected to the output of said differentiating device for an amplification of the signal df/dr in the ratio l:2:3:4:5 corresponding to the appearance of outgoing signals of the first circuit means in the stepsf l l0,f= l l0 to l30,f= I30 to l50,f= 150 to l70,f l beats/min.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3395698 *Oct 1, 1965Aug 6, 1968Mc Donnell Douglas CorpPhysiologically paced ergomeric system
US3518985 *Feb 15, 1968Jul 7, 1970Quinton Wayne EControl system for an exercise machine using patient's heart rate and heart rate acceleration
US3589193 *Jul 24, 1969Jun 29, 1971Thornton William EErgometer
US3599628 *May 3, 1968Aug 17, 1971Corometrics Medical Systems InFetal heart rate and intra-uterine pressure monitor system
US3602502 *Apr 20, 1970Aug 31, 1971Erich JaegarMoving belt ergometer with braking arrangement
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4060239 *Sep 9, 1976Nov 29, 1977Keiper Trainingsysteme Gmbh & Co.Ergometer with automatic load control system
US4084810 *Jul 26, 1974Apr 18, 1978Lars Osten ForsmanEnergy absorbing unit for physical exercising devices
US4099713 *Jul 15, 1977Jul 11, 1978Donald SpectorElectronic physical trainer system
US4233844 *Dec 21, 1978Nov 18, 1980Cardrei CorporationWheelchair ergometer
US4278095 *Jun 5, 1979Jul 14, 1981Lapeyre Pierre AExercise monitor system and method
US4323237 *Aug 30, 1979Apr 6, 1982Coats And Clark, Inc.Adaptive exercise apparatus
US4358105 *Aug 21, 1980Nov 9, 1982Lifecycle, Inc.Programmed exerciser apparatus and method
US4409985 *Mar 25, 1981Oct 18, 1983Sidorenko Georgy IElectronic ergometer for cardiac arrhythmia patients
US4495560 *Jul 7, 1981Jan 22, 1985Kabushiki Kaisha Toyota Chuo KenkyushoFluctuating drive system
US4499900 *Nov 26, 1982Feb 19, 1985Wright State UniversitySystem and method for treating paralyzed persons
US4519603 *Dec 2, 1982May 28, 1985Decloux Richard JExercise device
US4642769 *Apr 11, 1985Feb 10, 1987Wright State UniversityMethod and apparatus for providing stimulated exercise of paralyzed limbs
US4678182 *Mar 13, 1984Jul 7, 1987Combi Co., Ltd.Bicycle ergometer and eddy current brake therefor
US4768783 *Aug 26, 1986Sep 6, 1988Baltimore Therapeutic Equipment Co.Apparatus for the rehabilitation of damaged limbs
US4860763 *Jul 29, 1987Aug 29, 1989Schminke Kevin LCardiovascular conditioning and therapeutic system
US4938475 *Aug 25, 1987Jul 3, 1990Sargeant Bruce ABicycle racing training apparatus
US4976424 *Dec 22, 1988Dec 11, 1990Schwinn Bicycle CompanyLoad control for exercise device
US5018726 *Aug 9, 1989May 28, 1991Yorioka Gerald NMethod and apparatus for determining anaerobic capacity
US5044371 *Mar 15, 1990Sep 3, 1991Keiper Dynavit Gmbh & Co.Memory unit for controlling an ergometer
US5154677 *Mar 23, 1990Oct 13, 1992Combi CorporationMethod of and apparatus for measuring instantaneous power
US5362069 *Dec 3, 1992Nov 8, 1994Heartbeat CorporationCombination exercise device/video game
US5394879 *May 21, 1993Mar 7, 1995Gorman; Peter G.Biomedical response monitor-exercise equipment and technique using error correction
US5403252 *Nov 3, 1992Apr 4, 1995Life FitnessExercise apparatus and method for simulating hill climbing
US7166062Aug 18, 2000Jan 23, 2007Icon Ip, Inc.System for interaction with exercise device
US7166064Sep 5, 2001Jan 23, 2007Icon Ip, Inc.Systems and methods for enabling two-way communication between one or more exercise devices and computer devices and for enabling users of the one or more exercise devices to competitively exercise
US7172532Jul 13, 2004Feb 6, 2007Nautilus, Inc.Exercise device tubing
US7226393Jan 17, 2002Jun 5, 2007Nautilus, Inc.Exercise bicycle
US7364533Jul 13, 2004Apr 29, 2008Nautilus, Inc.Adjustment assembly for exercise device
US7366565 *Dec 5, 2002Apr 29, 2008Omron Healthcare Co., Ltd.Exercise machine, physical strength evaluation method and pulse rate meter
US7455622May 8, 2006Nov 25, 2008Icon Ip, Inc.Systems for interaction with exercise device
US7510509May 24, 2006Mar 31, 2009Icon Ip, Inc.Method and apparatus for remote interactive exercise and health equipment
US7549947Jun 13, 2005Jun 23, 2009Icon Ip, Inc.Mobile systems and methods for health, exercise and competition
US7556590May 8, 2006Jul 7, 2009Icon Ip, Inc.Systems and methods for enabling two-way communication between one or more exercise devices and computer devices and for enabling users of the one or more exercise devices to competitively exercise
US7575536Dec 5, 2003Aug 18, 2009Icon Ip, Inc.Method and apparatus for remote interactive exercise and health equipment
US7625315Feb 6, 2004Dec 1, 2009Icon Ip, Inc.Exercise and health equipment
US7628730May 28, 2004Dec 8, 2009Icon Ip, Inc.Methods and systems for controlling an exercise apparatus using a USB compatible portable remote device
US7637847Dec 30, 2003Dec 29, 2009Icon Ip, Inc.Exercise system and method with virtual personal trainer forewarning
US7645213Nov 24, 2008Jan 12, 2010Watterson Scott RSystems for interaction with exercise device
US7713171Jan 23, 2007May 11, 2010Icon Ip, Inc.Exercise equipment with removable digital script memory
US7771325Jun 4, 2007Aug 10, 2010Nautilus, Inc.Exercise bicycle
US7789800Dec 21, 2005Sep 7, 2010Icon Ip, Inc.Methods and systems for controlling an exercise apparatus using a USB compatible portable remote device
US7857731Jun 22, 2009Dec 28, 2010Icon Ip, Inc.Mobile systems and methods for health, exercise and competition
US7862478May 18, 2009Jan 4, 2011Icon Ip, Inc.System and methods for controlling the operation of one or more exercise devices and providing motivational programming
US7980996May 3, 2010Jul 19, 2011Icon Ip, Inc.Method and apparatus for remote interactive exercise and health equipment
US7981000Jan 8, 2010Jul 19, 2011Icon Ip, Inc.Systems for interaction with exercise device
US7985164Dec 21, 2005Jul 26, 2011Icon Ip, Inc.Methods and systems for controlling an exercise apparatus using a portable data storage device
US8029415Mar 27, 2009Oct 4, 2011Icon Ip, Inc.Systems, methods, and devices for simulating real world terrain on an exercise device
US8251874Mar 27, 2009Aug 28, 2012Icon Health & Fitness, Inc.Exercise systems for simulating real world terrain
US8298123Jul 15, 2011Oct 30, 2012Icon Health & Fitness, Inc.Method and apparatus for remote interactive exercise and health equipment
US8503086Aug 16, 2010Aug 6, 2013Impulse Technology Ltd.System and method for tracking and assessing movement skills in multidimensional space
US8690735Jul 15, 2011Apr 8, 2014Icon Health & Fitness, Inc.Systems for interaction with exercise device
US8758201Jul 3, 2012Jun 24, 2014Icon Health & Fitness, Inc.Portable physical activity sensing system
US8784270Sep 7, 2010Jul 22, 2014Icon Ip, Inc.Portable physical activity sensing system
USRE34728 *Nov 24, 1992Sep 13, 1994Heartbeat Corp.Video game difficulty level adjuster dependent upon player's aerobic activity level during exercise
DE3546569C2 *Jan 18, 1985Dec 28, 1989Dietrich 1000 Berlin De BormannMethod of controlling an exercise apparatus
WO1982002668A1 *Jan 29, 1982Aug 19, 1982Nautilus Sports Med IndElectronically monitored resistance exercising method and apparatus
WO1989001806A1 *Aug 22, 1988Mar 9, 1989Schwinn Bicycle CoBicycle racing training apparatus
WO1989001807A1 *Aug 22, 1988Mar 9, 1989Schwinn Bicycle CoBicycle racing training apparatus
WO1989008478A1 *Mar 6, 1989Sep 21, 1989Schwinn Bicycle CoBicycle support and load mechanism
Classifications
U.S. Classification600/520, 482/5, 73/379.7, 482/8, 482/63
International ClassificationA63B24/00
Cooperative ClassificationA63B2230/06, A63B24/00, A63B2230/062
European ClassificationA63B24/00