Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3848273 A
Publication typeGrant
Publication dateNov 19, 1974
Filing dateJan 29, 1973
Priority dateFeb 2, 1972
Also published asCA994956A, CA994956A1, DE2205808A1, DE2205808B2, DE2205808C3
Publication numberUS 3848273 A, US 3848273A, US-A-3848273, US3848273 A, US3848273A
InventorsO Frey
Original AssigneeSulzer Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Shank for bone implants
US 3848273 A
The shank is provided with texturized zones in the external surface to insure uniform contact between the bone cement and the shank when the shank is implanted. The texturized zones allow the shank to be withdrawn readily from a bone and can be formed to depths of 10 to 100 mu .
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Frey Nov. 19, 1974 SHANK FOR BONE IMPLANTS OTHER PUBLICATIONS [75] Inventor: Otto Frey, Winterthur, Switzerland V1ta1l1um Surg1ca1 Appliances, (catalog) by Austenal 1 Asslgneei sulzer Brothers e th 00., New York, NY. 1964, page 23, F. R. Thompson,

Swltzerland Hip Prosthesis Relied Upon. [22] il J 1973 Surgical Implants-The Role of Surface Porosity in Fixation to Bone & Acr Iic b R. Peter Welsh et al. 1, N .1 7 803 Y Y 1 [211 App 0 32 The Journal of Bone & Joint Surgery, Vol. 53-A, No.

5, July 1971. [30] Foreign Application Priority Data Feb. 2, 1972 Switzerland 1550/72 Primary E i h Gaudet Assistant Examiner-Ronald L. Frinks [52] U.S. C1. 3/1, 128/92 C, 128/92 CA Attorney, Agent, or Firm Kenyon & Kenyon Remy [51] Int. Cl. A6lf l/24 c & Chapin [58] Field of Search.... 3/1; 128/92 C, 92 CA, 92 B, 128/92 BA, 92 BC; 32/10 A [57] ABSTRACT [56] References Cited UNITED STATES PATENTS The shank is provided with texturized zones in the external surface to insure uniform contact between the 2,719,522 10 1955 Hudack 128/92 CA bone cement and the Shank when the Shank is 2,721,387 10/1955 Ashucklan 32/10 A 3,067,740 12/1962 Haboush 1213/92 CA Plamed- The textumed Zones allow the Shank be 3314420 4/1967 Smith a 28/92 C withdrawn readily from a bone and can be formed to 3,605,123 9/1971 Hahn 3/1 depths 011010 FOREIGN PATENTS OR APPLICATIONS 5/1952 Italy 128/92 CA 8 Claims, 7 Drawing Figures 1 SHANK FOR BONE IMPLANTS This invention relates to a shank for a bone implant.

Bone implants, such as joints for the hip, elbow and wrist, usually have shanks which are engaged in corresponding passages in the particular bone concerned and are anchored in the passage by means of a quicksetting bone cement such as methylmethacrylate. It has been found that the bone cement, while curing, often changes volume either by increasing or, and more frequently, by contracting. Because of this, and particularly where the volume changes occur lengthwise of the shank, the volume changes are very often the cause of the bone cement becoming detached from some parts of the shank surface. The parts affected then cease to be able to transmit any load from the shank to the bone. This, in turn, leads to recession of the bones in s the parts concerned, so that the shank starts to work loose. The load also tends to become increasingly concentrated in the remaining unloosened partsof the shank, often to such an extent that the shank ruptures.

A main reason for the above problems is that presentday bone cements cure rapidly and are relatively highly viscous plastics with poor contact properties, i.e., the cements do not readily form an accurate negative of the shank surface.

Daily practice with bone implants and their shanks has also shown the need for the implant and the anchorage of the implant to be so devised that the implant can be withdrawn readily from the bone at any time without damage to the bone surrounding the shank.

Accordingly, it is an object of the invention to provide a shank for an implant which is capable of compensating for changes in volume in a bone cement during setting.

It is another object of the invention to preclude the loosening of bone implant shanks in a bone due to changes in the volume of a bone cement.

Briefly, the invention provides a shank having texturized zones of depressions in an external surface for anchoring a bone implant in a bone. The zones are generally disposed in the load bearing zones of the surface of the shank while the shank narrows in cross-section toward one end.

In use, the shank is secured in a bone by a suitable bone cement so that the cement fills the spaces within the texturized zones of depressions.

Advantageously, the depth of the depressions in each zone is between and 100 microns (1.1.). Shallower depths lead to unreliable adhesion between the cement and the shank surface, and depths of more than 100 microns (u) readily result in air bubbles remaining when the shank is driven into the bone cement, the bubbles impairing adhesion. Also, the possibility of withdrawing the shank from the bone is impaired in increasing proportion as the depressions are made deeper. The optimum depth is governed very largely by the particular bone cements used, more particularly their viscosity, changes in volume and their ability to make good contact, i.e., the extent to which they can mate accurately with a texture on the shank surface to provide a faithful copy in reverse of the texture.

In order to ensure satisfactory adhesion, at least the bearing and load-taking surfaces are provided with the texturized zones of depressions. For example, in one embodiment these surfaces are provided with regular toothing extending transversely of the direction in which the implant is introduced into and withdrawn from the bone. In this event, to facilitate withdrawal, the distance between discrete teeth can increase towards the narrow end of the shank.

Textures in the form of recesses of a shape resembling shells or troughs have proved satisfactory in other embodiments of the invention. Both kinds of texture can, of course, be used with advantage simultaneously.

For instance, in the case of a multiple polygonal shank, the load-taking and the bearing surfaces can have toothing while the other surfaces can have shell-like recessings. To further improve adhesion, the texturized shank surface can also be roughened, eg by sand blast-- ing with 0.05 to 0.2 millimeters (mm) diameter silica pellets.

Conveniently, to improve the fatigue strength of the shank, the edges and corners at junctions between the various surfaces which make up a multi-surface polygonal shank, and the raised and recessed junctions between the various teeth and between and in the troughs, are very rounded and free from projections.

These and other objects and advantages of the invention will become more apparent from the following detailed description and appended claims taken in conjunction with the accompanying drawings in which:

FIG. 1 illustrates a sectional view through a femur fitted with a prosthetic head having a shank according to the invention;

FIG. 2 diagrammatically illustrates a sectional view through an arm fitted with an artificial elbow joint using shanks in accordance with the invention;

FIG. 3 diagrammatically illustrates a sectional view of a prosthetic wrist joint fitted in a forearm and a carpal bone using shanks according to the invention;

FIG. 4 illustrates a considerably'enlarged and diagrammatic plan view of atexturized zone of depressions in the form of regularly disposed trough-like recesses;

FIG. 5 illustrates a vew taken on line VV of FIG.

FIG. 6 illustrates a side elevational view of a cutting bit for forming the depressions shown in FIGS. 3 and 4; and

FIG. 7 illustrates a plan view of the bit of FIG. 6.

Referring to FIG. 1, a prosthetic femur head 1 has been implanted in a femur 2 which has been appropriately prepared by surgery. The head 1 includes a shank 3 anchored by means of a bone cement 4, e.g. methyl methacrylate, in a passage or recess 5 in the femur bone 2 whose relatively compact cortical substance is shown more darkly dotted than the porous spongy substance. In the part near the head 1, the shank 3 has a polygonal large-area shape with rounded comers and edges. In order to prevent accidental turning, the shank cross-sectional shape resembles a kite (FIG. 6) and in the end-distal from the exposed end merges, on the assumption that the shape narrows on all sides and continuously, into a substantially trapezoidal cross-section The surface of the shank 3 which is non-porous has a texturized zone which is, indicated in FIG. 1 by trough-like discrete unconnect recesses or depressions between teeth of a regular or uniformly formed toothing. An endeavor is also made to show, in diagrammatic and sketch form, the toothing formed as texturizing on the surfaces 6, 7 which appear just as section lines. Also indicated is an increase in tooth spacing towards the exposed end of shank 3.

Referring to FIG. 2 as another example of implant shanks having texturized surfaces, an elbow joint 8 has a shank 9 on one part which shank 9 narrows on all sides. The shank 9 is introduced into a recess or passage or the like in a humerus 10 and retained by bone cement 4. A shank 11 on the other part of the joint 8 is anchored similarly in an ulna 12.

Referring to FIG. 3, for a wrist joint 13, one shank 14 is retained by bone cement 4 in a radius bone 25 and another shank 26 is anchored by bone cement 4 in a carpal bone and/or metacarpal bone 27.

Referring to FIGS. 4 and which are views' to a considerably enlarged scale, the texturizing can take the form e.g. of trough-like or shell-like recesses or depressions 15 disposed regularly in rows a, b, c. If the raised parts between the discrete shells 15 are also removed inside the various rows a, b, c, the resulting toothing is very advantageous for the surfaces 6 and 7. The advantages of toothing are that, in cooperation with a shank shape that narrows on all sides and continuously, a fitted shank can be removed simply by applying a force sufficient just to release the shank by one toothing step in the withdrawal direction. Thereafter, the shank can readily be withdrawn from the cement bed.

Referring to FIG. 5, the shank material 16 is usually one of the known metal alloys which are conventionally used for bone implants. As already emphasized, the depth 1 of the depressions in the texturized zones can be between and 100 ;1.. From 20 to 30 microns ([1,) has been found a very good value for the depth 1 in existing shanks where methyl methacrylate is used as the bone cement. Experiments by the Applicant has also shown that satisfactory dimensions for a single shell of shell-like texturizing are given by a ratio of length u to width v to depth t of 12 4: l.

The surface 17 of the texturized shank 3 has the texturizing roughened as well, to further improve adhesion between the cement 4 and the shank 3. That is, the portions between the depressions which are rounded so that the depressions mergetogether smoothly, can be roughened. As mentioned, this roughness is produced by blasting with silica pellets of from 0.05 to 0.2 millimeters (mm) diameter.

A technique which has proved satisfactory for producing the shell-like texturing, is the cutting or milling of the periphery of the shank transversely of a longitudinal direction. A suitable tool 20 for this can be seen in FIGS. 6 and 7. The cutting bit has, at the junction between the cylindrical portion and the circular end face, a radius r of curvature which is adapted to the bit diameter d and to the required trough size. Also, the bit has a central plane surface s which is also of aparticular diameter. As FIG. 7 shows, the bit 20 has six lips 21 a, 21

b. Two lips 21 a are disposed opposite one another to cover the whole bit along a diameter, whereas the'other four-lips 21 b extend only to the edge of the plane surface. While being texturized, the shank 3 is positioned relatively to the cutter bit 20 in the manner visible in FIG. 6. v

As already mentioned, the trough depth t arising from the cutting or milling operation is mainly governed by the cutting radius r. The length u can be controlled to some extent by cutter speed and/or the rate of feed, and the width v can be varied within limits by varying the line spacing of the cutting operation. The same tool 20 can be used to produce toothing, but instead of cutting being performed by the cutting edges of radius r, the cutting is performed by the side walls of the cutting edges.

As an example, for a texturizing of the kind specified with the ratio ofu to v tot 12:4: 1 and with t to z 20 microns t), the cutter 20 has the diameter d of 8 millimeters (mm), the radius r of curvature of approximately 3.25 millimeters (mm) and the diameter of the plane surface s of approximately 1.5 millimeters (mm). The feed in this case is 250 mm/min. and cutter speed is approximately 8 meters/minute (m/min).

The texturizing can also be formed in the shank surface e.g. by means of forming punches.

What is claimed is:

l. A solid shank for implanting in a bone cement to anchor a bone implant in a bone, said shank having a narrowing cross-sectional area towards one end and an external non-porous surface having discrete unconnected depressions therein between raised portions of said shank, said depressions being between 10 microns and microns depth.

2. A shank as 'set forth in claim 1 wherein said depressions are separated by roundedportions to merge together smoothly.

3. A shank as set forth in claim 1 wherein said depressions extend into said surface for a depth of between 20 microns and 30 microns.

4. A shank as set forth in claim 1 having a longitudinal axis and wherein said surface includes at least two load bearing zones having said depressions therein, each zone having a regular toothing extending transversely of said longitudinal axis to fonn said depressions.

5. A shank as set forth in claim 4 wherein said regular toothing includes transverse rows of spaced apart teeth with the spacing between discrete teeth increasing toward said one end of said shank.

6. A shank as set forth in claim 1 wherein said zones includes a plurality of regularly disposed trough-shaped depressions.

7. A shank as set forth in claim I having a plurality of longitudinal side walls defining a generally trapezoidal cross-sectional area, at least two of said side walls having said depressions therein.

8. A shank as set forth in claim 10 wherein said depressions are each formed as a single shell of a length (u) to width (v) to depth (t) ratio of 12:4:1.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTIQN Patent No. 3,848,273 Dated November 19, 1974 OTTO FREY Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column l, line 59, "10" should be --l--.

Signed and sealed this 4th day of February" 1975.

(SEAL) Attest:

McCOY M. GIBSON JR. Attesting Officer c. MARSHALL DANN Commissioner of Patents FORM P0405) (10459) uscoMM-oc 60376-P69 U.$. GOVERNMENT PIINTIIQG OFFICE 2 I", -':'l3.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2719522 *Jul 8, 1952Oct 4, 1955Stephen S HudackArticular replacement
US2721387 *Jul 13, 1953Oct 25, 1955Edward S AshuckianArtificial tooth
US3067740 *Sep 8, 1959Dec 11, 1962Edward J HaboushHip joint prosthesis
US3314420 *Oct 23, 1961Apr 18, 1967Haeger Potteries IncProsthetic parts and methods of making the same
US3605123 *Apr 29, 1969Sep 20, 1971Melpar IncBone implant
IT471394A * Title not available
Non-Patent Citations
1 *Surgical Implants The Role of Surface Porosity in Fixation to Bone & Acrylic by R. Peter Welsh et al., The Journal of Bone & Joint Surgery , Vol. 53 A, No. 5, July 1971.
2 *Vitallium Surgical Appliances, (catalog) by Austenal Co., New York, N.Y. 1964, page 23, F. R. Thompson, Hip Prosthesis Relied Upon.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4021865 *Aug 14, 1975May 10, 1977John CharnleyFemoral prosthesis
US4064566 *Apr 6, 1976Dec 27, 1977NasaMethod of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement
US4064567 *Sep 15, 1976Dec 27, 1977The Sampson CorporationProsthesis-to-bone interface system
US4153953 *Apr 14, 1978May 15, 1979Grobbelaar Charl JProsthetic hip joint
US4266302 *Oct 2, 1979May 12, 1981Etablissements TornierFemoral pin for hip prosthesis
US4287617 *Oct 2, 1979Sep 8, 1981Etablissements TornierFemoral pin for hip prosthesis
US4608052 *Apr 25, 1984Aug 26, 1986Minnesota Mining And Manufacturing CompanyImplant with attachment surface
US4714467 *Mar 25, 1986Dec 22, 1987M A N Technologie GmbhReinforced fiber bone replacement implant having treated surfaces and a method for its manufacture
US4865603 *Feb 4, 1988Sep 12, 1989Joint Medical Products CorporationMetallic prosthetic devices having micro-textured outer surfaces
US5507833 *Sep 28, 1994Apr 16, 1996Kim-Med, Inc.Hip replacement system and method for implanting the same
US5522894 *Mar 29, 1993Jun 4, 1996Draenert; KlausBone replacement material made of absorbable beads
US6120544 *May 15, 1998Sep 19, 2000Eska Implants Gmbh & Co.Femur endoprosthesis for articial hip joint
US7323013Sep 13, 2002Jan 29, 2008Encore Medical Asset CorporationDifferential porosity prosthetic hip system
US8177852 *Sep 24, 2010May 15, 2012Smith & Nephew, Inc.Hip joint prosthesis
US8808391May 7, 2012Aug 19, 2014T.J. Smith & Nephew, LimitedHip joint prosthesis
US8864826 *Feb 25, 2011Oct 21, 2014Limacorporate SpaIntegrated prosthetic element
US9034048 *Jan 25, 2012May 19, 2015John A. ChorenOrthopaedic implants and methods of forming implant structures
US9370426 *Sep 8, 2008Jun 21, 2016Renishaw PlcRelating to joints and/or implants
US20020133232 *Feb 25, 2002Sep 19, 2002Ricci John L.Microstructured dual sided membrane for tissue growth and regeneration
US20030074079 *Sep 13, 2002Apr 17, 2003Osteoimplant Technology, Inc.Differential porosity prosthetic hip system
US20080015616 *May 1, 2007Jan 17, 2008John RicciOrthopedic implants having ordered microgeometric surface patterns
US20110015755 *Sep 24, 2010Jan 20, 2011T.J. Smith & Nephew LimitedHip joint prosthesis
US20110125284 *Sep 8, 2008May 26, 2011University Of BathImprovements in or Relating to Joints and/or Implants
US20120191200 *Jan 25, 2012Jul 26, 2012Choren John AOrthopaedic implants and methods of forming implant structures
US20130006354 *Feb 25, 2011Jan 3, 2013Limacorporate SpaIntegrated prosthetic element
U.S. Classification623/23.29
International ClassificationA61F2/46, A61F2/38, A61F2/36, A61F2/30, A61F2/00, A61F2/42
Cooperative ClassificationA61F2/4261, A61F2230/0004, A61F2002/3631, A61F2002/30136, A61F2/30771, A61F2/3662, A61F2/3094, A61F2/3804, A61F2002/4631, A61F2002/30904, A61F2002/30906, A61F2002/30838
European ClassificationA61F2/30L2