Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3849124 A
Publication typeGrant
Publication dateNov 19, 1974
Filing dateJul 26, 1971
Priority dateDec 5, 1969
Publication numberUS 3849124 A, US 3849124A, US-A-3849124, US3849124 A, US3849124A
InventorsVillani G
Original AssigneeNorton Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Capacitor powder
US 3849124 A
Abstract
Powder for making electric capacitor or the like comprising a ternary niobium-zirconium-titanium alloy. The alloy is selected as to composition and treated to produce and retain the beta (body-centered-cubic) phase. The resultant product affords high capacitor stability and low leakage approaching the characteristics of the more expensive tantalum at a capacitance cost comparable to or better than that of niobium.
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

Unlted States Patent 91 1 1 ,849,124 Villani ]*Nv. 19, 1974 CAPACITOR POWDER 2,985,531 5/1961 Gordon et a1 75/177 x 3,038,798 6 1962 B t l 75 177 X [75] Inventor: Gerard Needham Mass- 3,203,793 811965 112?; 75/174 [73] Assigneez Norton Company Worcester Mass 3,408,604 10/1968 15616 111. 75 177 x 3,515,545 6/1970 Canomco et al 75/177 X Notice: The portion of the term of this patent subsequent to Aug. 10, 1988, OTHER U CATIO S has been dlsclalmed' Fiz. Metal Metalloved 23, No. 1., pages 28-36, 1967. [22] Filed: July 26, 1971 [21] App], No,; 166,220 Primary Examiner-Charles N. Lovell Related U S Application Data Attorney, Agent, or FirmOliver W. Hayes [63] Continuation-impart of Ser. No. 882,482, Dec. 5,

1969, Pat. No. 3,597,664. [57] ABSTRACT [52] Cl 75/177 75/0 5 BB 75/134 N Powder for making electric capacitor or the like com- 2 75/175 prising a ternary niobium-zirc onium-titanium alloy. [51] hm Cl 6 /0. The alloy is selected as to composition and treated to [58] Field 5 R 134 N produce and retain the beta (body-centered-cubic) 5 3 phase. The resultant product affords high capacitor stability and low leakage approaching the characteris- [56] References Cited tics of the more expensive tantalum at a capacitance cost comparable to or better than that of niobium. UNITED STATES PATENTS 2,107,279 2/1938 Balke et a1 /O.5 BB 6 Claims, 13 Drawing Figures PATENTEL 1 9974' 3. 849.124

sum 2 or s PATENTEL 53V 1 3,849,124

SHEET 30F 5 Fig.7

40 v 171: V v

ZIRCONIUM ZIRCONIUM F, TERNAF1Y COMPOSITION DIAGRAM L (ATOMIC PERCENT) INWTN'H )RS ATTORNEYS PATENTE 2:24 1 s 1914 SHEET u 0F 5 PAIENIE; as": 1 91974 SHEET 5 BF 5 CAPACITOR POWDER This application is a continuation-in-part of U.S. application, Ser. No. 882,482, filed Dec. 5, 1969 now U.S. Pat. No. 3,597,664 issued Aug. 3, 1971.

This invention relates to electric capacitors, particularly electrolytic capacitors and materials used in mak* ing them.

BACKGROUND High performance capacitors are utilized in a wide variety of radio, television, computer, telephone and other electric circuits. The principal high performance material in the present state of the art is tantalum. It is a high temperature, highly corrosion resistant metal capable of forming a highly stable oxide film, of high dielectric constant, at its surface which serves as the capacitor dielectric.

With the current increased demand for tantalum and relative scarcity of world sources for tantalum ore, the need for a substitute has been of great importance to users of high performance capacitors. The more abundant, less expensive, metal aluminum is a possible substitute. But it cannot be formed into porous slug type of capacitors as readily as tantalum. Furthermore, aluminum oxide has low dielectric constant giving about one-third the capacitance of tantalum on an equivalent volume basis. Another obvious candidate as a tantalum substitute is niobium. Niobium oxide has a higher dielectric constant than tantalum and niobium metal can be produced at less cost. Niobium powders can also be utilized to produce porous slugs for electrolytic wet and dry capacitors. The U.S. Government and leading capacitor and materials manufacturers have therefore devoted intense research effort to niobium and its alloys (and also to titanium and zirconium alloys) to'provide a tantalum substitute. The results of these efforts are reported in articles or reports located at:

a. Journal of the Electrochemical Society: vol. 108, pp. 343, 750, 1,023; vol. 100, p. 69; vol. 110, p. 1,277; vol. 111, p. 1,331; vol. 113, pp. 100,1,048 (see also vol. 114, p. 145) b. Journal of Electrochemical Technology: vol. 1, p.

93; vol. 2

c. Government Contract cl. U.S. Pat. Nos. 3,126,503; 3,278,344; 3,321,677

(niobium-zirconium-titanium alloys) 3,203,793

e. Canadian Pat. No. 709,982

None of the work has produced a tantalum substitute which is in wide use at the present time although some of the resultant products were in commercial use for a time.

It has been apparent from the above published work that wet and solid electrolytic niobium capacitors are not as good as tantalum electrolytic capacitors in re; spect of leakage, capacitance and dissipation stability, especially at elevated temperatures.

Niobium can nevertheless be used for low capacitance-voltage ratings and alloyed with tantalum for use at higher capacitance-voltage ratings but cannot provide the desired substitute for tantalum for' substantially all purposes, including cost.

Reports: AD6 1 805 5,

OBJECT It is the object of the present invention to solve the problem of providing a substitute capacitor material satisfying the purposes of the substantially unsuccessful development campaign of the prior art.

GENERAL DESCRIPTION down voltages of niobium (in the absence of gross impurities) are a result of damage inflicted by locally high temperatures and currents, it would be necessary to reduce these and this is possible through alloying niobium with a metal which forms a more refractory oxide. Youngs book, Anodic Oxide Films (Academic Press, 1961 indicates an inverse relationship between dielectric constant and ionic conduction of anodic oxide films. A condition for alloying agent candidates is that the alloying agent must have a solid solubility in niobium which is true of the Group IVB, VB, VIB refractory metals. Zirconium gives the optimum balance of cost, stability of oxide, solubility. An alloy of Niobium 50 atomic percent zirconium when fabricated to a sheet form anode and incorporated in a capacitor (anodized in 0.01 percent phosphoric acid to 200 volts at 25C) has good leakage and exhibits a change in capacitance on heating to 300C in air for 30 minutes of less than 10 percent, whereas a niobium capacitor changes by percent.

However,'it was discovered that when porous anodes are made from a powder form alloy of niobium-5O zirconium, they will not anodize above 100 volts and that they exhibit high leakage. Difficulty was also encountered in anodizing in that the alloy did not anodize well in aqueous electrolytes and organic electrolytes were too viscous for use in a porous structure.

Photomicrographs of Nb-50 AT. Zr anodes revealed a two phase metallurgical structure of Zr and Nb rich compositions within the porous anode, apparently resulting from the high oxygen contents and high surface area inherently obtained in powdered materials both of which tend to promote instability of a single phase, high temperature structure. It was then conceived to stabilize the beta phase as a new approach to the problem and utilize a third alloy addition for this purpose.

Titanium was chosen because it forms a larger solid solution range with niobium than does zirconium and also lowers the beta and alpha transitions of niobiumzirconium so that the high temperature beta phase could be retained by rapid cooling to lower temperatures. Titanium was also intended to render the overall alloy more readily anodized in aqueous solutions.

It has been found, surprisingly, that the best alloys for porous capacitor anode purposes are formed when the niobium and titanium are present in the alloy in substantially equal atomic amounts, and with a greater portion of zirconium than niobium or titanium. It is also necessary to avoid the titanium-rich and zirconium-rich portions of the ternary alloy system. Some niobiumzirconium rich portions of the ternary alloy must also be avoided. For these reasons, it is important to maintain a single, crystalline structure of controllable composition.

Some care in material processing, as described below, is a necessary adjunct to material selection in order to achieve the beta, single phase crystalline structure in the product.

Other objects, features and advantages will in part be obvious from this disclosure and will in part be set forth hereinafter in this disclosure in the following specific description which is set forth with reference to the accompanying drawings in which:

BRIEF DESCRIPTION OF THE DRAWING FIGS. 1-5 are microphotographs of sectioned anodes made of compositions and including, by contrast, FIGS. lA-lC showing anodes of other compositions,

FIGS. 6-7 are schematic cross-section views of capacitors utilizing the invention, and

FIG. 8 is a ternary phase diagram of the niobium-zirconium-titanium system showing data points used in the examples.

FIG. 9 represents the DC leakage over the entire ternary phase diagram, and FIG. 10 represents the thermal stability of capacitance over the entire ternary e qtia raim DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Since the anodic film is formed from the alloy, the

.films properties are dependent upon the alloy composition. Alloys rich in niobium, titanium, or zirconium do not form coherent or thermally stable anodic films. Alloys containing to 60% Nb, Zr, or Ti are better, but they tend to decompose into two or three crystalline forms with an accompanying change in chemical composition towards the niobium, zirconium, and titanium rich portion of the ternary system, with resulting poor anodic film properties. For these reasons, it is important that the alloy remain as a single, crystalline structure of constant composition, preferably a single solid solution, beta (body centered cubic) phase. Complete beta phase, solid solution only occurs at temperatures above about 1,000C. It is therefore necessary to homogenize this alloy above this temperature and cool it with sufficient rapidity to retain the high temperature, beta phase structure. Some compositions, notably the Nb-Zr rich regions, are highly unstable and rapidlyform second phases on cooling, The addition of titanium not only lowers the phase transition temperature but extends the solid solubility range and readily promotes the retention of the high temperature beta phase during cooling.

It can be seen from the tables in the Examples below that most of the alloy compositions can produce 200- volt anodic films, useful as capacitor devices. preferred alloy compositions are characterized by low leakage and a low capacitance change (AC) on thermal treatment. These alloys would be useful for elevated temperature use. They normally contain 20-40% Nb, -60% Zr, and 20-40% Ti.

Best results occur when the niobium and titanium are in substantially equal atomic concentrations (within 10 percent of the total).

From life test data of porous anode, solid electrolyte capacitors in Table 5, it is obvious that essentially all of the compositions and essentially the whole system (i.e., 20-80% Nb, 20-80% Zr, 20-80% Ti) are capable of being fabricated into useful capacitors. However, some compositions, namely those stated above, give low leakage and good stability and are to be preferred over the others.

FIG. Composition (Nb-Zr-Ti) Starting Powder Size 2 30 40 30 325 mesh 5 microns 3 30 40 30 60 mesh 325 mesh 4 20 60 20 325 mesh 5 microns 5 2O 60 20 60 mesh 325 mesh All magnifications are times in FIGS. 2-5.

The niobium-zirconium-titanium alloys shown in FIGS. l-S have no second phase. A precipitated second phase is quite apparent in FIGS. 1A, 1B, 1C. In general, a deleterious second phase, if produced, will be visible at 100 times optical magnification and can be regarded as undesired if observed at as low as 100 times magnification.

The production of the requisite single phase crystalline structure can be accomplished (a) in-situ in the electrode (during capacitor production or prior to capacitor production) or (b) in the production of starting materials to be used later in electrode production. In either case what is involved is raising the alloy composition material to a high enough temperature as in sintering powder or annealing sheet to produce, as a homogenous solid solution, the single Beta phase high temperature modification of the alloy structure and to bring it to equilibrium, then cooling with sufficient rapidity to maintain the Beta structure essentially free of any second phase observable at 800 times magnification.

A typical cooling schedule for purposes of the invention would be from 1,300 to 300C in 20 minutes and could be achieved by continuous movement of parts from a furnace to a cooling zone, as by a conveyor belt.

FIGS. 6-7 show two examples of capacitors utilizing the present invention. Each of the capacitors comprises an anode 10 with a dielectric comprising at least in part a dielectric oxide film on the surface of the anode material. The capacitors also comprise a cathode electrode 20. Leads 12, 22 are attached to anode l0 and cathode 22 respectively. In FIG. 6, the anode has the form of a sintered powder slug and the capacitor is of the electrolytic type with wet or solid electrolyte 21 impregnating the anode and extending to the cathode. FIG. 6 also shows conventional capacitor packaging elements as a seal 30 and plastic encapsulant 32. The anode 10 in the FIG. 7 capacitor is a rolled foil or a film sputtered from a sputtering target and includes a dielectric oxide film 11 on the anode surface.

The invention can also be utilized in non-polar capacitors, as well as the polar capacitors of FIGS. 6-7, and in other electrical, chemical and electrochemical devices requiring the significant characteristics of a tantalum substitute material as described herein.

FIG. 8 is a ternary diagram showing the various data points refereed to in the examples below. The percentages on the three sides of the diagram are atomic percentages.

The compositions indicated are based on proportions of starting materials used. At any given location in a powder or other product produced from the starting materials by melting together, the composition may vary due to the known metallurgical phenomenon of 5 coring as the melt is cooled. Generally, the compositional differences found along the material on a microscopic scale are acceptable. However it is preferable to minimize compositional variation due to coring during ingot solidification and this can be accomplished by homogenization heat treatment applied either as an additional step immediately after melting and cooling the alloy and/or in the course of the fabrication steps (e.g., sintering powder or annealing foil), as noted above.

It is preferred and distinctly advantageous to select alloy compositions of substantially of atomic proportions:

niobium 2.040% zirconium 30-60% titanium -40'7r with equal atomic proportions of niobium and titanium, particularly where (l) fine powders (6 microns Fisher Average Particle Diameter F.A.P.D. or less) are produced, (2) where high oxygen impurity levels are in the material, (30 where hydrogen addition processing is used as an aid to pulverizing.

An alloy composition of essentially (within plus or minus 5 percent) the following atomic proportions:

50% zirconium niobium 25% titanium (data point 9 in FIG. 8) has been found to be distinctly advantageous for fine powder production and retain a single beta phase composition under processing conditions which produced multiphase crystal structure in powder of alloy composition corresponding to data points 15 and 16 and was fabricated into solid electrolytic capacitors along with (and under identical conditions with) powderof alloy compositions 6 and 16 and produced superior capacitors with respect thereto in terms of affording an economic tantalum capacitor substitute.

While any of several methods of alloy powder production are feasible (including co-reduction of their mixed halides) it is preferred and distinctly advantageous to obtain the three alloy components Nb, Zr, Ti in elemental form, melt them together and cool to form an alloy ingot, hydride the ingot to embrittle it, pulverize the hydrided ingot and dehydride the powder so formed by heating.

The dehydriding can be done on the powder, per se, or in conjunction with sintering the powder to an anode compact, the former being preferred.

Melting, hydriding, pulverizing and dehydriding tends to produce a highly agglomerated alloy powder, which is advantageous for compacting and tends to retain high capacitance consistent with low leakage produced by cleansing impurities in the various melting, heating and gas purging steps. The agglomerated particles contain individual fine powder particles in the range of 18 microns or less with the agglomerates per se being plus 325 mesh, minus mesh.

The practice and relative value of the invention is illustrated by the following non-limiting examples (including some specimens outside the invention scope):

EXAMPLE 1 Several alloys of nominal compositions listed in Tables l-'3 below were made by are melting.50-.l00 gram alloy buttons in argon atmosphere using a nonconsumable tungsten electrode. The buttoms were formed from niobium chips and crystal bar zirconium and titanium with raw material specification as in Example 2 (below). Each alloy button was melted four times and then heated to about percent of the melting point and held at that temperature for 2 hours. The buttons were then sliced with a diamond wheel saw. One slice of each button was chemically analyzed and the remainder were cold rolled from three-sixteenths inch to a thickness of about 0.015 inch. The rolled sheets were cut into panels, degreased, chemically polished, rinsed and annealed above 1,000C at about 80 percent of their respective melting points for 30 minutes in a vacuum of about 10 torr. The panels were anodized at 1 ma cm of surface: in 0.01% H PO (at 25C in one test and at 92C in a second test) to 200 volts and held for 30 minutes. The anodized panels were rinsed and dried and electrically tested in a wet cell (1% Fl PO electrolyte) as formed and again after a later heat treatment of 300C for 30 minutes in air.

'of a strained body-centered-cubic phase quenched from a high temperature. There was no evidence of second phase transformation except in data points 19 and 21; these had fine precipitated structures within the equiaxed structure.

The data points in Tables 1-2 are grouped from lowest leakage to highest leakage. Table 3 shows a further series of experimental results indicating reproducibility of the Table 2 data.

TABLE ICn1inued DATA NOMINAL Cap.

COMPOSITION POINT Nb-Zr-Ti (At. DCL DF muf/Cm A C% Niobium .06 2.5 78 72 TantuIum .02 2.1 68 3.0

TABLE II DATA NOMINAL Cap. A C

COMPOSITION POINT Nb-Zr-Ti (At. DCL DF muf/cm 17 30-10-60 2.1 2.2 47 91 11 30-60-10 7.4 4.4 7 20-40-40 9.5 7.5 3 60-30-10 22 5.0 14 20-20-60 37 11.2 23 10-25-65 High 5.7 8 -50-15 High 10 20 10-40-50 High 13 Tantalum .02 1.6 54 2.2

Niobium High (will not anodize) TABLE III DATA NOMINAL Cap.

COMPOSITION POINT Nb-Zr-Ti (At. DCL DF muf/cm A C TABLE 111 Continued DATA NOMINAL Cap.

cOMPosmON POINT Nb-Zr-Ti (At. DCL DF muf/cm A C EXAMPLE 2 age for 2 hours. As a control, niobium anodes were sim- Several alloy buttons were formed by melting together niobium, zirconium and titanium with the following purities:

(machining chips) (crystal bar) (crystal bar) The nominal compositions of the alloys are given in Table 4. The buttons were hydrided, ground to powder and dehydrided. The powders in varying size cuts were sintered above 1,000C into porous compacts of approximately 1 gram each, cooled and anodized in 0.01% H PO electrolyte at 92C temperature with a current density of 63 ma per anode to a formation voltto break-down. The reformation break-down is given in Table 4 as V Similar capacitor samples were reformed to 35 volts.

tested at 20 volts for capacitance and leakage. The results are given in Table 4.

TABLE 4 NOMINAL ATOMIC *POWDER L/C DATA COMPOSITION SIZE/SINTER V CAP. [1, amp. POINT (Nb-Zr-Ti) TEMP (C] (VOLTS) (pfd) pfd.

2-1 33-33-33 F/1100 23.3 .39 2-2 33-33-33 F/lZOO 40 16.5 .07 2-3 33-33-33 1 /1300 40 12.4 .51 2-4 33-33-33 C/1300 40 5.3 .26 5 40-40-40 F/1300 65 1 1.7 .22 6-1 30-40-30 F/1100 47 12.0 .17 6-2 30-40-30 C/1200 47 5.4 2.3 6-3 30-40-30 C/1300 52 4.8 .35 6-4 30-40-30 C/1100 18.0 .08 9-1 25-50-25 F/l200 40 8.6 .14 9-2 25-50-25 F/1200 63 8.9 .06 9-3 25-50-25 C/1300 38 4.4 .11 9-4 25-50-25 C/1300 65 4.4 .05 12-1 20-60-20 F/1100 80 7.8 .06 12-2 20-60-20 C/1200 62 4.5 .13 .12-3 20-60-20 C/l300 62 4.5 .13 13 15-50-25 F/1100 63 14.2 .09 15-1 40-20-40 F/1100 55 11.2 2.0 15-2 40-20-40 C/1200 58 9.9 1.6 15-3 40-20-40 C/1300 42 4.7 2.5 16-1 60-20-20 F/1300 56 I 15.4 16-2 60-20-20 C/1400 58 5.8 1.1 22 10-60-30 F/1100 13.1 .31 24 25-25-50 F/1200 67 11.5 .65 CONTROL 100-0-0 A/2050 15.3 .10

F cut is -325 mesh +5 micron, C cut is mesh 325 mesh. A cut is l40 mesh +5 microns F.A.P.D.

25C Test for 100-04), 851or others A counter-electrode was added and the devices were life tests of 200 to 1,000 hours and resultant life test data 15 charted in Table 5. In the life tests, leakage cur- The life testing acted as a burn-in for capacitors. tending to stabilize them, for better performance in future life testing and would be a desirable step for capacitor production.

rents capacitance and dissipation factor are measured TABLE 6 A at 25C. Then thetemperature is raised to 85C and the capacitors retested. Temperature is held at 85C for an ANODE PRO ESSI extended period, the capacitors retested and then the G t 1'88" 111 C1 temperature is dropped to 25C for retest. ln1t1al (I) Weight (gm) Density (glee) U Time and final (F) values of these parameters are shown in Table 5. In some instances the final value at high 5 temperature is a median or average value. 16 I 31 4 L10 ,3 hr:

TABLE 5 Initial and final median or average values at 25 C. and 92 C.

Nominal composition Leakage (microamps) Capacitance 1) Dissipation factor, percent At. percent Data point I 85 F35 F 25 25 35 F35 F25 125 135 F35 F25 2 33. 3-33.3-33. 3 0.3 -37 15.5 21.0 13.0 17.0 10.3 14.5 15.9 5-..- 40-40- 2.0 13 11.7 13.1 12.5 7.2 4.3 7.5 2.3 0 (30-1030 1.7 10 15.0 17.5 15.0 12.2 10.7 10.2 5.3 0.- 25-50-25 0.0 3.0 3.3 10.1 0.0 7.3 5.3 7.2 3.3 12 -00-20) 0.5 3.5 7.3 3.7 3.2 4.0 7.3 0.0 13 15-50-25) 1.2 7.2 14.2 15.7 14.4 10.3 9.2 15 4020-40 10.0 55 10.5 15.0 11.4 21.0 21.0 15.5 10- 00-20-20) 04 2.2 15.4 10.3 17.3 22.0 13.0 13.3 22- 1000-30 4.1 24 13.1 15.3 10.0 3.0 5.3 3.4 24 (25-25-50 7.5 23 11.5 13.4 12.4 17.0 3.1 12.1 Niobium (1.5. 1000-0) 1.0 2.4 15.3 17.5 15.0 15.0 10.0 25.0

e 1 of 9 samples tested at data point 2 was a failure (i.e. Leakage in rising to the milliampere range). 1 failure out of 4 samples tested at data point 15. a 2 failures out of 3 samples tested at data po nt 16. My

EXAMPLE 3 FORMATION Solid electrolytic capacitors were prepared as in Example 2 using the alloy compositions identified as 6, l2 o and 16 in Table 5. Specific anode sintering and dielec- Electrolyte 3 Hspo at 92 Current Density: 63 ma/anode. tr1c oxide formation conditions are given in Table 6A.

These ca acitors were tested for electrical ro erties Formation Voltage: 200 Volts P P p 0 Hold Time at Voltage: 2 Hours. at room temperatures and then life tested at 85 C V v under 20 volts bias for 1,000 hours. The results are given in Table 6B. EXAMPLE 4 The results were in agreement with those tabulated in Table 5 except that composition 16 had improved leakage behavior. However, the alloy also exhibited capacity instability. Y

Solid electrolytic capacitors were prepared using the alloy compositions identified as data points 6, 9, l5, 16

TABLE 6B COMPOSITION LIFE TEST TEMP L C L/C DF NUMBER HOURS (C) (ya/anode, med.) (pf/anode. avg.) (pa/11f) (7r) Table 7 Powder Preparation 1. Melt together, to form a solid alloy ingot, Nb, Zr, Ti with commercial purities shown in Table 7-1(a) to produce an ingot with purities shown in Table 7-1(b).

2. Hydride ingot by heating in a hydrogen atmosphere at 700C for about an hour or until hydrogen pick-up becomes very slow and cool to 600C and repeat again at 500, 400, 300 and then cool to ambient.

3. Process ingot to powder by crushing to l mesh, then ball milling to produce powder.

4. Screen powder to final desired size distribution by mechanical or fluid classification technique.

5. Dehydride by heating powder to 700C in a chamber under subatmospheric pressure, coming up to temperature slowly to avoid an excessive rate of hydrogen evolution which would create an explosion hazard, holding at 700C until hydrogen content is reduced to less than 500 parts per million.

6. Cool and then passivate by slowly admitting air to the powder before opening up the chamber.

7. The lightly sintered cake resulting from (4)-(6) is lightly crushed to pass a 60 mesh/inch screen (A.S.T.M.). The resultant product is an agglomerated powder with individual particles in the range of 4-18 microns. Some 75 percent of the material are in agglomerate form with a size of between plus 325 mesh and minus 60mesh. The powdered material as a whole has a Fisher Average Particle Diameter of 5-6 microns.

Table 8 Capacitor Preparation 1. Press powder using 8 percent by weight camphor addition to achieve a green compact of green density (Dg) as shown in Table 8-1.

2. Sinter for 30 minutes to temperatures shown in Table 8-1 to densities shown in Table 8-1 producing anodes having the sintered density (Ds) and carbon im- 10 purity content shown in Table 8-1.

3. Anodize (form) alloy in 0.1% H PO at 92C to 80 volts at 120 milliamperes per anode. Similarly anodizc niobium control at 25C.

3a. Perform wet cell testing as shown in Table 8-1,

measuring or calculating from measurements leakage, (in microamperes), leakage to capacitance ratio (microamperes per microfarad), capacitance, specific capacitance by weight and volume (microfarad-volts per gram and cubic centimeter, respectively), dissipation factor and equivalent series resistance. Alloy powder of data point 15 had very high leakage (in excess of 1 milliamp).

4. Impregnate and pyrolyze by (a) dipping for 3 minutes in 12% concentration of manganese nitrate solution, pyrolyzing for 8 minutes at 275C, and repeat this process two more times, then reforming to 35 volts; (b) dipping again in 25 percent manganese nitrate for 3 minutes, pyrolyzing for 8 minutes at 275C, and repeat this process two more times, then reforming to 35 volts;

(c) dipping again in 50 percent manganese nitrate for not be processed to solid capacitor form, except with great difficulty.

5. Apply counterelectrode (cathode) by coating with colloidal graphite, overcoating with silver paint, attaching a conductor with conductive epoxy, and encapsu- The powders have the purity shown in Table 7-1(c). 4O lating in non-conducting epoxy resin.

TABLE 7-1 Chemical analysis: Starting materials to powder (p.p.m. or wgt. percent) O H N 0 Al. Co Cr 011 Mg Mw M0 Nb Ni Pb Si Sn Ti W Zr (a)Stcarti'.iIi1g ma eras:

Nb barfio ok 80 3 40 20 Zr 1 Table 8-1 Porous Anode and Wei Cell Test Data Alloy (Element) 30 min ldenti- Anode Dp Ts Ds Carbon L L/C CV/g CV/cc DF ESR i'icuiion Wt(gni) (g/cc) (Cl (g/cc) m) (pm/12F) C (uf-V/g) (uflV/cc) (71) (Ohms) ppm) NZT (1* 1) .710 3.2 1100 4.4 480 39.0 0.111 48. 5.440 1.236 55 15.07 (2) .710 3.2 1050 4.4 610 78.9 1.1 71.7 8.0110 1.1136 53 9.111

NZT 9* (l) .691 3.0 1000 3.8 164 104.0 1.7 62.1 7,190 1.892 52 11.11 (2) .691 3.0 1000 3.7 2200 144.4 2.2 65.6 7,600 2,054 48 9.71 (3) .691 3.0 1000 3.7 500 129.2 1.7 76.0 8.800 2.378 53 21.60

(Niobium) .920 3.9 1600 5.6 152 9.9 .12 86.0 7,480 1.336 73.5 11.34

(Tantalum) 1.84 8.0 1850 9.1 1.1 0.013 82.5 3,590 395 55 8.85

* 500 Table 7-l Table 9A Life Test Procedures Table 9D Test for leakage capacitance and dissipation factor D 1 F to DF 7) at C initially. Heat to 85C and retest. Hold at tem- 25 lsslpa ac r 0 perature for about 600 hours and then retest. Cool to Test hours 0 01:1. 590 1115. a 25C and retest. Detailed test procedures were in ac- Temp- 25 C 85 C 85 C 25 C cordance with Example 3 procedures and MILSPEC N216 MIL-C-390o3, (1) 14.5 26.5 17.0 15.0 14.0 16.5 The samples were pre-aged at 15 volts bias at 85C 2 0 22 5 through a prior test for 410 hours prior to the tests re- (1) 13.0 23.0 16.0 18.0 ported here. The samples were biased to 20 volts for 5:8 532 3:8 :8 these tests using a bias circuit with a series resistance NZT-i6 (1) 19.0 31.5 18.5 12.5 of lO-l5 ohms. (2) 2'0 175 85 60 Niobium 65.0 51.0 64.0 65.0 Tabb 9B Tantalum 12.0 12.0 12.5 11.5

Leakage (ll- Test Hours 0 hr. 590 hrsv T 25C 85C 85C 25C emp It is seen from Table 9B that niobium and alloy com- NzT-6 position NZT-l6 increased substantially in leakage in 70 under test conditions, while NZT-6 and NZT-9 did not (2) 17.0 47.6 94.6 19.5

increase. NZT-9 had the lowest leakage approaching NlZT-9 2 5 l4 0 l0 5 2 5 tantalum. Table 9C shows fairly stable capacitance and E DF for all samples tested. Data external to this table (3) 1.5 7.8 10.0 2.0 (e.g., leakage data) makes clear that the niobium ca- N21) pacitance and DF would run away upon further life (i) 325 200 432 65,6 testing. There is some likelihood of runaway for I67 343 5O NZT-l6 as well, but the likelihood is less certain.

Niobium 13.1 76.9 186 144 anta um 0 88 3 7 3 3 0 79 EXAMPLE 5 Table 9C Niobium, zirconium, titanium alloy powders of compositions corresponding to data points 2, 5, 6, 9, 12, 13, Capacitance (pf) 15, 16, 22, 24 of FIG. 8 were prepared and sintered as anodes. T Test Hours 0 hr 590 hm h l hgsepowders were in a size rangeof 325 Temp mes p us microns (nominally 10 microns Fisher Ayerage Particle Diameter). X-ray diffraction analysis i( 1 Z)T-6 34 0 44 O 39 0 31 6 was made of the powders per se, and also of samples (2) 5(10 62,0 56,0 410 made by crushing the anodes, to detect crystal struc- NZT-9 ture (including lattice parameter) of the phases present (1) 36.1 46.0 42.0 35.0 (2) 460 410 310 in the material. The results are shown in Table 10A. (3L1r I 38.1 61.1 456 36.0 The procedure was repeated for fine powders (nomi- 6 I) 830 I020 940 80.0 nally 4 microns F.A.P.D.) with varying levels of oxygen 2) 56.0 53.0 58.0 52.0 contamination and the resultant data are shown in Niobium I 83.4 89.0 86.1 72.0 Tantalum 88.0 94.0 940 870 Table 108. Table 10B also shows sintermg tempera Table A Crystalline Structure (and Lattice Parameter) Annealed Powder Sintered Anode Data Com osition Major Second M3101 Second Point At.% b-Zr-Ti Phase Phase Phase Phase 2 33.3-33.3 33.3 BCC(3.39) none BCC(3.40) none 5 40 40 BCC(3.49) BCC(3.32) BCC(3,42) none 6 30 40 -30 BCC(3.42) none BCC( 3 .48) none 9 -50 -25 BCC(3.4S) none I2 20 60 20 BCC(3.47) none BCCUAZ) none l3 l5 -50 35 BCC(3.46) none 15 40 20 40 BCC(3.35) none BCC(3.36) none I6 60 -20 20 BCC(3.35) none 22 10 60 BCC(3.48) HCP BCC(3.48) none 24 25 25 -50 BCC(3.37) none BCC(3.38) none Table 108 X-Ray Analysis of Nominal 4 Micron F.A.P.D. Nb-Zr-Ti Alloys: Crystalline Structure (and Lattice Parameter(s)) Data Oxygen- Sinter Sintered Anode Point (Sample) ppm Temp.-C Major Phase Second Phase 6 8800 1100 BCC(Ao:3.4 1) none* 9 (1) ca. 6000 I000 BCC(3.45) none (2) 9400 l 100 BCC(3.45) none* l5 14,400 1100 BCC(3.34) BCC(3.45)* 16 (l) ca 6000 1000 BCC(3 34) HCP (A0:

5. l0 (2) 6300 1100 BCC(3.33) HCP (A0:

3.21, Co: 5. l2)

excepting contaminants, such as zirconium oxynitride and oxycarhide.

BCC: body centered cubic (Ao reported) HCP: hexagonal close packed (A0, C0 reported) Although the 10 micron size powders of alloys (data 35 (data point) 15 with high oxygen content and slow cooling in Table 108 had a double beta (bodycentered-cubic) phase in anode form. Data point 16 also had a second phase an HCP structure.

EXAMPLE 6 An extensive number of Nb-Zr-Ti alloy compositions were prepared by sputtering thin films onto glass slides, anodizing the metal film to 200 volts, testing heating to 300C for one-half hour and testing again in the same manner as Example 1. The results are shown in FIG. 9 which represents the DC leakage and FIG. 10 which shows the thermal stability of capacitance over the en tire ternary phase diagram.

The results show that good anodic film properties 10 y.a/cm at 140 V DC) extend over a wide range of compositions beginning in the central region of the Nb-Zr binary, through the central region of the-Nb-Zr- Ti ternary and extending toward the central region of the Zr-Ti binary. The region of high thermal stability of capacitance is more localized near the center of the Nb-Zr-Ti ternary with a narrow path extending toward the central portion of the Zr-Ti binary and another narrow extension toward the Zr corner of the ternary, representing equal portions of niobium and titanium with increasing zirconium concentration.

While the results of sputtered film do not represent the cyrstalline structures found in the bulk alloy such as annealed sheet or powder or sintered porous anodes,

they do show the effects of chemical composition on the electrical properties of alloy anodic films. For example, while the central portions of the ternary and the Nb-Zr and Nb-Ti binaries displayedgood DC leakage, the same composition cannot be retained in bulk form because of phase separation accompanied by compositional changes, unless an extremely rapid quench of the high temperature modification of the single BCC structure is used. Retention of the single BCC structure is more easily accomplished in the bulk when the alloy composition is removed from the, Nb-Zr and Zr-Ti binary lines by about 10 atomic percent. The trends shown by data afford approximations of what will occur in bulk form.

While the present invention has been described with reference to the particular embodiments thereof, it will be understood from the above disclosure by those skilled in the art that numerous modifications may be made without actually departing from the scope of the invention. For instance, the invention contemplates the ternary Nb-Zr-Ti alloy present alone or as part of a larger alloy (or mixture) system of film-forming metals. Where the niobium is substituted in any amount by tantalum and/or zirconium and/or titanium is substituted in any amount by hafnium where these substitutions are chemically similar to the components of the Nb-Zr-Ti ternary. Less similar elements, such as vanadium, molybdenum and tungsten, may be added up to 20 atomic percent of the total system without severe degradation. Dissimilar elements, such as iron, chromium and nickel, may be tolerated by as much as 1-5 percent. More dissimilar elements, such as noble metals, alkali, and alkaline metals, etc., may be considered as true impurities and should be less than 1 percent.

In its broadest aspects, the invention comprises a niobium-zirconium-titanium ternary alloy of powder form suitable for making capacitor anode or the like with the characteristic that it is capable of forming or retaining an essentially homogeneous crystal structure of a single phase although it is preferred and distinctly advantageous that:

a. the single phase should be a beta (body-centeredcubic) phase, which is more practicably attainable consistent with capacitor powder preparation conditions, andlgr M, V .7.

b. that the powder, per se, shall have single phase structure.

The powder is suitable for manufacturing into capacitor anodes whether in single powder form, agglomerated form, pre-pressed or pre-sintered preliminary compact form, or in the form of final sintered anode compacts which can be re-crushed and remanufactured. Therefore the appended claims are intended to cover all such equivalents or variations as come within the true spirit of the invention.

1 claim:

1. A powdered material of niobium-zirconiumtitanium ternary alloy, in form suitable for manufacture into an electrolytic capacitor anode, the alloy having an essentially homogeneous crystal structure of a single body centered cubic alloy phase wherein the elements of the alloy are present in atomic percentages of from:

20 to 40% for niobium 30 to 60% for zirconium 20 to 40% for titanium. 2. The material of claim 1 wherein the niobium and titanium are present in the alloy in substantially equal atomic amounts.

3. The material of claim 2 having 21 Fisher Average Particle Diameter of less than 6 microns.

4. The material of claim 3 wherein the elements of the alloy are found throughout the material in essentially the atomic proportions of:

50% zirconium 25% niobium 25% titanium.

5. The material of claim 2 wherein the elements of the alloy are found throughout the material in essentially the atomic proportions of:

50% zirconium 25% niobium 25% titanium.

6. A capacitor grade powder for use in manufacturing solid electrolytic capacitor sintered, porous anodes anodizable to,200 volts and affording high thermal stability and low leakage and dissipation factor, consistent with high capacitance, comprising single phase body-centered-cubic crystal structure niobium-zirconium-titanium ternary alloy throughout the powder mass, the elements of the alloy being present in essentially homogeneous atomic percentages and within the respective ranges of:

20-80% for niobium,

20-80% for zirconium,

20-80% for titanium, throughout the powder mass.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2107279 *Jun 17, 1935Feb 8, 1938Fansteel Metallurgical CorpProduction of refractory metals and alloys
US2985531 *Jun 5, 1959May 23, 1961Univ Ohio State Res FoundNiobium-zirconium base alloy
US3038798 *May 2, 1960Jun 12, 1962Kennecott Copper CorpTitanium-niobium alloys
US3203793 *Jan 28, 1963Aug 31, 1965Du PontPorous columbium and tantalum materials
US3408604 *Mar 6, 1967Oct 29, 1968Hitachi LtdSuperconducting alloys and apparatus for generating superconducting magnetic field
US3515545 *Sep 29, 1967Jun 2, 1970Atomic Energy CommissionRefractory and ceramic brazing alloys
Non-Patent Citations
Reference
1 *Fiz. Metal Metalloved 23, No. 1, pages 28 36, 1967.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5211832 *Apr 22, 1992May 18, 1993The Alta GroupProcess for producing electrically impervious anodized films on valve metals and product thereof
US5392191 *Aug 4, 1994Feb 21, 1995Motorola, Inc.Oxyhalides
US5509933 *Mar 24, 1993Apr 23, 1996Smith & Nephew Richards, Inc.Modulus of elasticity close to that of bone
US5562730 *Jun 6, 1995Oct 8, 1996Smith & Nephew Richards, Inc.Total artificial heart device of enhanced hemocompatibility
US5573401 *Jun 16, 1994Nov 12, 1996Smith & Nephew Richards, Inc.Biocompatible, low modulus dental devices
US5674280 *Oct 12, 1995Oct 7, 1997Smith & Nephew, Inc.Nontoxic prostheses for implanting in living body; wear, friction, corrosion resistance
US5676632 *Jun 6, 1995Oct 14, 1997Smith & Nephew Richards, Inc.Fabricated from metal alloy comprising titanium and niobium
US5683442 *Nov 8, 1996Nov 4, 1997Smith & Nephew, Inc.Cardiovascular implants of enhanced biocompatibility
US5685306 *Jun 6, 1995Nov 11, 1997Smith & Nephew, Inc.Flexible, biocompatible, metal alloy catheter
US5690670 *Jun 6, 1995Nov 25, 1997Davidson; James A.Stents of enhanced biocompatibility and hemocompatibility
US5713947 *Jun 6, 1995Feb 3, 1998Smith & Nephew, Inc.Cardiovascular implants of enhanced biocompatibility
US5716400 *Jun 6, 1995Feb 10, 1998Smith & Nephew, Inc.Alloy of titanium, niobium and zirconium having enhanced hemocompatability
US5782910 *Jun 6, 1996Jul 21, 1998Smith & Nephew, Inc.Cardiovascular implants of enhanced biocompatibility
US5820707 *Mar 17, 1995Oct 13, 1998Teledyne Industries, Inc.Composite article, alloy and method
US5868879 *May 28, 1996Feb 9, 1999Teledyne Industries, Inc.Mixed oxide ceramic product made from a metal alloy of titanium, zirconium and/or hafnium and niobium, tantalum or vanadium; passivation; adherent, monolithic
US5871595 *Jan 31, 1997Feb 16, 1999Osteonics Corp.Alloy of titanium, zirconium, niobium and tantalum for prosthetics
US5954724 *Mar 27, 1997Sep 21, 1999Davidson; James A.Titanium molybdenum hafnium alloys for medical implants and devices
US6200685Feb 2, 1999Mar 13, 2001James A. DavidsonTitanium molybdenum hafnium alloy
US6373685 *Mar 23, 2000Apr 16, 2002Cabot CorporationCapacitor anode comprising a niobium oxide having an atomic ratio of niobium to oxygen of 1 to >2.5 and being formed at a formation voltage of about 6 volts or higher.
US6592740May 17, 2002Jul 15, 2003Cabot CorporationHeat treating niobium oxide in presence of niobium flaked getter material and in an atmosphere which permits transfer of oxygen atoms from the niobium oxide to the niobium flaked getter material to from oxygen reduced niobium oxide
US6652619 *Aug 10, 2001Nov 25, 2003Showa Denko K.K.For use in electronic apparatus such as portable telephones and personal computers
US6759026Feb 1, 2002Jul 6, 2004Cabot CorporationMethods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6821314Oct 27, 2000Nov 23, 2004H. C. Starck GmbhCapacitor powder
US6824586Nov 30, 2001Nov 30, 2004Showa Denko K.K.Powder for capacitor, sintered body thereof and capacitor using the sintered body
US6876083 *Jul 3, 2003Apr 5, 2005Sanyo Electric Co., Ltd.Electrolytic capacitor and a fabrication method therefor
US7073559 *Jul 2, 2003Jul 11, 2006Ati Properties, Inc.Method for producing metal fibers
US7144768 *Jun 10, 2004Dec 5, 2006Juyong ChungFabrication of titanium and titanium alloy anode for dielectric and insulated films
US7156893Feb 3, 2004Jan 2, 2007Cabot CorporationHigh capacitance and/or low leakage capability; capacitor
US7220397Sep 2, 2003May 22, 2007Cabot CorporationOvercoating niobium oxide with binder, lubricant
US7445679May 16, 2003Nov 4, 2008Cabot CorporationControlled oxygen addition for metal material
US7445762May 12, 2003Nov 4, 2008Cabot CorporationMethod to partially reduce calcined niobium metal oxide and oxygen reduced niobium oxides
US7485257 *Sep 28, 2005Feb 3, 2009H.C. Starck GmbhValve metal powders
US7515397May 19, 2004Apr 7, 2009Cabot CorporationMethods of making a niobium metal oxide and oxygen reduced niobium oxides
US7594947Jan 13, 2003Sep 29, 2009Showa Denko K.K.Large capacitance per unit weight and good leakage current characteristics for use in electronic apparatus such as portable telephones and personal computers
US7632455 *Jul 1, 2005Dec 15, 2009Ues, Inc.Comprising titanium, silicon, molybdenum, chromium, aluminum, zirconium, carbon, hafnium and niobium; ability to withstand oxidation and cracking caused by oxidation; turbine airfoils
US7655214Feb 25, 2004Feb 2, 2010Cabot CorporationPowder; reduced oxygen concentration; using scavenger for transferring of oxygen
US7749297Mar 8, 2004Jul 6, 2010Cabot CorporationSurface area; low cost tantalum replacement
US8110172Apr 7, 2009Feb 7, 2012Cabot CorporationMethods of making a niobium metal oxide and oxygen reduced niobium oxides
CN100401436CNov 30, 2001Jul 9, 2008昭和电工株式会社Powder for capacitor, sintered body thereof and capacitor using sintered body
EP0750684A1 *Mar 17, 1995Jan 2, 1997Teledyne Industries IncorporatedComposite article, alloy and method
EP0946323A1 Nov 5, 1997Oct 6, 1999Cabot CorporationNiobium powders and niobium electrolytic capacitors
EP1093137A1 *Feb 16, 2000Apr 18, 2001Showa Denko Kabushiki KaishaNiobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor
WO1996004669A1 *Jul 27, 1995Feb 15, 1996Motorola IncTransition metal oxide anodes for aqueous pseudocapacitors
WO2001035428A1 *Oct 27, 2000May 17, 2001Reichert KarlheinzCapacitor powder
WO2002045106A2 *Nov 30, 2001Jun 6, 2002Kazumi NaitoPowder for capacitor, sintered body thereof and capacitor using the sintered body
Classifications
U.S. Classification420/422, 420/426, 75/359, 420/417
International ClassificationH01G9/042, C22C16/00
Cooperative ClassificationC22C16/00, H01G9/042
European ClassificationC22C16/00, H01G9/042