Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3847606 A
Publication typeGrant
Publication dateNov 12, 1974
Filing dateMar 8, 1973
Priority dateMar 8, 1973
Also published asCA1027000A1, DE2411178A1
Publication numberUS 3847606 A, US 3847606A, US-A-3847606, US3847606 A, US3847606A
InventorsHecht L, Schwartz L, Spiegel G
Original AssigneePitney Bowes Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Protecting photoconductor surfaces
US 3847606 A
A method and composition for protecting the surface of photoconductors which are employed in electrophotography and xerography which comprises coating the photoconductor surface with a thin uniform layer of a polyurethane material to protect and stabilize the photoconductive properties of the photoconductor. The polyurethane layer should have a charge acceptance of at least 1,000 volts.
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Schwartz et al.

1451 Nov. 12, 1974 PROTECTING PHOTOCONDUCTOR SURFACES Inventors: Leon J. Schwartz, Monsey, N.Y.;

Gerald M. Spiegel, Jr., Bridgeport; Leon N. Hecht, Jr., Stamford, both of Conn.

Assignee: Pitney-Bowes, Inc., Stamford, Conn.

Filed: Mar. 8, 1973 1 Appl. No.: 339,084

US. Cl. 96/l.5, 96/1.8 Int. Cl G03g 5/04 Field of Search 96/1, 1.5, 1.8;

References Cited UNITED STATES PATENTS 7/1964 Clark 96/l.8

2,860,048 11/1958 Deubner 96/15 3,743,609 7/1973 Hirata 96/15 3,682,632 8/1972 Fumiaki 96/1.5 3,726,838 4/1973 Eimer 117/161 KP Primary ExaminerDavid Klein Assistant Examiner-John L. Goodrow Attorney, Agent, or FirmWilliam D. Soltow, .lr.; Albert W. Scribner; Peter Vrahotes [57] ABSTRACT 8 Claims, N0 Drawings PROTECTING PI-IOTOCONDUCTOR SURFACES BACKGROUND OF THE INVENTION This invention relates to xerography and electrophotography and more particularly to a method and composition for protecting and stabilizing the photoconductive insulating materials employed in connection therewith.

In the art of xerography, it is usual to form an electrostatic latent image on a member or plate which comprises a substantially electrically conductive backing member such as, for example,*a paper or metallic memher having a photoconductive insulating material applied to the surface thereof. It has previously been found that a suitable electrostatic image forming member for xerographic purposes is an electrically conductive backing member, for example, metal, which may be employed in the form of a sheet, drum or belt, having applied to the surface thereof, a photoconductive material, for example, selenium, inorganic materials, such as cadmium sulfo-selenide, cadmium sulfide, zinc oxide and mixtures thereof; organic materials such as complexed poly-N-vinyl carbazole, and other like photoconductive materials useful for such purpose. These electrostatic image forming members are characterized by being capable of receiving electrostatic charge and selectively dissipating such charge when exposed to a light pattern.

In the practice of the art of xerography, employing such electrostatic imageforming members as hereinabove described, it has been found that said electrostatic image forming members suffer from various disadvantages. It has been found that handling of the light sensitive surface has a tendency to cause contamination thereof and the subsequent image reproduction capabilities of the member are adversely affected. In addition, the xerographic process is inherently abrasive to the surface of the image forming members employed which results in a wearing out of the photoconductive surface requiring frequent replacement of the image forming member.

Specifically, although there are some materials which are known to possess satisfactory photoconductive properties, they have not heretofore been capable of use in xerographic processes, and especially xerographic copying machines because of their high susceptibility to the abrasive wear encountered in the operation of such machines. For example, U.S. Pat. No. 3,658,523 discloses a cadmium sulfo-selenide/zinc oxide photo-conductor composition which cannot be employed in xerographic copying machines for this reason.

' Further, it has been found that superior xerographic results are obtained when a magnetic brush toning process is employed for image reproduction. However, this magnetic brush toner process is highly abrasive to the photoconductive surface of the image forming member resulting in xerographic reproductions of inferior quality and frequent replacement of the image forming member.

Attempts have been made to protect the surface of photoconductors, all with limited success. For example, overcoating of photoconductors has been suggested in Dessauer et al, U.S. Pat. No. 2,901,348; Deubner, U.S. Pat. No. 2,860,048; Kensella, U.S. Pat. No. 3,146,145 and Petruzella, U.S. Pat. No. 3,617,265. These prior art attempts have had limited success for a number of reasons. Initially, they are not universally applicable to the variety of photoconductive materials with which they are employed, either because of incompatability of the materials in their physical or chemical relationship or because inapplicability of the process employed in obtaining the desired protected photoconductor member. One manifestation of this latter disadvantage of the prior art teachings can be seen from a study of the process disclosed in U.S. Pat. No. 3,617,265 wherein a heating-quenching process is employed in preparing the desired protected photoconductor member. The application of such a process to various photoconductive materials having binders of organic resin materials, a widely employed practice, will result in a basic and detrimental alteration of the photoconductive member and its photoconductive properties.

We have now discovered a method of producing an electrostatic image forming member useful in the practice of xerography which overcomes the problems heretofore experienced with prior art image forming members which were susceptible to surface abrasion and contamination. More particularly, we have discovered a method whereby the abrasion susceptible surface of the photoconductive material employed in the electrostatic image forming member of the xerographic process may be protected which also tends to stabilize the photoconductive properties thereof.

SUMMARY OF THE INVENTION In general, our invention comprises the application to the photoconductive surface of an electrostatic image forming member, of a thin uniform coating of polyurethane to provide positive protection against abrasion and contamination. Specifically, we have found that the photoconductive surface of electrostatic image fonning members can' be protected from abrasion and contamination by the application thereto of a thin, uniform coating of a polyurethane.

The polyurethane coating which may be satisfactorily employed in the practice of this invention must have'a very high resistance to abrasion. In addition, the polyurethane must have low surface leakage properties as indicated by a high dielectric strength and surface resis- 1 tance, so that the applied electrical charges will not be I dissipated by bypassing of the underlying photoconductive material. The total surface leakage of the polyure thanes which are useful in the practice of this inventionmay be determined in the same manner as is done for photoconductors, i.e., a thin coating of the polyure-' thane, about 1 mil or less, is tested for charge acceptance. We have found that when the polyurethane is tested by being charged in a Victoreen Electrostatic Paper Analyzer the polyurethane must accept a charge equivalent to at least 1,000 volts/mil of thickness and preferably at least 1,500 volts/mil, to yield satisfactory results hereunder.

DETAILED DESCRIPTION OF THE INVENTION The polyurethane coating must be inert to the photoconductive material upon which it is to be applied and must have good adhesion properties which will permit its permanent bonding to the photoconductive surface on which it is applied. The adhesion properties of the polyurethane must provide a uniform coating and help prevent air pockets or other surface irregularities which could interfere with the photoconductive properties of the image forming member. In addition to the foregoing, the polyurethane coating must have fast air drying properties to permit facile coating thereof on the photoconductive surface. In the practice of this invention we have found that a polyurethane capable of being cured by solvent evaporation provides satisfactory results. I

The electrically conductive backing member which may be employed in the electrostatic latent image forming member useful in the practice of the instant invention may be comprised of any material that has been previously found. to be satisfactory in the practice of xerography. Included among the electrically conductive materials whichmay be employed in the practice of this invention are metals, for example, aluminum or brass, conductive paper, graphitized Mylar, metallized Mylar and other like material.

The photoconductive insulating materials which may be satisfactorily employed in the practice of this invention are those photoconductive materials which have heretofore been so employed in the practice of xerography and which may be satisfactorily applied on the electrically conductive backing materials. Among the photoconductive materials which may be employed in the practice of the instant invention are such materials as selenium, cadmium sulfo-selenide, cadmium sulfide, zinc oxide, poly-N-vinyl carbazole and other like materials. In particular, we have found that a mixture of cadmium sulfo-selenide/zinc oxide is both protected and electrically stabilized by a thin, uniform coating of polyurethane.

The polyurethane protective coating employed in the practice of this invention must have the physical properties set forth hereinabove. In addition, we have found that satisfactory results are obtained when the polyurethane coating employed is possessed of a charge acceptance of at least 1,000 volts/mil of thickness. In the preferred practice of the instant invention, we have found that most satisfactory results are obtained when a polyurethane having a charge acceptance of at least 1,500 volts/mil is employed. The successful practice of this invention is dependent upon the characteristics and properties of the polyurethane employed and although many polyurethanes were tested it was unexpectedly found that only the polyurethanes possessing the specific properties set forth hereinabove provided satisfactory results.

The polyurethane protective coating must be applied to the photoconductive surface in such a manner as to avoid adversely affecting the photoconductive properties thereof. We have found that the thickness of the polyurethane coating must be controlled to avoid masking the photoconductive response to the underlying photoconductive material, while at the same time providing a coating which is thick enough to provide the required protection. We have found that satisfactory results are obtained when the coating is applied in a uniform thickness of from about 0.02 to about 01 mils; and preferably when the coating was applied uniformly in a thickness of from about 0.04 to about 0.08 mils.

The polyurethane coating may be applied in any manner which is known and convenient to the skilled worker, for example, spraying, painting, Mayer rod, doctor blade or reverse roller applicators, which will provide a uniform coating of the polyurethane in the required thickness. In addition, care must be exercised in the use of solvents employed in the application of the polyurethane coating to the photoconductive surface so as to avoid interaction of the solvents with the underlying photoconductive materials or binders which may have been employed in connection therewith. Satisfactory solvents which we have found to be employable in connection with the polyurethane coating material of this invention include such solvents as isopropanol, cellosolve acetate and methyl ethyl ketone. although other solvents may be employed as may be de-, termined by the worker skilled in the art. I

The effects of mechanical wear and bumishing have been found to be particularly pronounced with the use of a mixed pigment photoconductor system of cadmium sulfo-selenide and photoconductive zinc oxide. As set forth in copending application Ser. No. l34,730 and assigned to the assignee of this application, the photoconductor composition should comprise a binder having a mixed pigment therein of from 20 percent to percent of cadmium sulfo-selenide and from 30 percent to percent zinc oxide by weight of total pigment. The mole fraction ratio of selenium to selenium plus sulfur in the cadmium sulfo-selenide should be from 0.05 to 0.7 e.g. where n equals the number of atoms of sulfur and selenium the ratio (n(Se)/n(S)+n(Se)) is from 0.05 to 0.7.

When a photoconductive insulating composition of cadmium sulfo-selenide/zinc oxide is used in a xerographic machine without a top coating there are substantial changes in the electrical properties of the photoconductor which reduce its useful life below commercially acceptable levels. With a thin top coating of a polyurethane having a charge acceptance of at least 1,000 volts per mil of thickness, however, the photoconductor is commercially usable.

Table A shows the necessity for particularly protecting the surface of a cadmium sulfo-selenide/zinc oxide photoconductor from bumishing. The effects of burnishing were simulated by rubbing the surfaces with cotton.

Table A indicates that the mixed CdSSe/ZnO photoconductor shows a significant reduction in acceptance voltage as compared to either of the constituents when CdSSe and ZnO Crushed Together and ZnO particles interact when the surface is abraded.

Table B below illustrates the effects of changing the pigmentto binder ratio (P/B) and CdSSe/ZnO ratio.

TABLE B Fraction of Acceptance Voltage Remaining Aftcr Burnishing Table C below illustrates the mechanism of burnishing by simulating particle interaction by crushing the dry pigment powders before formulating.

' TABLE ,c

This invention is illustrated by the following examples.

, EXAMPLE 1 A polyurethane resin having a charge acceptance of in excess of 1,500 volts/mil of thickness (commercially available from Cargill Co. as a percent solution under the designation Cargill-X-l 5 I 3-30" an aliphatic type urethane having a molecular weight of from 23,000 to 25,000) was-applied to the surface of a cadmium sulfo-selenide/zinc oxide mixed pigment photoconductor in different thicknesses of from 0.04 to 0.08 mils by diluting the polyurethane to various solid concentrations before coating. The higher the percentage of solids, the thicker the coating. The control had no top coating at all. The respective photoconductor propv erties were measured by employment of a modified Victoreen Electrostatic Paper Analyzer and the results thereof are set forth in TableD below:

Acceptance Voltage I Sample Range (Volts) (fc CdSSe 625 720 0.24 0.32 Crushed CdSSe 615 630 0.33 0.43 CdSSe ZnO 575 580 0.13 0.19 Crushed CdSSe ZnO 590 630 0.19 0.26 CdSSe Crushed ZnO 510 555 0.10 0.17

Crushed CdSSe Crushed ZnO 485 .540

. TABLE D (fcs) (avg.)

It is indicated from Table C that simple mechanical action alone on the CdSSe does not account for the significant differences observed, as is the case when the much harder ZnO particles abrade the surface of the CdSSe particles in the mixed pigment system. Lubricants such as diphenylamine and clay addedto the mixture have somewhat helped resistance to bumishing by reducing the interaction of the particles, but top coating with a thin layer of polyurethane provides more effective protection. In the above example there was no evidence of increased dark decay as a result of crushing. This is very evident in burnished coatings and probably operates by electrostatic charge injection into the binder surface as a result of friction. A thin uniform top coating of polyurethane in accordance with the present invention provides positive protection against h ffe s, i

The materials of Table D were then subjected to 2500 cycles of simulated magnetic brush bumishing and were again tested producing the results set forth in Table B below.

EXAMPLE n A photoconductive test belt was made using the following formulation for the photoconductor composi: tion:

Pigments 90 gms, CdSSe (Dark Red pigment available from Ferro' Corp. containing a Se/S+Se mole fraction ratio of 0.36 270 gms, ZnO (Photox 801 from New Jersey Zinc Cu) v I Binder 133.4' gms 45 percent polyurethane '(Estane 5715 from B. F. Goodrich) solution in methyl ethyl ketone. r I Solvents 136.6 gms methyl ethyl ketone and 1 210.0 gms methyl isobutyl ketone. t The pigment to binder ratio was 6:1 with a solvent t binder ratio of 7:1 for a total solids content of about 50 percent, of which the pigments were in the ratio of percent CdSSe and 75 percent ZnO by weight.

Because of the limited wetability of the pigments by the polyurethane binder solution the following was done to produce a smooth dispersion: 1. The 90 gms CdSSe, 136.6 gms methyl ethyl ketone, 2l0 gms methyl isobutyl ketone and 5 gms polyurethane/methyl ethyl ketone solution were milled for four minutes in a Kady mill. 2. The 270 gms of ZnO and 5 more gms polyurethane/methyl 1 ethyl ketone solution were-added to the above'and Kady milled for 5 more minutes. 3. The remaining (123.4 gms) polyurethane/methyl ethyl ketone solution was added to the above and Kady milled for 5 more minutes. 4. The above mixture was then charged into aball' mill, milled for 30 minutes and filtered twicethrough cheesecloth. A A

. 8 1. A CdSSe Maroon pigment from Ferro Corp. containing 'Se in a mole ratio of 0.51 Se to Se+S was used instead of the Dark Red pigment. 2. Pigments were in the ratio 35 percent CdSSe to 65 about 1500 cps after 1.5 hours of ball milling. Coating and top coating were accomplished in the same way as in Example 11, poly-N-vinyl in a final coming thickness of 2.0 mils. The photoconductive belt was installed in a commercial xerographic copier and'run for 2,500 copies with no'change in copy quality.

EXAMPLE 1V The procedure of Example 1 was followed except that the photoconductive underlying material was poly-nvinyl carbazole/trinitrofluorenone complexed organic photoconductor. The photoconductive: properties of the image forming member were not adversely affected.

while the reuse capacity of the photoconductor was increased significantly.

EXAMPLE v The procedure of Example I was followed except that the underlying photoconductor material employed was amorphous selenium. Equivalent results to those obtained in Example IV were experienced with the amorphous selenium photoconductor.

EXAMPLE Vl A comparative test was run to demonstrate the satis factory resultsobtained with the polyurethanes of'the instant invention. A polyurethane whichhas a chargev acceptance of less than 1,000 volts/mil, (and is available from the K1 Quinn Co. under the designation Quinn 2780") was subjected to the same procedures as set forth in Example 1. The results obtained are set (fcs) (avg) Polyurethane diluted 10:

The above procedure yielded a very smooth dispersion with a viscosity of about 2,000 cps after wetting out over night. After filtering again through cheesecloth the above dispersion was coated onto a metallized Mylar belt using a laboratory knife coater. After air drying for one-half hour, a top coat of Cargill-X1513- 30 polyurethane solution diluted to 11.5 percent solids was applied using the same coating technique. The resulting coating was very smooth to the touch and had an average thickness-of 1.7 mils.

After air drying over night the belt was installed in a commercial xerographic copying machine and successfully made 13,000 high contrast copies.

EXAMPLE 111 Another photoconductive belt was made using the same method as in Example 11 with the following changes.

1t will thus be seen from the above that a protective top coat both protects and stabilizes xerographic photoconductors, and particularly the mixture of cadmium sulfo-selenide and photoconductive zinc oxide as a photoconductor. It will also be seen that the top coating should have a charge acceptance of at least 1,000 volts per mil of top coat thickness and preferably 1,500 volts per mil.

having a mixture of cadmium sulfoselenide and photoconductive zinc oxide for electrostatic imaging and a thin, uniform top coating of polyurethane having a thickness from 0.02 to 0.1 mil closely bonded to and substantially over the entire surface of said photoconductive insulating material.

percent ZnO. 3. The viscosity of the dispersion was The invention may be variously otherwise embodied.

2. The composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,000 volts/mil of thickness.

3. The composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,500 volts/mil of thickness.

a. wherein the proportion of cadmium sulfoselenide is 20 percent to percent and the proportion of zinc oxide is 30 percent to percent by weight of total pigment; and

C. a thin uniform top coating of polyurethane is adhered to said composition,

1. said polyurethane coating having a charge acceptance of at least 1000 volts per mil of thickness.

6. The xerographic plate defined in claim 5 wherein said binder is polyurethane.

7. The xerographic plate defined in claim 5 wherein said polyurethane coating has a thickness of from 0.02 to 0.1 mil.

8. The xerographic plate defined in claim Swherein the mole fraction ratio of selenium to sulfur in said cadmium sulfo-selenide is from 0.05 to 0.7.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2860048 *Jun 13, 1955Nov 11, 1958Haloid Xerox IncXerographic plate
US3140174 *Jun 23, 1959Jul 7, 1964Xerox CorpProcess for overcoating a xerographic plate
US3682632 *Jun 4, 1969Aug 8, 1972Ricoh KkCopying material for use in electrophotography
US3726838 *Dec 7, 1971Apr 10, 1973Bayer AgPolyurethane based coating compositions
US3743609 *Dec 23, 1971Jul 3, 1973Konishiroku Photo IndProcess for producing photoconductive materials
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3966471 *Dec 26, 1974Jun 29, 1976Ricoh Co., Ltd.Electro photosensitive materials with a protective layer
US4006020 *Mar 13, 1975Feb 1, 1977Xerox CorporationSelenium-arsenic alloy
US4168165 *May 5, 1977Sep 18, 1979Mita Industrial Company LimitedElectrophotographic photosensitive material suitable for offset printing and lithography and process for production thereof
US4190445 *Oct 6, 1977Feb 26, 1980Canon Kabushiki KaishaElectrophotographic photosensitive media and process for manufacturing thereof
US4256823 *Oct 19, 1977Mar 17, 1981Canon Kabushiki KaishaElectrophotographic photosensitive media
US4346159 *Feb 14, 1978Aug 24, 1982Fuji Xerox Co., Ltd.Charge-retentive layer
US4666780 *Aug 8, 1985May 19, 1987Minnesota Mining And Manufacturing CompanyDielectric coating for recording member
US4733255 *May 1, 1986Mar 22, 1988Minnesota Mining And Manufacturing CompanyDielectric coating for recording member
US5064715 *Mar 22, 1989Nov 12, 1991Minnesota Mining And Manufacturing CompanyAs charge buildup inhibitor, electrography
U.S. Classification430/67, 430/94, 430/88
International ClassificationG03G5/08, G03G5/147
Cooperative ClassificationG03G5/14769
European ClassificationG03G5/147D2D10