Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3848548 A
Publication typeGrant
Publication dateNov 19, 1974
Filing dateNov 27, 1973
Priority dateNov 27, 1973
Also published asCA1015219A1, DE2440543A1
Publication numberUS 3848548 A, US 3848548A, US-A-3848548, US3848548 A, US3848548A
InventorsBolejack J, Daniel T, Rolison D
Original AssigneeHercules Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Incineration process for disposal of waste propellant and explosives
US 3848548 A
Abstract
A process is provided for incineration of waste propellants and explosives. In this process the waste propellant or explosives in particulate form is mixed with water forming an aqueous suspension. The aqueous suspension is burned in a rotary incinerator under conditions which permit sequential evaporation of water from the suspension, drying of the particulate propellant or explosive, and then ignition of the propellant or explosive. The combustion gases are scrubbed with water prior to passing into the atmosphere.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

nited States Patent [191 Bol'ejack, Jr. et al.

[ INCINERATION PROCESS FOR DISPOSAL OF WASTE PROPELLANT AND EXPLOSIVES [75] Inventors: James William Bolejack, Jr.,

Blacksburg; Truman Knox Daniel, Jr., Christianburg; Darrell Edward Rolison Blacksburg, all of Va.

[73] Assignee: Hercules Incorporated, Wilmington,

Del.

221 Filed: Nov. 27, 1973 21 Appl. No.: 419,299

[52] U.S. Cl. 110/7 R, 110/8 P, ITO/14 [51] Int. Cl. F23g 7/00 [58] Field of Search 44/1 D; 110/7 R, 7 S, 8 R,

ITO/8 P, 14,119

[56] References Cited UNITED STATES PATENTS 2,354,747 Epstein et al. Il0/7 METAL DETECTOR AND REMOVAL DEVICE Nov. 19, 1974 3,195,608 7/1965 Voorheis et al. ll0/7 X 3,452,690 7/1969 Tarbox ll0/7 3,604,375 9/1971 Bruns et al 110/14 3,687,646 8/1972 Brent et al..... ll0/8 X 3,714,038 l/l973 Marsh? 110/8 X 3,725,538 4/1973 Brewer 110/8 Primary Examiner-Kenneth W. Sprague Attorney, Agent, or Firm-Michael B. Keehan [57] ABSTRACT A process is provided for incineration of waste propellants and explosives. In this process the waste propellant or explosives in particulate form is mixed with water forming an aqueous suspension. The aqueous suspension is burned in a rotary incinerator under conditions which permit sequential evaporation of water from the suspension, drying of the particulate propellant or explosive, and then ignition of the propellant or explosive. The combustion gases are scrubbed with water prior to passing into the atmosphere.

9 Claims, 4 Drawing Figures CLEANED EXHAUST WASTE WATER INCINERATION PROCESS FOR DISPOSAL OF WASTE PROPELLAN'I AND EXPLOSIVES The invention herein described was made in the course of or under a contract or subcontract thereunder with Department of the Army.

This invention relates to a process for incineration of waste propellants, and explosives.

The commonly employed method for disposing of propellant and explosive waste generally consists of manually spreading the waste on pads or on the ground and burning the waste in open air. There are several undesirable features associated with this commonly employed method. Open air burning is limited by weather conditions and produces combustion products which are a source of air pollution. Further, personnel are exposed to a potential fire hazard when the propellant or explosive waste is spread on the pads or the ground prior to burning. Space and quantity distance requirements for burning of waste propellants and explosives introduce additional limitations on open-air burning.

The open burning method for solid waste propellants and explosives is a source of pollution. A new method of disposal of waste propellants and explosives must be devised in order to meet present and future air pollution standards. To meet this need, a process has been developed for incineration of waste propellants and explosives, which eliminates many of the hazards inherent in the open burning of waste propellants and explosives and which process is capable of reducing pollution to within limits currently under consideration for pollution standards. I

Broadly, in accordance with this invention, a process is provided for incineration of waste propellant and explosives comprising the steps of:

a. forming an aqueous suspension of propellant or explosive waste in water having a dispersed phase comprising solid propellant or explosive waste in particulate form, in which the solid particles have a maximum average length of less than 0.25 inch, and a continuous phase comprising water;

b. introducing air and the suspension of step (a) into one end of a rotary kiln operating at a temperature of from about l,200F. to about 2,200F., said suspension being fed at a rate sufficient to initially form a thin aqueous layer of said suspension on the wall of said incinerator and continuously contacting said layer of suspension with dry surface of said incinerator wall whereby the continuous water phase of the suspension is evaporated and the propellant or explosive particles are sequentially dried and ignited within the rotary kiln;

c. drawing exhaust gases from the rotary kiln and contacting said exhaust gases with water to remove particulate matter and noxious gases from the exhaust gas, and

d. exhausting the resulting gases from step (c) to the atmosphere.

The process of this invention is more fully described with reference to the drawings. In the drawings like numbers refer to like parts where applicable.

FIG. 1 is an overall flow diagram of the process of this invention utilizing both solid and liquid propellant or explosive wastes as feed materials.

FIG. 2 is a schematic diagram illustrating a preferred embodiment of a system utilized in the process of this invention in which a normally solid, waste propellant or explosive is incinerated.

FIG. 3 is a schematic diagram illustrating the interior of a rotary kiln during the controlled burning process of this invention.

FIG. 4 is a schematic drawing illustrating the feed nozzle for introducing the aqueous suspension of waste feed into the rotary kiln.

FIG. 1 illustrates the overall process of this invention in block diagram form. It is seen from FIG. 1 that either solid or liquid waste propellants or explosives can be incinerated in accordance with the process of this invention by forming a suspension of solid or liquid propellant or explosive, in solid particulate form in water, and incinerating the suspension.

As illustrated in FIG. 2, waste solid propellant or solid explosive, is fed into feed hopper 10. The feed hopper 10 is equipped with vibratory means (not shown) for uniformly feeding the waste solids through a bottom opening 12 in said feed hopper 10 onto a fiber glass conveyor 16. Conveyor 16 is used to convey the waste solids through a metal detection and removal device 18 wherein any extraneous metal, i.e., metal which is not associated with or part of either the solid propel- 20 at a controlled rate. In the wet grinder 20, the solid waste is ground in the presence of water. The resulting solid particles have a length or maximum dimension averaging 0.25 inch or less.

The ground water-wet solid waste particles are washed into mixer 22. In mixer 22, the particles are admixed with additional water, as necessary, to form a suspension of solid waste particles in water. This suspension is pumped by pump 24 through feed line 26 into the inlet-end 30 of kiln 32. Flow through the feed line 26 must be maintained in the turbulent range, i.e., at a Reynolds Number of at least about 6,400 to maintain the solid particles in suspension.

Kiln 32 is lined with refractory brick. Kiln 32 rotates about its longitudinal axis through use of drive means (not shown). The aqueous suspension of waste solids is deposited on the wall of the kiln 32 and immediately flows to a thin layer of suspension. Movement of the wall 34 of kiln 32 constantly provides continual contact of a hot-dry surface to the layer of suspension. Air is continuously introduced into the kiln 32 at the inletend 30 through air line 36. Air passes through the inner chamber 38 of kiln 32 and through exhaust outlet 40 at the burner-end 42 of kiln 32. A burner 44 is used constantly during incineration to maintain the temperature in the inner chamber 38 of the kiln 32. Exhaust gases from combustion of the waste solid propellant or explosive within inner chamber 38 of kiln 32 pass through exhaust line 40 into a second incinerator 46 consisting of a refractory lined wall 48 andburner 50. The second incinerator 46 functions as an afterburner for further combustion of combustible products contained in the exhaust gas from kiln 32. The resulting exhaust gas passes out of the exit-end 52 of second incinerator 46 through a precooler 54 and through feed line 56 into a wet scrubber 58. In wet scrubber 58 particulate matter and noxious gases are removed from the exhaust gas. An exhaust fan 60 draws the exhaust gas through the wet scrubber 58 and exhausts the resulting product gas to the atmosphere.

lined wall 48 of the incinerator. As the layer of suspension is continually contacted with the hot surface of the rotating kiln wall, the water content of the suspension is evaporated. The solids 64 are then heated rapidly to dryness and then are ignited. The various factors which I must be controlled to insure that the sequential burning process takes place in the rotary kiln are more fully described hereinafter.

In FIG. 4 the stationary, inlet-end 30 of rotary kiln 32 is shown. The feed inlet 31 to said kiln is close to the lower wall of the kiln. The feed spout 33 is jacketed with water. The cooling provided by the jacketed spout prevents vaporization of the water phase of the aqueous suspension in the feed lines. Any such vaporization is detrimental to sequential burning of the waste particles in suspension.

The following examples further illustrate the process of this invention. In the examples, parts and percentages are by weight unless otherwise specified.

EXAMPLE 1 A waste single base propellant (IMR) charge is passed through a metal detection and removal device wherein extraneous metals are removed from the propellant charge. The propellant is then passed at a controlled rate into a flying blade grinder where it is mixed with water and ground into small particles. The particle size of the ground propellant is determined by Tylers Screen Analysis. The propellant particles have an average length or maximum dimension of about 0.04 inches. The water-wet particles are transferred to a mixing vessel wherein additional water is added. The weight ratio of water to particles in the mixing vessel is 2.811. The particles are slurried in the mixing vessel to form a suspension of the propellant particles in water. The propellant suspension is introduced into an incinerator operating at a temperature of 1.600F. and in which the air flow rate through said incinerator is 1,248 cubic feet per minute. The incinerator consists of a 4 high-alumina refractory brick lined rotating chamber. 6 feet long and having an inside diameter of5 feet. The chamber rotates at a speed of LI revolutions per minute. The feed line in the rotary incinerator is cooled to maintain the liquid phase of the suspension in the liquid state. The suspension of waste propellant in water is fed at one end of the rotary kiln near the rotating walls. The suspension immediately starts to flow and very rapidly forms a thin layer of suspension on the moving walls of the incinerator. The water phase of the suspension is rapidly evaporated and the propellant particles are sequentially dried and ignited. The product gases from the combustion are exhausted through a second incinerator operating at a temperature of about 1,600F. The residence time of the exhaust gases in said second incinerator is about 0.3 seconds. The second incinerator which is sometimes referred to as an afterburner is high-alumina refractory lined chamber, seven feet in length and having an inside diameter of 2% feet.

.The hot exhaust gases are drawn through a pre-cooler where the temperature of the gases is reduced to about 250F. and the gases are then drawn through a wet scrubber in which the gases are in intimate contact with water. In the wet scrubber, water soluble gas contained in the exhaust gases and some particulate matter are removed from the exhaust gas stream. The resulting gases are subsequently exhausted to the atmosphere. The gases being exhausted are analyzed for NO, N0 S0 Hcl, CO and hydrocarbons. The analysis of the gases exhausted to the atmosphere is set forth in Table l.

EXAMPLES 2-6 TABLE I STACK GAS ANALYSIS EXAMPLE (PPM) CO No. HYDROCAR- HYDROGEN NO NO, HYDROGEN SULFUR BON SULFIDE CHLORIDE DIOXIDE l 0 I00 0 0 2% 2 58 I70 6 I0 2.0% 3 90 0 I60 0 83 L692 4 50 35 235 0 L07: 5 28 0 200 0 3.47: 6 23 80 200 0 0 30 2.1%

' '4 Increase of (0, in slack gas when burning ropellant and fuel as compared to CO, in exhaust burning fuel only.

TABLE II TEMPERATURE F. WEIGHT ROTARY SECOND AIR FLOW EXAMPLE TYPE FEED RATE PARTICLE SIZE RATIO NO. MATERIAL LBSJMINI (average) WATER/SOL KILN INCINERATOR CU.FT./MIN.

IDS

I Sgl. Base 4.9 .040 inch 2.8:1 I600F. I600F. I248 Propel. 2 Sgl. Base 4.2 .080 2.8:]

Dbl. Base Propel. 3 4.2 4 4,2 5 4.2 6 4.1

EXAMPLES 7-24 Example 1 is repeated utilizing various waste solid propellants and explosives as feed materials. Operation of the process proceeds satisfactorily in all cases. Water evaporation drying and ignition of propellants and explosives proceeds smoothly in the kiln in all cases. Vi-

plosive charge are analyzed. Process conditions and gas analysis for each example are set forth in Tables III and IV, respectively.

TABLE III TEMPERATURE F. WEIGHT RO- SECOND AIR EXAMPLE TYPE FEED RATE PARTICLE SIZ RATIO TARY VELOCITY NO. MATERIAL LBSJMIN. (average) WATER/SOL- KILN INCINERATOR CU.FT./MIN. IDS

715 Comp. A-Sm 3.0 Granular 3:I I600 I700 I000 4.2 Sugar-like I600 I700 I350 3.3 0.I0 inch) I600 I700 1800 3.3 1500 I600 I000 3.2 1700 I800 1000 4.2 1800 I800 1000 3.6 1600 I700 I000 1500 I600 I350 I8 1500 I600 1350 I6 Mixture 1.7 0.I0 Inch 5.5:] .1600 I700 I000 Comp. B Dbl; Base Sgl. Base 17 Sgl. Basc 1.7 0.10 inch I600 I700 I000 I8 Sgl. Base"'" 1.2 .I0 inch 3.7:] 1600 I700 I000 Dbl. Base I9 TNTm 1.1 Flake .020 inch 4.421 1600 I700 I000 thick X Vs inch length 20-22 3.9 3:1 I800 I800 I000 3.0 3:1 I700 I800 I350 3.0 3:1 I500 I600 I000 23 Aluminizcd 2.9 3:1 I700 I800 I000 DblsElasc 24 Dbl. Base 3.7 3:1 I700 I800 I000 'Composiliun A-5 is 98.5% cyclotrimethylcnctrinitraamine (RDX) and L571 stcaric acid. "'(umpusitiun I3 is 607: (RDX) and 4071 trinitrotolucnc. "Singlc Base propellant consists primarily of nitrocellulose. 'Douhle Bast: propellant consists primarily of nitrocellulose and nitroglycerin. ""I'NI' is lrinitrotolucnc.

TABLE IV STACK GAS ANALYSIS EXAMPLE (PPM) CO NO. HYDROCAR- HYDROGEN NO NO: HYDROGEN SULFUR 7i BONS SULFIDE CHLORIDE DIOXIDE 7 I 41 160 4 0 8.4 8 0 42 160 I0 0 68 8.2 9 0 240 2 0 69 10.5 10 280 I30 I30 0 0 54 10.5 I I I70 29 230 0 0 0 6.6 II 0 I5 610 I0 0 10 8.3 I] 0 9 250 24 0 0 7.2 14 0 5 I60 32 0 2 7.2 I5 0 I0 I52 23 0 0 7,6 lb 0 29 270 0 0 0 13.5 I7 0 I6 I 0 0 0 9.7

TABLE lV-Continued STACK GAS ANALYSIS EXAMPLE (PPM) 60.,

NO. HYDROCAR- HYDROGEN N N0, HYDROGEN SULFUR /r sous sum-rm: CHLORIDE DIOXIDE ix 7 55 95 0 0 0 6.0 w u no 230 112 0 92 9.0 20 0 1| 300 99 o 17 9.2 2! u 0 350 160 o 5 22 0 25 310 50 0 0 83 23 so 21 12s 49 0 0 24 x70 50 80 0 0 0 EXAMPLE 25 e r ational variables such as feed rate, feed condition (liquid suspension), air flow rate through the incinera- Example 1 is again repeated utilizing a nitroglycerin slum as explosive liquid. The nitroglycerin slum contains triacetin, acetone and some water. The nitroglycerin slum is poured onto sawdust particles to wet the sawdust with the nitroglycerin slum. The sawdust absorbs all of the slum. The nitroglycerin wet sawdust is then screened to remove any foreign objects, particularly metals, and is then added to a mixer containing water, nitrocellulose, and single and double base propellant to form a suspension of explosive solids (nitroglycerin impregnated sawdust, nitrocellulose andpropellant) in water. Some of the nitroglycerin is extracted from the sawdust into the water, up to the limit of the solubility of nitroglycerin in water at the mixing temperature of about 70F. The suspension is mixed for a minimum of 15 minutes and then pumped to the incinerator under conditions of turbulent flow following steps and conditions for operation of the process as set forth for Example 1. After most of the suspension has been incinerated, additional water-wet solid propellant particles and water is added to the mixer and pumped to the incinerator using the steps and conditions for operation of the process as set forth in Example 1. The process operates smoothly in the incineration of the waste containing nitroglycerin wet sawdust and visual observation of the exhaust gas reveals no smoke.

In the examples heretofore described, a second incinerator is employed in series with the rotary kiln for purposes of achieving more complete combustion of the exhaust gas from the rotary kiln, whereby hydrocarbonaceous particulate matter in the exhaust undergoes further combustion. Also, the level of noxious gases is further reduced in the secondary incinerator. In practice, the need for a secondary incinerator will depend, in part, on the permissible level of noxious gases and hydrocarbonaceous and other particulates in the exhaust stream. in theory, the first incinerator can be designed and operated to avoid the necessity of utilization of a second incinerator. In practice, however, this may not be practical, i.e., the size (length and diameter) of the kiln may become excessive, and the operating temperatures, etc., may not be readily controlled in such a unit. The need for a second or more incinerators in series will be determined on an overall system design basis. When a second incinerator is employed it is generally operated at from about l,200F. to about 2,200F.' Residence time of exhaust gas in the second incinerator may vary depending on system design, however, a residence time of from about 0.3 seconds to about 0.5 seconds is generally acceptable.

In the process of this invention sequential evaporation of water from the aqueous suspension of waste propellant or waste explosive is essential. Thus, the optor, incinerator temperature, incinerator residence time and the like must be controlled to produce sequential evaporation, drying of the waste feed, and ignition and burning in order to achieve safe and effective incineration of the waste feed while achieving reduction in the level of pollutants in the exhaust gases to acceptable levels.

The waste material which can be incinerated in the process of this invention includes all types of solid and liquid propellants and explosives. Illustrative solid propellants which can be incinerated include single base propellant, double base propellant, triple base propellant, high energy propellant, rocket casting powder, cast propellant grains, rolled sheet propellants, nitrocellulose, trinitrotoluene, inorganic oxidizers such as ammonium perchlorate, ammonium nitrate; organic oxidizers such as HMX (cyclotetramethylenetetranitraamine), RDX (cyclotrimethylenetrinitraamine), and the like. illustrative waste liquid propellants and explosives which can be incinerated in the process of this invention included nitrate esters such as nitroglycerin, diethyleneglycol dinitrate, triethylene glycol dinitrate, and the like.

When incinerating liquid propellants or explosives in accordance with this invention it is necessary that the liquid propellant or explosive be abosrbed by a particulate absorbent carbonaceous combustible material such as sawdust. The explosive-wet or propellant-wet carbonaceous combustible materials are considered solid propellants or solid explosives for purposes of this specification and claims. These particulate propellants or explosives are admixed with water to form aqueous suspensions and processed in accordance with the incineration process heretofore described. In the step of forming the aqueous suspensions, normally solid propellants which absorb propellant or explosive liquids can be added. Thus, for example, it is oftentimes desirable to admix nitrocellulose or single or double base propellant, in particulate form, to nitroglycerin wet carbonaceous material.

In order to successfully operate the process of this invention it is necessary to have the waste propellant or explosive material reduced to a substantially uniform particle size. Small particle sizes are needed because propellants and explosives burn rapidly and propagate flame easily. in this case of normally solid, waste propellant or explosives, the waste is ground under water for safety purposes and the particle size of the resulting ground particles should average less than about 0.25 inches and preferably the average particle length or maximum dimension shall be less than about 0.10 inches. In the case of normally liquid, explosives or propellants, the explosive is absorbed in particulate carbonaceous combustible material within the size envelope heretofore described. The resulting particulate waste propellant or explosive is then'formed into a suspension by mixing the water-wet explosive with water, as necessary, to form a suspension having a weight ratio of water to waste propellant or explosive of from about 19:1 to about 1:1. It is generally preferred to employ a water/propellant-explosive ratio of about 3:1. The suspension of the small particles in water is pumped into the rotary kiln under conditions to maintain turbulent flow within the feed lines. Turbulent flow conditions in the feed lines is necessary for safety purposes. The feed is then discharged into the rotary kiln for incineration. Feed rate must be controlled so that all the explosive or propellant waste is consumed within the incinerator. lf feed rate is excessive, unburned propellant can be discharged with ash.

The temerature within the rotary kilnv is maintained at between l,200F. and 2,200F. In order to achieve low concentrations of NO, it is preferred to operate the rotary kiln at a temperature at about l,500F. to about 1,800F. At temperatures of below l,500F. and above l,800F. the NO, concentration in the exhaust gases from the incinerator is substantially increased. At temperatures above about 2,000F., evaporation of the water portion of the suspension of propellantor explosives and ignition of the waste is more difficult to control which can result in incomplete combustion of the propellant or explosive waste. The higher temperature,

i.e., above 2,000F., sometimes prevents the thin layerof aqueous suspension from forming on thechamber wall, allowing unburned propellant and explosive waste to be discharged with the ash. Unburned waste in the ash is a safety hazard, since propellant and explosive waste could ignite and burn outside the rotary kiln.

In the operation of the process of this invention, the

rotary kiln is heated by burning of a fuel such as fuel oil, propane, natural gas, or a substitute therefor. The burner fuel does effect the combustion occurring within the rotary kiln. Thus, propane is a preferable fuel to fuel oil to use to tire the. rotary kiln because the propane combustion products function as a reducing agent thereby lowering the NO content in the exhaust gases. It is understood that the composition of exhaust gases will vary depending on the composition of the waste material being incinerated.

In the process of this invention the air provided to the incinerator should be thoroughly mixed with the exhaust gases prior to exit from the rotary chamber. Therefore, it is preferable to tire the burner in the rotary kiln, countercurrent to the air flow through the kiln. The amount of air in which the waste explosives and propellant is burned should be as near the stoichiometric amount as possible. The stoichiometric amount of air required for each propellant or explosive waste can be readily calculated based on the feed material to be burned.

The wet scrubber employed in the process of this invention is used to reduce particulate matter and water soluble gases in the exhaust stream. Wet scrubbing of the exhaust gases can be achieved by passing the exhaust gas through a scrubbing liquid, for example, a water spray or water bath. The exhaust gas can then pass to an entrainment, section to remove the water from the gas, while contaminated scrubbing liquid is drained to the scrubbing section.

What we claim and desire to protect by Letters Patent is:

l. A process for incineration of waste liquid and solid propellants and explosives comprising:

a. forming an aqueous suspension of propellant or explosive waste in water having a dispersed phase comprising solid propellant or explosive waste in particulate form, in which the solid particles have an average maximum length of less than 0.25 inch, and a continuous phase comprising water;

b. introducing air, and the suspension of step (a) into one end of a rotary incinerator operating at a temperature of from about 1200F. to about 2200F., said suspension being fed at a rate sufficient to initially form a thin aqueous layer of said suspension on the walls of said incinerator and continuously contacting said layer of suspension with dry surface of said incinerator wall whereby the aqueous content of the continuous phase of the suspension is evaporated and the propellant particles are sequentially dried and ignited within;

0. drawing exhaust gases from the rotary kiln and contacting said exhaust gases with water to remove particulate matter and noxious gases from said gas,

and

d. exhausting the resulting gases from step (c) to the atmosphere.

2. The process of claim 1 in which the solid propellant or explosive particles have an average maximum length of about 0.10 inch.

solid propellant is ground single base propellant.

'4. The process of claim 1 in which the particulate solid propellant is a mixture of ground single base and double base propellant.

5. The process of claim 1 in which the dispersed phases comprises a particulate carbonaceous combustible material which contains absorbed liquid propellant or explosive.

6. The process of claim '5 in which the dispersed phase comprises sawdust impregnated with nitroglycerin.

7. A process for incineration of .waste solid propellant or explosive comprising the steps of:

a. removing extraneous metal from said solid propellant or explosive feed material,

b. grinding the substantially extraneous metal-free 1 solid propellant or explosive in the presence of water, to form solid particles, substantially all of said particles having a (maximum) average dimension of less than 0.25 inch,

c. mixing said water wet solid particles and additional water necessary to form an aqueous suspension of said solid particles in water, the weight ratio of water to said solid particles being from about 19:1 to about 1:1,

d. introducing air, and the suspension of step (c) into one end of a rotary incinerator operating at a temperature of from about l,200F. to about 2,200F., said suspension being fed at a rate sufficient to initially form a thin aqueous layer of said suspension on the walls of said incinerator, and continuously contacting said layer of suspension with dry wall surface of the incinerator whereby the continuous phase of the suspension is evaporated and the solid incinerator prior to wet scrubbing, said second incinerator operating at a temperature of from about 1,200F. to about 2,200F., the residence time of said gases in said second incinerator being from about 0.3 seconds to about 0.5 seconds.

9. The process of claim 8 in which the weight ratio of water to said particulate propellant or explosive is about 3:1 and the solid particles have an average maximum dimension of about 0.10 inch.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2354747 *Mar 29, 1943Aug 1, 1944Fillo Francis BIncinerator
US3195608 *Apr 8, 1963Jul 20, 1965Coen CoVolatile waste incinerator
US3452690 *Dec 8, 1967Jul 1, 1969Us ArmyField expedient radioactive waste incinerator
US3604375 *Mar 31, 1970Sep 14, 1971Combustion EngIncineration process and unfired afterburner apparatus
US3687646 *Dec 21, 1970Aug 29, 1972Texaco Development CorpSewage disposal process
US3714038 *Dec 18, 1970Jan 30, 1973Black Clawson CoProcess and product for converting organic materials by pyrolysis or hydrogenation
US3725538 *Apr 20, 1970Apr 3, 1973Garbalizer CorpProduction of carbon from waste materials
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3903814 *Nov 13, 1974Sep 9, 1975Olin CorpMethod for destruction of pyrotechnic waste
US4054097 *Mar 17, 1976Oct 18, 1977Barkhuus Per WMethod and apparatus for incinerating liquid, gaseous and pasty waste
US4153411 *Apr 12, 1978May 8, 1979Envirotech CorporationRotary sludge drying system with sand recycle
US4245571 *Apr 5, 1978Jan 20, 1981T R Systems, Inc.Thermal reductor system and method for recovering valuable metals from waste
US4259910 *Jul 18, 1979Apr 7, 1981The United States Of America As Represented By The United States Department Of EnergyElectric controlled air incinerator for radioactive wastes
US4320709 *Sep 29, 1980Mar 23, 1982Pyro-Sciences, Inc.Hazardous materials incineration system
US4343246 *Apr 7, 1980Aug 10, 1982Dorr-Oliver IncorporatedSlurry coal feed system for fluidized bed reactor
US4416855 *Feb 9, 1981Nov 22, 1983Koch Process Systems, Inc.Radioactive waste treatment apparatus
US4462318 *Dec 31, 1981Jul 31, 1984Ensco, Inc.For reducing liquid/slurry hazardous waste to non-hazardous by-products
US4520741 *Apr 13, 1984Jun 4, 1985Ensco, Inc.Very high temperature combustion
US4571175 *Apr 29, 1985Feb 18, 1986Roan Industries, Inc.Process for a disposal of waste solutions
US4579069 *Feb 17, 1983Apr 1, 1986Rockwell International CorporationVolume reduction of low-level radioactive wastes
US4628837 *Dec 4, 1984Dec 16, 1986Hitachi, Ltd.Method and apparatus for processing spent ion exchange resin
US4682548 *Apr 22, 1985Jul 28, 1987Peng Chen HRefuse disposing method and the apparatus thereof
US4700638 *Aug 11, 1986Oct 20, 1987M & S Engineering And Manufacturing Co., Inc.Forming gas-dust mixture and separating; high temperature combustion
US4708641 *Feb 20, 1987Nov 24, 1987Kraftwerk Union AktiengesellschaftLow temperature carbonizing chamber; decomposition and gasification
US4784069 *Oct 27, 1986Nov 15, 1988Foster Wheeler Usa CorporationChemical process fired heaters, furnaces or boilers
US4794871 *Mar 18, 1988Jan 3, 1989Environment Protection Engineers, Inc.Two stagfe heating
US4815399 *Feb 9, 1988Mar 28, 1989Man Gutehoffnungshutte GmbhIncinerator construction
US4922841 *Jun 6, 1989May 8, 1990Kent John MCombusting and oxidizing to remove hazardous material or confine within aggregate
US4945839 *Jan 6, 1989Aug 7, 1990Collette Jerry RDual chamber volatilization system
US4958578 *Aug 30, 1988Sep 25, 1990Phillips Petroleum CompanyDrummed waste incineration
US4976210 *Mar 29, 1990Dec 11, 1990Dewald Jack JamesMethod and apparatus for treating hazardous waste materials
US5133267 *Oct 1, 1991Jul 28, 1992Marine Shale Processors, Inc.Method and apparatus for using hazardous waste to form non-hazardous aggregate
US5207176 *Nov 20, 1990May 4, 1993Ici Explosives Usa IncHazardous waste incinerator and control system
US5331106 *Feb 4, 1992Jul 19, 1994Aerojet General CorporationResource recovery system
US5392721 *May 6, 1994Feb 28, 1995Technology Development Corp.Method for recycling papermaking sludge
US5415025 *Mar 25, 1994May 16, 1995Marine Shale Processors, Inc.Mass spectrometer-based continuous emissions monitoring system for hazardous waste stack gas measurements
US5425792 *Nov 24, 1993Jun 20, 1995Hylsa, S.A. De C.V.Method for gasifying organic materials
US5463169 *Jun 28, 1993Oct 31, 1995Buck Werke Gmbh & Co.Process for destroying pyrotechnic material
US5495063 *Jun 28, 1993Feb 27, 1996Buck Werke Gmbh & Co.Burning in controlled manner in combustion chamber to form slag and crude gas, passing gas through high temperature zone, cooling, purifying by wet or dry method, releasing as waste air
US5513582 *Apr 12, 1995May 7, 1996Association Gradient & Societe Des Techniques En Milieu Ionisant (Stmi)Incineration method, particularly for spent graphite
US5516971 *May 5, 1994May 14, 1996Hercules IncorporatedNitrocellulose
US5523516 *Apr 7, 1995Jun 4, 1996National Technical Systems, IncMethod for recycling lithium batteries
US5571478 *Jul 23, 1993Nov 5, 1996Marine Shale Processors, Inc.Method and system for determining the destruction and removal efficiency of a thermal combustion device
US5593301 *Jul 9, 1993Jan 14, 1997Alliant Techsystems, Inc.For burning combustible material
US5608184 *Feb 3, 1995Mar 4, 1997Universal Tech CorporationOf single or triple base propellant grains in combination with detonator and booster, packaged with water or salt solution
US5649325 *May 26, 1995Jul 15, 1997Alliant Techsystems, Inc.Injecting combustible material into the intake end of the chamber at a velocity greater than the flame propagation rate; generating flame front; pressure variance
US5656044 *Jun 7, 1995Aug 12, 1997Hylsa S.A. De C.V.Feeding waste to reactor, tumbling, heating with high temperature burner gas stream to volatilize, thermally decompose and gasify hydrocarbons, oxidizing combustion products, discharging residual ash and synthesis gas
US5663475 *Aug 26, 1994Sep 2, 1997The United States Of America As Represented By The Secretary Of The Air ForceReactor for oxidation of petrochemicals using ozone and hydrogen peroxide
US5851246 *Jun 7, 1995Dec 22, 1998Hylsa, S.A. De C.V.Apparatus for gasifying organic materials
US6110430 *Apr 6, 1998Aug 29, 2000Cmi CorporationShells, drums of thermoconductive material for discharging heat, tubes for heat exchanging
US6267493Jun 2, 1999Jul 31, 2001Cmi CorporationDrum mixer having a plurality of isolated aggregate transport channels
US6340240May 21, 2001Jan 22, 2002Cmi CorporationDrum mixer having isolated aggregate transport channels
US7458325 *Nov 15, 2005Dec 2, 2008Bio-Solids Remediation Corp.Process and apparatus for thermally treating bio-solids
EP0349865A2 *Jun 24, 1989Jan 10, 1990Josef Meissner GmbH & Co.Installation for burning and incinerating explosive substances and objects affected by such substances and process for operating the installation
WO1990002910A1 *Sep 13, 1989Mar 22, 1990John M KentMethod and apparatus for using hazardous waste to form non-hazardous aggregate
WO1993002321A1 *Jul 9, 1992Feb 4, 1993Gradient AssIncineration method, particularly for spent graphite
WO1996024817A2 *Feb 2, 1996Aug 15, 1996Universal Tech CorpAlternative use of military propellants as novel blasting agents
WO1999028700A2 *Dec 2, 1998Jun 10, 1999Ham Nicolaas Hillegondus AndreMethod for processing explosive waste, method for removing explosives from ammunition and method for production of blank ammunition
Classifications
U.S. Classification588/320, 588/403, 110/220, 110/237, 588/312, 110/212, 110/222, 110/215, 588/408, 110/246
International ClassificationF23G5/20, F23G7/00, F23G5/02, F23J15/02
Cooperative ClassificationF23G5/02, F23G7/001
European ClassificationF23G7/00F, F23G5/02