Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3846780 A
Publication typeGrant
Publication dateNov 5, 1974
Filing dateJul 24, 1973
Priority dateJul 24, 1973
Also published asCA1012225A, CA1012225A1, DE2435444A1, USRE29896
Publication numberUS 3846780 A, US 3846780A, US-A-3846780, US3846780 A, US3846780A
InventorsGilcher H
Original AssigneeWestinghouse Electric Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Intrusion detection system
US 3846780 A
Abstract
A wire comprised of an electrical conductor enclosed within insulation, is loosely positioned relative to an electrically conductive member. This combination is positioned to monitor disturbances caused by the intrusion of the protected area. The relative movement of the wire and the electrically conductive member caused by intrusion disturbances produces an electrical signal which is attributable to a capacitance change. The signal can be realized from either the electret characteristic of the wire or it can be realized by the application of a d-c bias voltage to the combination. A signal developed by the combination in response to a mechanical disturbance includes a low frequency and a high frequency component. The low frequency component, attributable to a "strain mode" of operation, developed by the displacement of the wire relative to the electrically conductive member by mechanical deflection of the conductive member whereas the high frequency component, attributable to an "acceleration mode" of operation, results from the vibration of the wire relative to the conductive member. The high frequency component code is comparable to a "ringing" condition much the same as is experienced by an accelerometer.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Gilcher Nov. 5, 1974 INTRUSION DETECTION SYSTEM [57] ABSTRACT [75] Inventor: Heinz Gilcher Export A wire comprised of an electrical conductor enclosed 73 Assignee; Westinghouse mu- Corporation, within insulation, is loosely positioned relative to an Pi b h p electrically conductive member. This combination is positioned to monitor disturbances caused by the in- [22] F'led: July 1973 trusion of the protected area. The relative movement [2]] A N 332,264 of the wire and the electrically conductive member caused by intrusion disturbances produces an electrical signal which is attributable to a capacitance [52] 340/261 179/1004} 317/246 change. The signal can be realized from either the 2,649,579 2,787,784 2,837,082 2,965,877 3,l09,l65 3,750,l27

Int. Cl. G08!) 13/16 58] Field of Search 340/261, 17; l79/]O0.4l B; 317/246 References Cited UNITED STATES PATENTS 8/1953 Alexander 340/l7 4/l957 Meryman et al 340/258 R 6/l958 Elliott et al. 340/17 12/1960 Stein et al 340/17 l0/l963 Bagno 340/261 7/1973 Ayers et al... 340/26] l0/l973 Burney et al. 340/261 X Primary Examiner-David L. Trafton Attorney, Agent, or FirmM. P. Lynch electret characteristic of the wire or it can be realized by the application of a d-c bias voltage to the combination. A signal developed by the combination in response to a mechanical disturbance includes a low frequency and a high frequency component. The low frequency component, attributable to a strain mode of operation, developed by the displacement of the wire relative to the electrically conductive member by mechanical deflection of the conductive member whereas the high frequency component, attributable to an acceleration mode of operation, results from the vibration of the wire relative to the conductive member. The high frequency component code is comparable to a ringing condition much the same as is experienced by an accelerometer.

11 Claims, 4 Drawing Figures I '7 we U Q} L l4 P LOW ELTP 24 FREQUENCY i 3o- RECORDER FILTER T 20 HlGH FREQUENCY PATENTEUNUV 5 I974 oZw30mmm l v mm IQ:

om 8 $2. mmamoowm 3 BEDSE l a 9 mm H INTRUSION DETECTION SYSTEM BACKGROUND OF THE INVENTION A typical prior art intrusion detection system for monitoring a protected area is described in detail in US. Pat. No. 3,438,02l issued Apr. 8, 1969. In this system a pair of fluid filled resilient tubes are buried'beneath the surface of the ground and associated pressure transducers develop output signals indicative of pressure changes representing the movement of the intruders. While this system provides a valuable and reliable technique for detecting intruders. it is relatively expensive and difficult to install, and requires treatment of the earth to preserve sensitivity under frozen ground conditions.

Recent efforts to utilize coaxial cables in this buried configuration have also failed due to the lack of sensitivity of the coaxial cables resulting from the tight packaging of the wire within the cable which effectively prevents movement of the conducting elements relative to one another in response to intrusion disturbances. The inherent compactness and tightness of the fabrication of a coaxial cable thus limits the output of the coaxial operation to a low frequency signal thus limiting the sensitivity of such a system and rendering it unacceptable in frozen ground applications.

SUMMARY OF THE INVENTION There is described herein a preferred embodiment of a novel detection system utilizing an insulated electrical wire loosely positioned within an electrically conductive tube member having an inside diameter substantially greater than the diameter ofthe wire. The primary mechanism of operation is a change of capacity between the wire and the tube produced by mechanical disturbance of the wire within the tube. The change in capacitance is transformed into a voltage signal which can be the result of an inherent electret characteristic of the wire developed during fabrication of the wire or can be provided or enhanced by the further application of a bias voltage to the wire. A charge is developed by the electret characteristic of the insulation or the d-c bias voltage and a change in capacitance produced by a mechanical disturbance produces an electrical signal. The loose positioning of the wire within the tube member causes the wire to contact the wall of the tube member at random and intermittent locations. In the event the combination of the tube member and wire is positioned beneath the surface of the ground, the wire will be displaced relative to the tube in response to surface disturbances and an output signal will be produced which includes both a low frequency and high frequency component. Due to the fact the wire is significantly closer to one wall of the tube than the opposite wall of the tube. the variation of capacitance produced by displacement of the wire relative to the near wall will be significantly greater than the variation in capacitance due to displacement of the wire relative to the far wall.

This wire-in-tube detection configuration provides advantages over prior art detection configurations for buried systems in that it does not require intimate contact with the soil to insure sensitivity.

DESCRIPTION OF THE DRAWINGS The invention will become readily apparent from the following exemplary description in connection with the accompanying drawings:

FIG. 1 is a schematic illustration of an embodiment of the invention;

FIG. 2 is a section on the line lIII of FIG. 1;

FIG. 3 is an electrical equivalent circuit of the embodiment of FIG. I; and

FIG. 4 is an alternate embodiment of the invention disclosed in FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT It has been determined experimentally through extensive testing that a significant improvement in intrusion detection systems can be achieved through the use 'of commercially available insulated electrical wire loosely positioned in contact with an electrically conductive member. A loose contact between the wire and the electrically conductive member permits free movement of the wire relative to the electrically conductive member in response to mechanical disturbance of the conductive member produced by the intrusion. Change in capacitance caused by the movement of the wire relative to the electrically conductive member is transformed into an electrical signal exhibiting a low frequency and/or a high frequency component of sufficient magnitude to permit identification of an intrusion. The electrical signal is developed by either applying a bias voltage to the wire or by utilizing an inherent electret characteristic of the insulation which is developed in the fabrication of commercially available wire.

The electret characteristic found in dielectric insulation which covers some commercially available electrical wire is a characteristic produced during the fabrication of the wire which establishes an electrical charge condition in the dielectric material. A common use of the electret characteristic is in the electret-foil capacitor microphone. In this microphone the electret is a MYLAR film that'is metalized on its outer side. The electret characteristic eliminates the need for a dc bias voltage.

The high and low frequency components capable of being developed by the combination of the loosely positioned wire relative to the electrically conductivemember in response to an intrusion disturbance, are both produced as a result in a change in capacitance developed in the vicinity of the intrusion.

The high frequency component, attributable to an acceleration mode of operation, results from the vibration of the wire relative to the electrically conductive member while the low frequency component, which is attributable to a strain mode" of operation results from the deflection of the electrically conductive memtion of FIG. 5 that the invention concept is equally applicable to a flat electrically conductive member with a wire loosely positioned thereon.

Referring to FIGS. 1 and 2 there is illustrated a disturbance detector 10 in an embodiment for use in buried applications comprised of a wire 12 loosely positioned within a tubular member 14. The wire 12 consists of an electrical conductor 16 and an insulating coating 18. The selection of the wire for use in the disturbance detector can be such to take advantage of the electret characteristic of some commercially available wire. Some insulating materials used in coating electrical wire exhibit an electret effect. Evaluation of numerous commercially available wire material indicates that the most significant electret signal is derived from a TEFLON coated electrical conductor. The tubular member 14 is constructed from an electrically conductive material such as a metal or a metalized plastic. The tube member 14 is connected to ground and the conductor 16 of the wire 12 is electrically connected to amplifier which in turn is connected to a signal processing circuit 30.

An electrial equivalent circuit of the embodiment of FIG. 1 is illustrated in FIG. 3. The signal source voltage source, be it the electret characteristic or a d-c bias voltage, is represented as a generator G, and the tube 14 and wire 12 capacitances are represented as capacitors C1 and C2.

Assuming the positioning of the disturbance detector 10 of FIG. 1 at a distance beneath the surface of the ground g, the occurrence of a disturbance on the surface of the ground resulting from personnel or vehicular movement will cause the wire 12 to be moved within the tube member 14. Two types of wire movement are represented in FIG. 1 occurring as a result of a disturbance. The wire movement represented by the dashed lines corresponds to displacement of the wire 12 from the tube contacting points P produced by deflection of the tube 14 in response to the pressure applied to the surface of the ground. The second movement of the wire l2 in response to a disturbance is represented by the dotted lines of FIG. 1 wherein the portions of the wire 12 between the contacts points P undergoes an acceleration mode or vibratory mode of movement due to the mechanical shock introduced by the disturbance.

The inside diameter of the tube member 14 is selected to be significantly larger than the outside diameter of the wire 12 such as would be represented by a quarter-inch copper tube and a No. 22 gauge wire. The positioning of the wire 12 within the tube 14 as illustrated in FIG. 1 locates the wire in a near wall relationship with one portion of the tube 14 such that a portion of the wire 12 adjacent to the contact point P establishes minimum distance Dl between the wire 12 and the near wall of the tube member 14. Since the minimum distance (air gap) provides a maximum capacitance. very small displacement of the wire relative to the near tube wall provides maximum capacitance modulation and in turn maximum signal voltages which are applied to the amplifier 20. In areas along the wire where the air gap is significantly larger, the same mechanical displacement of the wire 12 provides a much smaller capacitance change since the wire to the tube wall capacitance is much smaller and thus the proportional change in this capacitance is also much smaller. It is therefore obvious that for this detector configuration. the capacitance between the wire 12 and the far wall of the tube wall 14 is negligible. The distance between the wire 12 and the tube wall 14 as defined by Dl corresponds to the wire in a rest condition whereas the distance D2 corresponds to a typical displacement of the wire in response to a disturbance.

The signal produced as a result of a relative movement of the insulating material of the wire 12 relative to the conductive members corresponding to the tube 14 and electrical conductor 16 exhibits a low frequency and high frequency component. The low frequency component is a function of the displacement of the wire as illustrated by the dashed lines while the high frequency component corresponds to the dotted portion of the illustration of FIG. 1. The low frequency component is typically in the range of 0.1-10 hz. while a typical high frequency range corresponds to 10-100 hz. The output of the amplifier 20 is applied to a filter circuit 22 which effectively isolates the low frequency and high frequency components and applies the respective components through signal attenuating circuit 24 and 26 to a monitoring device herein represented as recorder 30. The high frequency component of the output signal of the detector circuit 10 is determined by the distance between the contact points P and the mass per unit length of the wire.

The isolation of the low frequency and high frequency component of the output signal permits independent monitoring of the components. It has been determined experimentally that the low frequency component provides characteristic information under certain operating conditions while the high frequency component provides information under other operating conditions. The use of the attenuating circuits 24 and 26 provides control of the relative weight attributed to the low frequency and high frequency components depending on the operating conditions to which the detector 10 is subjected.

For instance, it may be desirable to vary the relative sensitivity of the recorder 30 to the low frequency and high frequency components of the output signal under varying weather conditions. It has been determined experimentally that in underground installations of the detector 10, wherein the ground is frozen, the high frequency component reflects too wide a sensitive range to be effective while the low frequency component provides a relatively clear indication of intrusion disturbance. Under these conditions therefore the circuits 24 and 26 would be adjusted such that recorder 30 would respond primarily to the low frequency component of the signal developed by the detector 10. On the other hand, under high wind conditions it has been determined experimentally that less false alarms are recorded when monitoring the high frequency component of the detector signal. Under high wind conditions, detector systems utilizing a low frequency output signal such as the system in the above-identified patent, are sensitive to wind pressure changes on the ground which adversely affect the accuracy of the detector signal.

While the signal processing circuit 30 has been shown to consist of basic components which clearly indicate a typical utilization of the detector 10, it is apparent that the signal processing circuit illustrated can be replaced with a far more sophisticated electronic system which could cause automatic adjustment of the sensitivity of a monitoring device to the low and high frequency components of the detector device in response to changing conditions.

As mentioned earlier the mechanism for developing the detector signal can be based solely on the electret characteristic of the wire or solely on the application of a remote d-c bias signal or on the combination of the electret characteristic and the d-c bias signal depending on the particular application of the detector device. For instance in a buried application requiring extensive length of the detector device it may be necessary to incally conductive member, electrical insulating material disposed between said first and second electrically conductive members to establish a capacitance therebetween, disturbance of said substantially rigid first elecclude an external d-c bias source to provide an ade- 5 trically conductive member resulting in mechanical disquate signal output. A typical application of a d-c bias placement of said second electrically conductive memvoltage source is illustrated in FIG. 1. A voltage source her with respect to said first electrically conductive S is applied to the conductor 16 through a high impedmember, the displacement producing a change in said ance device 40. Isolation of the bias voltage from the capacitance. amplifier 20 is provided by capacitor 42. 1O 2. Apparatus as claimed in claim I wherein said insu- Referring to FIG. 4, there is illustrated an alternate lating material exhibits an electret characteristic, said embodiment of the detector device of FIG. 1. In place electret characteristic providing an electrical charge. of the tube member 14 illustrated for the buried appli- 3. Apparatus as claimed in claim 1 further including cation of the detector device of FIG. 1, there is illusa d-c voltage source operatively connected to said electrated a flat electrically conductive plate 42 positioned trically conductive members to establish an electrical relative to the entrance to the door D and having discharge on said insulating material. posed thereon an electrical wire 42. Once again the 4. Apparatus as claimed in claim 1 wherein the wire 42 as in the case of the wire 12 of the embodiment change in capacitance produced due to the displaceof FIG. I is loosely positioned relative to the electriment of the second electrically conductive member cally conductive member 40 such that impact by an in- 2 with respect to the first electrically conductive member trudcr on the surface of the conductive member 40 will is manifested by the develoment of an electrical signal, cause displacement of the wire 42 relative to the plate said electrical signal consists of a low frequency com- 40 thus producing an electrical signal in accordance ponent corresponding to the capacitance change prowith the operation described above. Amplifier 44 reduced' by separation of said first electrically conductive sponds to the electrical signal by activating alarm cirmember from said second electrically conductive memcuit 46. The embodiment of FIG. 4 is disclosed to her and a high frequency component corresponding to clearly indicate that the inventive concept is not limited the vibration of said second electrically conductive to the use of a tubular member as illustrated in FIG. 1, member. but rather extends to the basic concept of using an elec- 5. Apparatus as claimed in claim 1 wherein said first rrical wire loosely positioned relative to a conductive electrically conductive member includes a sheet 'of surface to develop an electrical signal in response to electrically conductive material, and said second electhe change in capacitance produced by displacement of trically conductive member isa wire resting loosely on the wire relative to a conductive member. said sheet of electrically conductive material with said Results of impact sensitivity tests of detectors utilizelectrical insulating material disposed therebetween. ing wires of different sizes and insulation and tubes of 6. In an intrusion detection system for responding to different diameters are presented in the following tabudisturbances, the C0mbinuti0n Of, a substantially rigid lation. It appears from the tabulation that clear insutubular member exhibiting electrical conductivity charlated TEFLON wire is probably better for a detecting acteristics, a flexible, loose fitting electrical conductor device utilizing electret characteristics of the wire than having an effective diameter which is substantially less a pigmented wire ofa similar type. It also appears that 40 than the inside diameter of said tubular member and there is a minimum inside tube diameter that will acbeing disposed within said tubular member in an intercommodate a particular wire size and still generate acmittent contacting relationship with an interior surface ceptable electrical signals. of said tubular member so as to be substantially closer Wire Capacitance Normalized Tube Description Pf/ft. Signal Diameters MVPP No. 20 Teflon flex wire blue 20 275 MV No 20 P.\'.C do. green 26 MV No 24 Teflon do. blue 16 275 MV .25" 0.0. No Teflon do. red I8 220 MV .176" I,D. No. 30 Teflon do. 275 MV No. 22 Teflon do, clear 18 330 MV No. 22 Teflon do. red 25.5 26 MV No. 30 Teflon do. I5 275 MV .IZS" O.D. No. 20 Teflon do. hlue 3| MV .085" ID. No. 24 Teflon do. blue 275 MV I claim: to one interior surface of the tubular member than to pp for monitoring disturbances Caused y the opposite interior surface of the tubular member, mechanical Shock PFe5$urep etco Comprising in electrical insulating material disposed between said tu-.- combination, a substantially rigid first electrically conb l member d id fl ibl glectrical conductor to) ductive member adapted to respond to d sturbance a establish a capacitance therebetween. a disturbance second electrically conductive member disposed in a causing displacement of the loosely positioned flexible loose fitting, intermittent contacting relationship with said first electrically conductive member and being mechanically free to move with respect to said first electrielectrical conductor relative to said substantially rigid tubular member causing a change in said capacitance, said change in capacitance resulting in the development of an electrical signal indicative of the disturbance.

7. Apparatus as claimed in claim 6 wherein said electrical insulating material is a coating on said flexible electrical conductor, the effective diameter of the combination of said flexible electrical conductor and the coating of electrical insulating material being substantially less than the inside diameter of said tubular memher.

8. Apparatus as claimed in claim 7 wherein the insulating material coating exhibits an electret characterishe.

9. Apparatus claimed in claim 7 including a d-c voltage source operatively connected to said flexible electrical conductor and said tubular member to establish a charge condition in said insulating material.

10. Apparatus as claimed in claim 6 wherein said electrical signal is comprised of a low frequency and high frequency component, wherein said low frequency component corresponds to the change in capacitance produced by the displacement of said wire element relative to said tubular member in response to said disturbance and said high frequency component corresponds to the vibration of said wire element relative to said tubular member in response to said disturbance.

11. Apparatus as claimed in claim 6 wherein said flexible electrical conductor is a wire.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2649579 *Feb 1, 1950Aug 18, 1953Standard Oil Dev CoDetector for seismic exploration
US2787784 *Apr 30, 1954Apr 2, 1957Meryman Harold TTriboelectric detecting system
US2837082 *Mar 18, 1954Jun 3, 1958Gay Packard RobertAccelerometer
US2965877 *Jun 10, 1957Dec 20, 1960James H SteinCapacitive-type line hydrophone
US3109165 *Sep 5, 1958Oct 29, 1963Specialties Dev CorpIntruder detecting system
US3750127 *Oct 28, 1971Jul 31, 1973Gen Dynamics CorpMethod and means for sensing strain with a piezoelectric strain sensing element
US3763482 *Feb 1, 1971Oct 2, 1973Gte Sylvania IncCoaxial cable transducer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4047166 *Aug 30, 1976Sep 6, 1977Gte Sylvania IncorporatedElectrostatically charged cable transducer
US4197529 *Feb 17, 1978Apr 8, 1980The United States Of America As Represented By The Secretary Of The NavyIntrusion detection apparatus
US4236109 *Dec 12, 1977Nov 25, 1980Lockheed CorporationDielectric monitored composite assembly
US4237421 *Oct 19, 1978Dec 2, 1980General Electric CompanySingle-electrode capacitance touchpad sensor systems
US4251849 *Sep 27, 1978Feb 17, 1981Alps Electric Co., Ltd.Trimmer capacitor
US4527150 *Sep 30, 1982Jul 2, 1985Beta Engineering & Industrial DevelopmentIntrusion detection system
US4994793 *Dec 8, 1989Feb 19, 1991Kevin CurtisWeight shift detector
US6967584Jul 28, 2003Nov 22, 2005Senstar-Stellar CorporationIntegrated sensor cable for ranging
US7479878Jul 28, 2004Jan 20, 2009Senstar-Stellar CorporationTriboelectric, ranging, or dual use security sensor cable and method of manufacturing same
US7881882 *Sep 25, 2006Feb 1, 2011Ut-Battelle, LlcApparatus and method for detecting tampering in flexible structures
US9362849 *Dec 10, 2010Jun 7, 2016Omron CorporationElectrostatic induction power generator
US20050024210 *Jul 28, 2003Feb 3, 2005Maki Melvin C.Integrated sensor cable for ranging
US20080024297 *Jul 28, 2004Jan 31, 2008Senstar-Stellar CorporationTriboelectric, Ranging, or Dual Use Security Sensor Cable and Method of Manufacturing Same
US20080077333 *Sep 25, 2006Mar 27, 2008Maxey Lonnie CApparatus and method for detecting tampering in flexible structures
US20130134828 *Dec 10, 2010May 30, 2013Omron CorporationElectrostatic induction power generator
DE4010774A1 *Apr 4, 1990Oct 11, 1990Hesa SpaAlarm- oder meldevorrichtung
WO2005013225A1 *Jul 28, 2004Feb 10, 2005Senstar-Stellar CorporationTriboelectric, ranging, or dual use security sensor cable and method of manufacturing same
Classifications
U.S. Classification340/562, 361/280, 361/278, 367/181, 367/177
International ClassificationG08B13/00, G08B13/20, G01V3/08, G08B13/10, H01H36/00, G08B13/26, G08B13/02, G08B13/22
Cooperative ClassificationG08B13/26
European ClassificationG08B13/26