Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3846799 A
Publication typeGrant
Publication dateNov 5, 1974
Filing dateAug 13, 1973
Priority dateAug 16, 1972
Also published asDE2341111A1
Publication numberUS 3846799 A, US 3846799A, US-A-3846799, US3846799 A, US3846799A
InventorsM Gueguen
Original AssigneeInt Standard Electric Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electronically step-by-step rotated directive radiation beam antenna
US 3846799 A
Abstract
This invention relates to an electronically rotatable antenna which includes several radially arranged Yagi antennae having a common drive element. Reflector and director elements of each Yagi antenna are sequentially rendered operative by biasing suitable diodes short-circuiting them to a ground-plate. The radiation pattern is step-by-step rotated. Directivity is increased by short-circuiting other elements belonging to other arrays than the main one, those elements defining generatrices of a parabola having the driver element as a focus and the reflector element as an apex.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Gueguen ELECTRONICALLY STEP-BY-STEP ROTATED DIRECTIVE RADIATION BEAM ANTENNA [75] lnventor: Michel Gueguen, Maurepas, France [73] Assignee: International Standard Electric Corporation, New York, NY.

[22] Filed: Aug. 13, 1973 [2]] App]. No.: 387,837

[30] Foreign Application Priority Data Aug. 16, 1972 France ..72.29274 [52] U.S. Cl. 343/833, 343/837 [5i] Int. Cl. H011 19/00 [58] Field of Search 343/701, 833-837, 343/846 [56] References Cited UNITED STATES PATENTS l.860,l23 5/1932 Yagi 343/833 2 2lO,666 8/1940 Herzog 343/701 Nov. 5', 1974 3,725,938 4/1973 Black et a1 343/70l Primary Examiner-Eli Lieberman Attorney, Agent, or Firm-John T. OHalloran; Menotti Lombardi, Jr.; Edward Goldberg [57] ABSTRACT This invention relates to an electronically rotatable antenna which includes several radially arranged Yagi antennae having a common drive element. Reflector and director elements of each Yagi antenna are se- 7 quentially rendered operative by biasing suitable diodes short-circuiting them to a ground-plate. The radiation pattern is step-by-step rotated. Directivity is increased by short-circuiting other elements belonging to other arrays than the main one, those elements defining generatrices of a parabola having the driver element as a focus and the reflector element as an apex.

2 Claims, 8 Drawing Figures PATENTEUNHV 5 1974 sum 10 3 FIG. 3

ELECTRONICALLY STEP-BY-STEP ROTATED DIRECTIVE RADIATION BEAM ANTENNA The present invention relates to a fixed frequency operation antenna having directional radiation pattern with a main lobe as narrow as possible and being electronically rotatable step-by-step. More particularly, it relates to an electronically rotatable antenna using Yagi-type arrays.

As it is known, a Yagi array comprises several parallel planar dipoles including, in order, a not-fed dipole called reflector, a fed dipole called driven dipole and a number of not-fed suitably spaced parasitic dipoles called directors. Such an array has a maximum radiation in the array plane toward directors.

Yagi array dipoles are typically constituted by antennas in the form of rods or wires having a height close to the spatial half-wave of the RF radiated signal, at frequency F (F =c/ the feeding point being the driven dipole middle point.

lt is easily conceivable that such a Yagi array is rotatable round the driven dipole, selected as an axis, so as to scan an area located in a predetermined angle, by the radiation beam.

However, when scanning velocity is relatively high and when scanned angle is so large as 360, mechanical rotation is difficult to perform, and it is preferable to rotate the beam by electronic means, either in a continuous manner or step-by-step.

Known art includes a number of electronic control embodiments for rotating fixed-antenna radiation beam. Particularly, it is known to use aerials made of a cylindrical reflector illuminated by a plurality of linear sources, wherein scanning is produced by either continuous or step-by-step electronic controlled varaible phase shifts applied to linear sources (ferrite phase shifters, varactor phase shifters). Such aerials are difficult to operate and the produced rotating beam is distorted in the course of the rotation.

Thus, a purpose of this invention is to provide a simple operational aerial having a directional radiation pattern which is step-by-step rotatable under electronic control without beam distortion.

According to this invention, the provided aerial is derived from a system including an assembly of S identical Yagi arrays having a common driven dipole and each comprising a reflector wire and p director wires, the array ranked O being possibly considered as produced by rotating array ranked (-1) by an angle 6 round the axis constituted by the driven dipole common to all arrays and rotation angle 6 being 360/S.

According to a feature of this invention, the driven dipole and the S l+p) wires have a height close to M4 and are normal to a ground plane made of a metal plate. The S (1+p) wires are connected to the said ground planeby unidirectional elements such PIN diodes which may have either a high impedance or a very low impedance depending on the bias voltage applied thereto.

Due to the image principle, a so constituted antenna roughly has with respect to the horizontal radiation beam over the said ground plane and taking into account hereafter mentioned considerations the same properties as an antenna without ground plane wherein driven dipole and the S (I+p) wires would have twice this height, thus would be close to M2. In a so designed antenna, the driven dipole is fed from an RF source, at

frequency F, mounted between its base and the ground plane. As a result thereof, wires associated to diodes operating at very low impedance may be considered as equivalent to dipoles tuned at the RF frequency F =c/)\ while wires associated to diodes operating at very high impedance are considered as elements of height 1/4, free in space, which do not substantially contribute to the synthesis of the radiation beam.

In the following of this specification, short-circuited wire" means every wire, when it is associated to a diode operating at very low impedance and insulated wire" means every wire, when it is associated to a diode operating at very high impedance.

The above considerations show that the radiation beam aligned with angular coordinate (Q-l) 6 is produced by utilizing the (p+l short-circuited wires of the array ranked Q while the (S-l) (1+p) other wires are insulated wires.

In that case, the step-by-step beam rotation is produced by biasing each of the diodes of the (1+p) wires ranked Q l by logic signals, at level l for instance, then each of the diodes of the 1+p) wires ranked Q 2, and so on up to Q S.

For conveniency, each director wire will be considered as determined by its angular rank Q [l s Q s S] and by itsradial rank k [l s k s p], and will be defined by the symbol D Any director wire D will have as Rho-Theta coordinates in the ground plane:

Rho: (Q-l) 6 Theta: d d being the radius of a circle centered on driven dipole base and which includes on its circumference all the director wires of radial rank k.

To be noted that, in a known Yagi array, the beam directivity directed from driven dipole to directors would be substantially improved by setting, behind the driven dipole at a distance of about M4, a reflecting surface constituted by a parabolic cross-section cylinder. Typically, such a reflecting surface could be simulated by its skeleton" constituted by the reflector wire and some additional parasitic wires suitably arranged with their axes confused with some generatrices of the said parabolic reflecting surface.

To be noted that, in the device according to this invention, there are, for each radiation beam position, only (p+l) short-circuited wires while the other (S-l) (p+l wires are not used to produce the radiation beam synthesis since they are insulated wires.

But, amongst those unused wires belonging to arrays of radial rank (Q+M,, or (Q-M,,-), i S, some of them are very close to a genaratrix of the fictive parabolic reflecting surface which might accompany the Yagi array of radial rank 0.

As a consequence, according to another feature of this invention, each time the (p+l wires of radial rank Q are short-circuited, each of the p director wires of radial rank k and of angular rank (Q+M,,-) [or (Q+M,,-S), if (Ql-M,,) S]9 and each of the p director wires of radil rank k and of angular rank (Q-M,,.) [or (QM,,-+S), if (QM,,. 0] are simultaneously shortcircuited. The numbers M, are independent of Q and there is only one M,,- for a value of k. The k values of M are determined by the Rho-Theta coordinates of the D closer director wires to the generatrices of a parabolic cross-section cylinder having as a focus the driven dipole base and as an apex the base of the reflector wire R in the array ranked 1.

Thus, it is to be noted that, in that device, at each time, (l+3p) wires are short-circuited and that, in a complete radiation pattern rotation, a director wire is used three times, i.e., once as a properly said director and twice as an additional reflector wire.

According to another feature of this invention, the logic control device controlling the radiation beam step-by-step rotation is constituted by a S-stage shiftregister fed by a clock having a frequency equal to /1- (T being the duration of the radiation beam rotation by 360) and an assembly of pS three-input OR gates whose outputs are each connected to the bias input of the PIN diode associated to one of the pS director wires.

Each of the S shift-register outputs is provided with (l-l-3p) connections. A first connection connects the output of the Q stage to the bias input of the PIN diode associated to reflector wire ranked Q. p second connections connect the output of the Q'" stageto one input of each of the OR gates whose outputs control the diodes associated to director wires of angular rank Q.

p third connections connect the output of the Q'" stage to one input of each of the p OR gates whose outputs control the diodes associated to the director wires of arrays of angular rank (Q+M,,-) or (Q+M,, S). p fourth connections connect the output of the Q stage to one input of each of the p OR gates whose outputs control the diodes associated to the director wires of arrays of angular rank (QM,,.) or (QM,,-+S).

Other features of the present invention will appear more clearly from the following description of an embodiment, the said description being made in conjunction with the accompanying drawings, wherein:

FIG. lu shows a Yagi array on a ground plane FIG. 1b is a cross-sectional view of the radiation pattern along the ground plane,

FIG. 2 shows schematically the projections of the ground plane of the various parasitic wires or elements consituting the antenna according to this invention, in the case ofp 3,

FIG. 3 shows how a PIN diode associated to a wire is mounted,

FIGS. 46 explain the antenna operation when utilizing additional reflector wires, and

FIG. 7 is a diagram ofa logic control device, according to this invention, for step-by-step rotating the radiation beam.

FIG. 1 shows (in la) a driven dipole and four parasitic wires, i.e., a reflector R and three directors D D and D normal to aground plane, forming a Yagi array (in this embodiment, p 3).

The driven elements and the four parasitic elements are metal wires having a height of about )t/4, A being the free-space wave length corresponding to the frequency F ofan RF source feeding the base of the driven element.

If the ground plane is infinite and perfectly conductor, the array radiation pattern is, when applying the image principle, identical with respect to the portion located above the ground plane to that which would be produced by use ofa Yagi array comprising a driven element having a middle feeding point and four parasitic elements having a height of about )\/2. With such an assumption, there is no radiation under the ground plane since it is infinite.

lb shows the cross-section of the radiation pattern by the ground plane. It is to be noted the presence of a main lobe toward the three director wires and three subsidiary lobes on the other side.

Typically, the ground plane is not infinite and is constitued by a metal circular plate whose center is on the driven element and radius is r,,. In such conditions, due to diffraction effect at plate rim, electromagnetic radiation is no longer null under ground plane and the radiation pattern shape is, above ground plane, lightly moditied with respect to its horizontal structure, more substantially modified with respect to its vertical structure, the shorter is r,,, the more oblique is the maximum radiation axis with respect to ground plane.

Still typically, ground plate conductance has a finite,

value, tangential electric field is thus not null, and surface waves may appear at the plate level, particularly when conductance thereof is rather bad. Reflections may occur due to plate rims and generate a stationary wave system which may disturb Yagi array operation if the junction point of one of the parasitic elements to ground plane is at a current node, since, in that case, electric charges flowing through the concerned wire flow with difficulty into ground plane. This drawback is overcome by providing a very good conductance to ground plate through a suitable surface processing.

FIG. 2 show projections of an assembly of Yagi arrays on ground plane, according to this invention.

Several Yagi arrays are shown which have a driven element as a common axis. Those arrays having a similar structure, directors D D and D and reflectors R, are respectively located on circles having the driven element as a center and radii d d d and r, respectively.

The beam rotation angular step depends on the number of arrays selected to scan 360.

Thus, the step is: 0 360/S, S being the number of Yagi arrays. For instance, with S 72, 6 is of 5.

Thus, the arrays are angularly shifted by 5. However, for reason of conveniency in the specification, but only for that reason, a privileged role has been, in the drawings, given to the Yagi array of angular rank Q l with its four wires R D D and D Either director or reflector wires are identical, but their heights, close to M4, are different, all wires located on the same circle have the same height. Those wires are usually constituted by good conductance metal rods whose diameter is of about A/ I00.

The ground plate having a radius r, is not shown in FIG. 2.

FIG. 3 shows how a PIN diode 2 connected to a parasitic element 1 is mounted. Diode 2 has one of its terminals connected to the ground plate 4. The other termiha] is connected, through a choke inductance 3, to a bias source, not shown, but located under ground plate 4.

When a positive signal is applied to diode 2, through inductance 3, diode 2 passes a current I. Direct resistance of diode 2 depends on I, and, for a current-of about 20 mA, resistance thereof is less than I ohm. The condition is the same as the element 1 was directly connected to ground plate 4. Then, applying the image principle, element 1 has the same behaviour as a wire insulated in free space, having a height close to )\/2 and then capable to ring.

When a negative signal is applied to diode 2, through inductance 3, diode 2 remains blocked, to such an extent that the negative signal is high enough to preclude RF signal peak to switch diode 2 on. In that case, im-

I pedance of wire 1 with respect to ground plate 4 is high and only limited by the diode capacitance (about 0.25 pF), which represents, with F 1 GHz, an insulation of about 600 ohms. In such conditions, it is the sameas the wire, having a height close to M4, was insulated in free space. It cannot then ring at frequency F and does not contribute to the radiation beam synthesis.

Electronic beam rotation results from the fact that the four parasitic elements of array angularly ranked Q l, are-first short-circuited by applying a positive signal to the four associated diodes, then a positive signal is applied to the four. parasitic-elements of array angularly ranked Q 2, and so on to angular rank Q S.

To improve the directivity of the antenna according to this invention, as shown in FlG. 4, other elements have to be considered. in FIG. 4, the four wires R D,, D and D of array angularly ranked Q l are located on axis R x as well as driven element P. Axis R y is normal to axis R x. Dotted line parabola, is determined by apex R,, focus P and directrix H z- H,,R R P r. Circles of radii d d,, and d intersect the said parabola at points A and A, B and B, C and C, respectively.

In the coordinate system xR y, parabola equation is or in Rho-Theta coordinates p being modulus PA and (I) argument of vector E A from P to any point A of the parabola.

If additional parasitic wires are located on that parabola and are normal thereto. antenna directivity is emphasized toward axis R,.\, according to this invention.

To make it clear, reference may be made to FIG. 5 wherein parabola is indicated in solid line. Considering a parasitic wire which projects on ground plane at A on parabola. it appears that, in ground plane, projection T of P on axis Ax parallel to R,.\ is such that AP AT= 2r, according to well known parabola characteristics.

The parasitic wire, normal to ground plane at A, is responsive to electric field radiated by driven element with a delay due to distance PA and to Lentz law effect relating to the field induced into a parasitic wire.

Be F,, e the field at P created by driven element (to 2'n'F). The field close to point A is: E= KE e. 42 uni/11A (O Ksl) The field in the parasitic wire is out of phase by 180 and is The field radiated by the parasitic wire at point T is:

Then. the field at T is phased with the field radiated by driven element. As a result, directivity toward R x is emphasized. The importance of that emphasis will depend on product KK'K", factors K and K" depending on distances PA and AT, and factor K on lenght of parasitic wire at A. Any way, even if product KK'K has not the optimum value, it is always over zero, and there is a more or less important directivity emphasis. The same considerations would be valuable for other points of FIG. 4 (A', B and B, C and C).

According to this invention, it will be noted that there are always amongst director elements, which are not used and belong to arrays angularly ranked (M,,.+l or (SH-M certain ones which are very close to the hereabove determined parasitic reflector wires. There .will be two such director wires per circle of radius d (k l, 2 or 3), M having the values M M and M Those six director wires will be, according to this invention, utilized as additional reflector wires.

Using polar coordinates of the parabola, it is to be noted that cross-points A, B and C of that parabola and circles of radii d have arguments:

Ir/ 1 l, 2 or 3) The rank M of the closest director wires to crosspoints will be determined by the double inequality:

M /S 0 s 2 are sin W (1,. M, 1/5- 0 Among the two possible values for M obviously that which is selected will result in the smallest deviation Adm.

(b 2 are sin By way of example, it will be considered a Yagi array, wherein:

The resulting values for M M and M5 (see FIG. 6) are:

M 24, i.e., (M 1) =25 M 15, i.e., (M l) 16 M3: l2, i.e., Angular deviations Ad,- are respectively:

symmetrically, cross-points A, B and C of parabola and circles of radii d,,. have arguments:

(b 2 (180 arc sin Md,-

sult therefrom, the directivity of the Yagi array angularly ranked Q l is substantially improved, if at the of improved directivity beam will be obtained by sequentially short-circuiting at the same time parasitic As the M are independent of Q, electronic rotation wires of arrays angularly ranked 2, 3, etc., as well as director wires belonging to arrays angularly ranked:

(M 2) and (S 2 M,,.)

(M 3) and (S 3 M etc.

Taking into account the rotation principle, which implies a period S in the definition of the angular rank when one of the ranks (M Q) or (S Q M reaches the value s, at the next radiation beam rotation step, angular rank 1 is obtained again.

By way of a numerical example, considering the 24th rotation step, short-circuited wires will beong to the following arrays:

for reflector wires: 24,

for director wires located on circle with radius (1, 24, 48, 72,

for director wires located on circle with radius (1 z 24, 39, 9,

for director wires located on circle with radius 11;, 24, 36 and 12.

At the next step, the 25th, the result will be:

An antenna according to this invention will now be described. Considering the basic Yagi array, it comprises:

a driven element of height close to M4,

at reflector element of height also close to M4, distance from driven element being equal to M4,

three director wires spaced respectively by about 0.34 A, and the first being distant from driven element also by 0.34 A.

All elements are constituted by metal rods having a diameter of about6 l A.

Director element heights are relatively critical, since they influence gain value and antenna impedance. Usually, those heights are slightly less than M4 and decreasing when farther from driven element.

Distances between director elements are less critical and modifications might be envisaged for avoiding taking into account the finite ground plate conductance to locate an element at a plate point where there is no surface wave current node.

Ground plate is constituted by a metal disc of radius r,,, for instance longer than 2A. lts surface must be carefully processed to provide a very good conductance so as to avoid too important surface stationary Waves.

As already mentioned, the S arrays are identical and their positions on ground plate are derived from basic array position by successive rotations, each step being 0 360/S.

By way of an example, an antenna according to this invention and designed to operate at frequency F of 1 GHz will comprise a ground plate of radius 1-,, 350 mm long.

Roughly, antenna performances are the following:

Radiation power higher than 2 kW, peak Band width from 2 to 5 percent of center frequency lnput impedance close to 50 ohms Maximum main lobe gain with respect to isotropic antenna: from 8 to 10 dB,

secondary lobe level: 10 dB under main lobe.

Horizontal plane radiation beam total aperture: i l5 at 3 dB Vertical plane aperture: larger than 30 with maximum between 15 and 25.

That vertical plane radiation beam dissymmetry is produced by the finite dimension ground plate.

Beam rotation period: 1/15 s Number of steps: 72

Time duration of each step: about 1 ms.

The logic device, as shown in FIG. 7, for rotating step-by-step the radiation beam will now be described.

S-stage shift register 5, with pulse inputs r I and pulse outputs S S S S is controlled from a clock 6. Pulse frequency from 6 is equal to S/r, 7 being the time duration of radiation beam rotation by 360.

First stage of 5 is constituted by a delay-flip-flop having a specific input d. Output S, of 5 is connected to set input of a dissymmetric flip-flop 7. Output of 7 is connected to specific input d of 5. Reset input e of 7 is connected from output S, of 5.

When pulse, at frequency S/r, shifted in register 5, reaches the last stage, output 5,, goes up to level 1 That level is, through flip-flop 7, applied to input d of the first stage of Sand, at the next pulse from clock 6, the same level I is present on output S, of 5. 7 is turned off, :1 goes to level 0" and, at the second pulse from 6, S is reset to O.

Thus, pulses shifted along 5 have a width'of about 3/7 and, at a time, only one output is at level l Pulses from outputs 8,, S S ,5 are utilized for biasing diodes which short-circuit:

reflector wires angularly ranked 1, 2, 3,

director wires angularly ranked 1, 2, 3,

director wires angularly ranked (M l), (M 2), M, 3

director wires angularly ranked (S l M,,), (S 2-M,,-),(S+3M,,-),,..

Each output 5,, of resistor 5 is thus provided with (1 3p) connections, One of thos connections is coupled to the terminal of the diode which short-circuits the reflector wire belonging to the Yagi array angularly ranked Q andthe 3p other connections are used according the following rules.

p OR gates, such as 8-1, 8-2 and 8-3 have their outputs connected to terminals of diodes which shortcircuit DH, D DH, D D,, of array 1. Or gates 8-1, 8-2 and 8-3 are each provided with three inputs, one of them being connected from output 5, of register 5.

Due to the fact that there are S arrays, there are Sp Or gates similar to 8-1, 8-2 and 8-3, each group of p gates having its outputs connected to terminals of diodes which short-circuit director wires D D D D D of array angularly ranked O. The said OR gates have one of their three inputs connected from output 5,, of register 5.

Due to the fact that each director wire is used three times during a beam rotation (once as a properly said director element and twice as an additional reflector element) each diode associated thereto is biased three time for a beam rotation, which explain the use of three-input OR gates.

Considering the director wire D,,-", the Or gate, associated thereto, has its firstinput connected from input angularly ranked Q in register 5, its second input connected from output angularly ranked (M Q) and its third input connected from output angularly ranked (S Q k)- By way of example, it will be assumed that S =72 and p 3. As already mentioned, in this case:

The three inputs of OR gates 8-1, FIG. 7; are connected from outputs: 8,, S and of register 5'.

The three inputs of OR gate 8=2 are connected from outputs: S S and S of register 5.

The three inputs of OR gate 8-3 are connected from output: 5,, S and S of register 5.

While the principles of the present invention have been hereaboce described in relation with a specific embodiment, It will be clearly understoos that the said description has only been made by way of example and does not limit the scope of this invention.

What is claimed is:

1. A directive radiation beam antenna of the type wherein said beam is rotated angularly in a step-by-step fashion comprising:

a plurality of S identical Yagi-type arrays having a common driven element, each of said plurality comprising: one reflector parasitic element; and a plurality p of director parasitic elements D,,-

where l k p;

wherein the array angularly ranked Q is derived from the array -1 by rotating it by an angle 6 360/S around the axis of said common driven element;

a ground plane comprising a circular metal ground plate having a common axis with said common driven element, the S l+p) parasitic elements having a height of approximately 1/4 and arranged perpendicular to said ground plate;

a source of a bias signal;

a source of RF energy mounted between the base of said common driven element'and said ground plate for feeding said common driven element;

a plurality of unidirectional current conducting elements each coupled to said ground plate, said source of bias signal and one of the S (1+p) parasitic elements, the impedance of each of said unidirectional elements being dependent upon said bias signal; and a logic control device for controlling the step-by-step radiation beam rotation, said control device comprising:

an S-stage shift register having a clock frequency equivalent to 8/7, 7 being the time duration required for a 360 beam rotation; and

a plurality of pS three input OR-gates, each having outputs connected to the bias input of each unidirectional current conducting element associated with a director element, each of the S shift register outputs being provided with 1+3p) connections, the first coupled from the Qth stage to the bias input of the unidirectional element associated with the director element angularly ranked O, p second ones coupled from the Qth stage output to the input of each of the OR-gates having outputs which control unidirectional elements associated with director elements angularly ranked O, p third ones coupled from Qth stage output to the inputs of eachof the p OR- gates whose outputs control the unidirectional elements associated with director elements of arrays angularly ranked (Q+M,,.) or-(Q+M,,.S) if (Q+M,,.) is greater than S, and p fourth ones coupled from the Qth stage to the input of each of the OR-gates whose outputs control unidirectional elements associated with director elements of arrays angularly ranked (QM or (QM,,.+S) if (QM is less than 0, where the k values of M are independent of Q and are determined by the polar coordinates of the closest director elements D of generatrices of a cylinder having a parabolic cross-section having as a focifs tlie base of the driven element and having as an apex the base of the reflector element of the associated array.

2. A directive radiation beam antenna according to claim 1 wherein unidirectional elements are PIN diodes having one terminal being connected to ground plate and the other terminal connected to the corresponding parasitic element base and to a choke inductance through which a suitable bias voltage is applied thereto. =l l

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1860123 *Sep 3, 1926May 24, 1932Rca CorpVariable directional electric wave generating device
US2210666 *Jan 9, 1937Aug 6, 1940Lorenz C AgHigh frequency radiation structure
US3725938 *Oct 5, 1970Apr 3, 1973Sperry Rand CorpDirection finder system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4260994 *Nov 9, 1978Apr 7, 1981International Telephone And Telegraph CorporationAntenna pattern synthesis and shaping
US4387378 *Jun 9, 1981Jun 7, 1983Harris CorporationAntenna having electrically positionable phase center
US4631546 *Jan 14, 1985Dec 23, 1986Rockwell International CorporationElectronically rotated antenna apparatus
US4700197 *Mar 3, 1986Oct 13, 1987Canadian Patents & Development Ltd.Adaptive array antenna
US6337668 *Feb 28, 2000Jan 8, 2002Matsushita Electric Industrial Co., Ltd.Antenna apparatus
US6437740Jul 18, 2000Aug 20, 2002Stelx, Inc.Single receiver wireless tracking system
US6473036Feb 2, 2001Oct 29, 2002Tantivy Communications, Inc.Method and apparatus for adapting antenna array to reduce adaptation time while increasing array performance
US6515635May 1, 2001Feb 4, 2003Tantivy Communications, Inc.Adaptive antenna for use in wireless communication systems
US6587080Jul 18, 2000Jul 1, 2003Centraxx Corp.Single receiver wireless tracking system
US6590535Jul 18, 2000Jul 8, 2003Stelx Inc.Single receiver wireless tracking system
US6600456May 16, 2001Jul 29, 2003Tantivy Communications, Inc.Adaptive antenna for use in wireless communication systems
US6683567Dec 12, 2002Jan 27, 2004Brian De ChamplainSingle receiver wireless tracking system
US6774845 *Dec 22, 2003Aug 10, 2004Brian De ChamplainSingle receiver wireless tracking system
US6873293Mar 10, 2003Mar 29, 2005Ipr Licensing, Inc.Adaptive receive and omnidirectional transmit antenna array
US6876331Mar 14, 2003Apr 5, 2005Ipr Licensing, Inc.Mobile communication handset with adaptive antenna array
US6876337Jul 29, 2002Apr 5, 2005Toyon Research CorporationSmall controlled parasitic antenna system and method for controlling same to optimally improve signal quality
US6888504Jan 31, 2003May 3, 2005Ipr Licensing, Inc.Aperiodic array antenna
US6972729Mar 29, 2004Dec 6, 2005Wang Electro-Opto CorporationBroadband/multi-band circular array antenna
US6989797Dec 23, 2003Jan 24, 2006Ipr Licensing, Inc.Adaptive antenna for use in wireless communication systems
US7009559Aug 10, 2004Mar 7, 2006Ipr Licensing, Inc.Method and apparatus for adapting antenna array using received predetermined signal
US7034759Mar 10, 2005Apr 25, 2006Ipr Licensing, Inc.Adaptive receive and omnidirectional transmit antenna array
US7034761Jul 12, 2004Apr 25, 2006Ipr Licensing, Inc.Directional antenna
US7038626Jan 20, 2003May 2, 2006Ipr Licensing, Inc.Beamforming using a backplane and passive antenna element
US7046202Jul 30, 2004May 16, 2006Ipr Licensing, Inc.Folding directional antenna
US7047046Jun 17, 2004May 16, 2006Ipr Licensing, Inc.Antenna steering for an access point based upon probe signals
US7088306Feb 22, 2005Aug 8, 2006Ipr Licensing, Inc.High gain antenna for wireless applications
US7103386Jun 17, 2004Sep 5, 2006Ipr Licensing, Inc.Antenna steering and hidden node recognition for an access point
US7138956 *Feb 25, 2004Nov 21, 2006Wifi-Plus, Inc.Apparatus and method for a multi-polarized ground plane beam antenna
US7176844Apr 11, 2005Feb 13, 2007Ipr Licensing, Inc.Aperiodic array antenna
US7180464Jul 27, 2005Feb 20, 2007Interdigital Technology CorporationMulti-mode input impedance matching for smart antennas and associated methods
US7180465Aug 11, 2005Feb 20, 2007Interdigital Technology CorporationCompact smart antenna for wireless applications and associated methods
US7181182Mar 15, 2005Feb 20, 2007Interdigital Technology CorporationMethod for steering a smart antenna for a WLAN using a self-monitored re-scan
US7190313Mar 14, 2005Mar 13, 2007Ipr Licensing, Inc.Mobile communication handset with adaptive antenna array
US7200376Mar 15, 2005Apr 3, 2007Interdigital Technology CorporationMethod for steering smart antenna beams for a WLAN using MAC layer functions
US7215297Jan 17, 2006May 8, 2007Ipr Licensing, Inc.Adaptive antenna for use in wireless communication systems
US7224321Jul 27, 2005May 29, 2007Interdigital Technology CorporationBroadband smart antenna and associated methods
US7236759Mar 15, 2005Jun 26, 2007Interdigital Technology CorporationMethod for steering smart antenna beams for a WLAN using signal and link quality metrics
US7239288Sep 29, 2004Jul 3, 2007Ipr Licensing, Inc.Access point antenna for a wireless local area network
US7268738Mar 7, 2006Sep 11, 2007Ipr Licensing, Inc.Beamforming using a backplane and passive antenna element
US7289827Sep 9, 2004Oct 30, 2007Ipr Licensing, Inc.Method and apparatus for performing directional re-scan of an adaptive antenna
US7289828Mar 15, 2005Oct 30, 2007Interdigital Technology CorporationMethod for steering a smart antenna for a WLAN using a periodic re-scan
US7295811Feb 4, 2005Nov 13, 2007Interdigital Technology CorporationMethod for performing measurements for handoff of a mobile unit operating with a switched beam antenna in a wireless communication system, and corresponding system
US7308264Feb 4, 2005Dec 11, 2007Interdigital Technology CorporationMethod for identifying pre-candidate cells for a mobile unit operating with a switched beam antenna in a wireless communication system, and corresponding system
US7324817Dec 30, 2004Jan 29, 2008Interdigital Technology CorporationWireless communication method and apparatus for selecting and reselecting cells based on measurements performed using directional beams and an omni-directional beam pattern
US7340254Feb 4, 2005Mar 4, 2008Interdigital Technology CorporationMeasurement opportunities for a mobile unit operating with a switched beam antenna in a CDMA system
US7366464Jun 3, 2005Apr 29, 2008Interdigital Technology CorporationAccess point operating with a smart antenna in a WLAN and associated methods
US7403160Jun 16, 2005Jul 22, 2008Interdigital Technology CorporationLow profile smart antenna for wireless applications and associated methods
US7428408Sep 16, 2005Sep 23, 2008Interdigital Technology CorporationMethod for operating a smart antenna in a WLAN using medium access control information
US7453413Nov 24, 2003Nov 18, 2008Toyon Research CorporationReconfigurable parasitic control for antenna arrays and subarrays
US7463201Feb 13, 2007Dec 9, 2008Interdigital CorporationAperiodic array antenna
US7482981Jul 28, 2005Jan 27, 2009Interdigital Technology CorporationCorona wind antennas and related methods
US7528789May 8, 2007May 5, 2009Ipr Licensing, Inc.Adaptive antenna for use in wireless communication systems
US7530180Feb 15, 2007May 12, 2009Ipr Licensing, Inc.Mobile communication handset with adaptive antenna array
US7587173Jun 17, 2004Sep 8, 2009Interdigital Technology CorporationAntenna steering for an access point based upon spatial diversity
US7609648Jun 17, 2004Oct 27, 2009Ipr Licensing, Inc.Antenna steering for an access point based upon control frames
US7633442Jun 2, 2005Dec 15, 2009Interdigital Technology CorporationSatellite communication subscriber device with a smart antenna and associated method
US7746830Jul 18, 2005Jun 29, 2010Interdigital Technology CorporationSystem and method for maintaining wireless channels over a reverse link of a CDMA wireless communication system
US7764957May 1, 2007Jul 27, 2010Interdigital Technology CorporationMethod for performing measurements for handoff of a mobile unit operating with a switched beam antenna in a wireless communication system, and corresponding system
US7773566Jul 21, 2004Aug 10, 2010Tantivy Communications, Inc.System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US7936728Nov 29, 2001May 3, 2011Tantivy Communications, Inc.System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US8134980May 22, 2007Mar 13, 2012Ipr Licensing, Inc.Transmittal of heartbeat signal at a lower level than heartbeat request
US8139546Apr 27, 2010Mar 20, 2012Ipr Licensing, Inc.System and method for maintaining wireless channels over a reverse link of a CDMA wireless communication system
US8155096Nov 30, 2001Apr 10, 2012Ipr Licensing Inc.Antenna control system and method
US8175120Feb 7, 2001May 8, 2012Ipr Licensing, Inc.Minimal maintenance link to support synchronization
US8274954Mar 10, 2009Sep 25, 2012Ipr Licensing, Inc.Alternate channel for carrying selected message types
US8331943Feb 28, 2008Dec 11, 2012Interdigital Technology CorporationMeasurement opportunities for a mobile unit operating with a switched beam antenna in a CDMA system
US8369277Mar 13, 2012Feb 5, 2013Intel CorporationSignaling for wireless communications
US8437330Apr 9, 2012May 7, 2013Intel CorporationAntenna control system and method
US8509268Dec 22, 2011Aug 13, 2013Intel CorporationMinimal maintenance link to support sychronization
US8638877Nov 29, 2011Jan 28, 2014Intel CorporationMethods, apparatuses and systems for selective transmission of traffic data using orthogonal sequences
US8687606Aug 10, 2012Apr 1, 2014Intel CorporationAlternate channel for carrying selected message types
US8792458Mar 19, 2012Jul 29, 2014Intel CorporationSystem and method for maintaining wireless channels over a reverse link of a CDMA wireless communication system
DE3237136A1 *Oct 7, 1982Apr 12, 1984Licentia GmbhAntenna having a polar diagram which can be pivoted electronically
EP0172626A1 *Jun 26, 1985Feb 26, 1986Canadian Patents and Development LimitedAdaptive array antenna
EP1629570A2 *May 18, 2004Mar 1, 2006IPR Licensing, Inc.High gain antenna for wireless applications
EP1729146A1 *Jun 1, 2005Dec 6, 2006BAE SYSTEMS (Defence Systems) LimitedDirection finder antenna receiver system
WO1982004503A1 *Jun 9, 1982Dec 23, 1982Harris CorpAntenna having electrically positionable phase center
WO2000065372A2 *Apr 27, 2000Nov 2, 2000Champlain Brian DeSingle receiver wireless tracking system
Classifications
U.S. Classification343/833, 343/837
International ClassificationH01Q19/12, H01Q19/28, H01Q3/44, G01S1/02
Cooperative ClassificationG01S1/02, H01Q3/446, H01Q19/12
European ClassificationG01S1/02, H01Q19/12, H01Q3/44C
Legal Events
DateCodeEventDescription
Mar 19, 1987ASAssignment
Owner name: ALCATEL N.V., DE LAIRESSESTRAAT 153, 1075 HK AMSTE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INTERNATIONAL STANDARD ELECTRIC CORPORATION, A CORP OF DE;REEL/FRAME:004718/0023
Effective date: 19870311