Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3849630 A
Publication typeGrant
Publication dateNov 19, 1974
Filing dateOct 18, 1972
Priority dateOct 18, 1971
Also published asCA970017A, CA970017A1, DE2250778A1, DE2250778B2, DE2250778C3
Publication numberUS 3849630 A, US 3849630A, US-A-3849630, US3849630 A, US3849630A
InventorsK Halliday
Original AssigneePyrotenax Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electric heating device
US 3849630 A
Abstract
An elongate heating device comprises a preformed elongate core having at least one helical groove in its outer surface and a separately formed sleeve of an internal diameter greater than the external diameter of said surface of the core which surrounds the core and has in its inner surface at least one helical groove that is of the same pitch as that of the groove on the core and that defines with the groove on the core a helical passage, the core and/or the sleeve being of a metal of high thermal conductivity. A length of mineral insulated heating cable extends along the helical passage between the core and the sleeve with at least one of its ends protruding from the device. The cable is so clamped between the core and the sleeve that there is an effective heat transfer path between the cable sheath and the core and/or between the cable sheath and the sleeve.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[ Nov. 19, 1.974

1 ELECTRIC HEATING DEVICE [75] Inventor: Kenneth David Halliday, South Shields, England [73] Assignee: llyrotenax Limited, Durham,

England [22] Filed: Oct. 18, 1972 [21] Appl. No.: 298,673

[30] Foreign Application Priority Data Oct. 18, 1971 Great Britain 48367/71 [51] Int. Cl. H05b 5/58 [58] Field of Search 219/439, 442, 469, 470, 219/471, 530, 535,536, 537, 540,541,544,

3,384,195 5/1968 Jepson et a1. 219/442 3,401,439 9/1968 Staats et a1. 165/89 X 3,436,816 4/1969 Lemelson 219/544 X 3,454,747 7/1969 219/549 3,691,347 9/1972 Finn 219/535 Primary Examiner-Volodymyr Y. Mayewsky Attorney, Agent, or Firm-Buell, Blenko and Ziesenheim 5 7 ABSTRACT An elongate heating device comprises a preformed elongate core having at least one helical groove in its outer surface and a separately formed sleeve of an internal diameter greater than the external diameter of said surface of the core which surrounds the core and has in its inner surface at least one helical groove that is of the same pitch as that of the groove on the core and that defines with the groove on the core a helical passage, the core and/or the sleeve being of a metal of high thermal conductivity. A length of mineral insu lated heating cable extends along the helical passage between the core and the sleeve with at least one of its ends protruding from the device. The cable is so clamped between the core and the sleeve that there is an effective heat transfer path between the cable sheath and the core and/or between the cable sheath and the sleeve.

9 Claims, 6 Drawing Figures 1 MILD STEEL PATENTEL 1 91974 3, 849.630

SHEET 10F 3 TAINLESS STEEL 8 F/G.7. 77 9 1.3 L 5 ,1 12

00 00 00 00 0O 00 oo oo 0 on Q 3Q XI\5 M lLD l\7 2:! STEEL oo 0o 00 00 0 0 on on Q0 0 i mu) STEEL 1 ELECTRIC HEATING DEVICE This inventionrelates to electric heating devices and is particularly concerned with electric heating devices 'of the kind incorporating, as a heating element, a mineral insulated heating cable comprising one or more bare conductors enclosed in a metallic sheath of high. thermal conductivity and electrically insulated from the sheath and, where there is more than one conductor from one another, by compacted powdered mineral insulating material, usually but not necessarily magnesium oxide.

It has been proposed to manufacture an electric heating device of this kind of substantially uniform crosssection, for instance a tubular heating roll for use in the textile industry, by winding a length of mineral insulated heating cable on a tubular core, positioning the core carrying the heating cable in an annular mould with an end or ends of the cable projecting from the mould, and casting a metal of high thermal conductivity about the core-to form a cast heating roll haying an...

embedded mineral insulated heating elementf'We have found that when manufacturing heating rolls by this method it is difficult to avoid a relatively large proportion of rejects due to inadvertent damage to the heating element during the casting process or to other causes. Moreover heating rolls made by this method have the serious disadvantage that in the event of a fault subsequently developing in the heating element the heating roll itself has to be scrapped.

It is the object of the present invention to provide an improved method of manufacturing an elongate heating device incorporating a mineral insulated heating element in which the risk of rejects during manufacture is substantially reduced. The invention also includes an elongate heating device made by the aforesaid method which has the important advantage, that in the event of a fault developing in the heating element, the heating element can be quickly and easily replaced.

According to the invention the method comprises forming at least one helical groove in an outer surface of an elongate core; forming at least one helical groove of the same pitch as that of the groove on the core in the inner surface of a sleeve having an internal diameter which is greater than the external diameter of said surface of the core, the core and/or the sleeve being of a metal of high thermal conductivity; winding a length of mineral insulated heating cable in the groove in the core or in the groove in the sleeve to form a male thread; and screwing the core and the sleeve together so that one or each end of the cable protrudes from the heating device so formed and the cable is so clamped between the core and the sleeve that an effective heat transfer path is provided between the cable sheath and the core and/or between the cable sheath and the sleeve.

The core or the sleeve may be of a material of low thermal conductivity, for example a ceramic material. It will be appreciated that by appropriate selection of the materials of the core and of the sleeve a major proportion of the heat emitted by the heating device of the present invention may be encouraged to flow radially outwardly only, radially inwardly only or both radially outwardly and radially inwardly.

Preferably where the heating cable is of circular cross-section the or each groove in the core and the or each groove in the sleeve are each of a cross-section approximating to that of a semi-circle having a radius 'equal to or slightly greater than half the overall diameter of the heating cable.

The mineral insulated heating cable will normally, but not necessarily, be cut to a predetermined length before it is wound on the core. The cable employed preferably has two conductors embedded in the-comp'acted insulation and in this case exposed ends of the conductors at one end of the length of cable are electrically connected together and enclosed in a sealed termination generally known as the hot end" termina tion, and this sealed end of the cable is welded, brazed or otherwise secured in the groove in the core or in the groove in the sleeve at or near one end of the groove. Preferably the cable is welded, brazed or otherwise secured in the groove in the core or in the groove in the sleeve at or near the other end of the groove. The other end of the cable may be arranged to protrude through an end wall of the core where the cable is sealed, pref erably by means'of a conventional sealing pot, this cold end termination.

' of the same pitch as the complementary groove in the sleeve. Where the core and sleeve each has two grooves a single length of mineral insulated cable may be folded back between its ends to form a doubled length of cable which is wound in the two grooves in the core or in the sleeve with the folded end of the cable welded or otherwise secured in a recess in the core or sleeve at or near one end of the grooves and with both ends of the cable protruding from the same end of the device. Where the core and sleeve each has two or more grooves, two or more separate single lengths of mineral insulated cable each having two conductors may be wound in the grooves in the core or sleeve, the conductors of one cable being of a different cross-sectional area from that of the conductors of the other cable or cables thereby providing two or more heating elements that may be used separately or in combination.

The core may be of solid form but where the heating deviceis intended to be mounted on or to constitute an injection noule or where the heating device is intended for use as a heater for a textile roller the core is, or preferably is, of tubular cross-section. The cable sheath is preferably made of stainless steel and the core and/or sleeve are each preferably made of mild steel.

The invention also includes an elongate heating device comprising a preformed elongate core having. at least one helical groove in its outer surface; a separately formed sleeve of an internal diameter greater than the external diameter of said surface of the core which surrounds the core and has in its inner surface at least one helical groove that is of the same pitch as that of the groove on the core and that defines with the groove on the core at least one helical passage, the core and/or sleeve being of a metal of high thennal conductivity; and a length of mineral insulated heating cable which extends along the helical passage between the core and the sleeve with one or each of its ends protru'ding from the device and which is so clamped between the core and the sleeve that there is an effective heattransfer path between the cable sheath and the core and/or between the cable sheath and the sleeve.

The invention will be further illustrated by a description, by way of example, of two forms of electric heating device with reference to the accompanying drawings, in which:

FIG. 1 is a sectional side view of an electric roll heater unit for use in the textile industry;

FIG. 2 is an end view of the roll heater shown in FIG.

FIG. 3 is a sectional side view of an electrically heated injection nozzle for a die casting machine;

FIG. 4 is an end view of the heated injection nozzle shown in FIG. 3,

FIG. 5 is a sectional side view of a second form of electrid roll heater unit for use in the textile industry, and FIG. 6 is an end view of the roll heater shown in FIG. 5.

Referring to FIGS. 1 and 2 the roll heater unit comprises a tubular core 1 of mild steel of circular crosssection having at one end a radially outwardly extending flange 2 in which are a plurality of holes 3 for use in mounting the unit on a support. The core 1 has a bore of circular cross-section. Formed in the outer cylindrical surface of the core 1 is a helical groove 4 of semi-circular cross-section having a radius equal to or slightly greater than half the overall diameter of the mineral insulated heating cable that is to be wound in the groove. At the end of the groove adjacent to the flange 2 a part 5 of the groove extends in a lengthwise direction to a hole 6 in the flange.

A predetermined length of mineral insulated heating cable 11 having two conductors and a stainless steel sheath is sealed at one end to form a hot end termination 12 and is sealed at the other end by a conventional sealing pot l3 incorporating a ceramic and metal or glazed high temperature seal to form a cold end termination. the hot end 12 of the cable 11 is slipped through the hole 6 and the cable is pulled through the hole until the sealing pot 13 abuts the end face of the flange 2 and an adjoining length of the cable lies in the part 5 of the groove 4. The cable is welded or brazed in the groove 4 at 14. The cable is tightly wound in the helical groove 4 and the hot end 12 of the cable is welded or brazed in the groove at 15 to form a male thread on the core.

A sleeve 8 of mild steel whose bore is stepped near one end has a helical groove 9 formed in the internal surface of a major part of the bore that is of internal diameter greater than the external diameter of the core 1, the groove having the same pitch and cross-section as the groove 5. The sleeve 8 is screwed on the threaded core 1 with an end of the sleeve abutting the flange 2 and a radially inwardly extending flange 10 on the other end of the sleeve abutting the other end of the core.

Due to the very small clearance between the mineral insulated cable 11 and the surrounding metal of the core 1 and of the sleeve 8, which clearance is substantially reduced as expansion of the cable sheath takes place when the roll is heated, an effective heat transfer path is provided between the cable sheath and the core and between the cable sheath and the sleeve.

The heated injection nozzle shown in FIGS. 3 and 4 comprises a tubular core 21 of mold steel having over an intermediate major part of its length a cylindrical surface of circular cross-section and at one end an outlet 22. The core 21 has a bore of circular cross-section whose diameter increases smoothly at the outlet 22. A helical groove 24 is formed in the outer cylindrical surface of the intermediate major part of the core 21, the groove being of a semi-circular cross-section having a radius equal to or slightly greater than half the overall diameter of the mineral insulated heating cable that is diameter of the core. The sleeve 28 has a radially inwardly extending flange 30 at one end. A predetermined length of mineral insulated heating cable 31 having two conductors and a stainless steel sheath is sealed at one end to form a hot end termination 32 and is sealed at the other end by a conventional sealing pot 33 incorporating a ceramic and metal or glazed high temperature seal to form a cold end" termination. The hot end 32 of the cable 31 is welded or brazed in the helical groove 29 at 35 and the cable is tightly wound in the groove to form a male thread in the bore of the sleeve, the cable also being welded or brazed in the groove at 34. The core 21 is screwed into the threaded sleeve 28 with the step between the intermediate major part of the core and the outlet 22 abutting the flange 30 and with a short length of the cable 31 with the sealing pot 33 attached to its end protruding from the other end of the nozzle.

As in the electric roll heater unit the very small clearance between the mineral insulated cable 31 and the surrounding metal of the core 21 and of the sleeve 28, substantially reduced as the nozzle is heated and expansion of the cable sheath takes place, provides an effective heat transfer path between the cable sheath and the core and between the cable sheath and the sleeve.

The roll heater unit shown in FIGS. 5 and 6 comprises a tubular core 41 of mild steel of circular cross section having at one end a radially outwardly extending flange 42 in which are a plurality of holes 43 for use in mounting the unit on a support. the core 41 has a bore of circular cross-section. Formed in the outer cylindrical surface of the core 41 are two helical grooves 44, 44 of substantially the same pitch each of semicircular cross-section having a radius equal to or slightly greater than half the overall diameter of the mineral insulated heating cables that are to to be wound in the grooves. At the ends of the grooves adjacent to the flange 42 are parts 45, 45' of the grooves, each of which extends in a lengthwise direction to holes 46, 46' in the flange.

Two predetermined lengths, of mineral insulated heating cable 51, 51, each having two conductors and a stainless steel sheath, are sealed at one end to form hot end terminations 52, 52 and are sealed at the other end by conventional sealing pots 53, 53' incorporating ceramic and metal or glazed high temperature seals to form cold end terminations. The cable 51 is tightly wound in the groove 44 and is welded or brazed in the groove at 54 and 55. The cable 51' is tightly wound in the groove 44' and is welded or brazed at 54' and 55'.

A sleeve 48 of mild steel whose bore is stepped near one end, has two helical grooves 49, 49' in the internal surface of a major part of the bore, each groove being of substantially the same pitch and cross-section as the grooves 44, 44' in the core 41'. The sleeve 48 is screwed on the thread core 41 with an end of the sleeve abutting the flange 42 and a radially inwardly extending flange 50 on the other end of the sleeve abutting the other end of the core.

The conductors of the cable 51 are of a different cross-sectional area from that of the conductors of the cable 51, thereby providing two heating elements that may be used separately or in combination.

Electrical heating devices in accordance with the present invention can be manufactured from any suitable metal of high thermal conductivity in which it is possible to machine helical grooves and the upper temperature limit of the device is limited only by the metals used. For example, for a stainless steel sheathed cable enclosed between a core and sleeve of mild steel a maximum temperature of approximately 750C is possible. In addition to the advantage that the heating cable can be quickly and easily replaced, electric heating devices of the present invention can be assembled by unskilled or semi-skilled labour with virtually no rejections due to assembly error.

What I claim as my invention is:

1. An elongate heating device comprising a preformed elongate core having at least one helical groove in its outer surface; a separately formed sleeve of an internal diameter greater than the external diameter of said surface of the core which surrounds the core and has in its inner surface at least one helical groove that is of the same pitch as that of the groove on the core and that defines with the groove on the core a helical passage, at least one of the core and the sleeve being of a metal of high thermal conductivity; a length of mineral insulated heating cable comprising an elongate metallic sheath of high thermal conductivity, at least one elongate bare electrical heating conductor in said metallic sheath and compacted powdered mineral insulating material sealing the space between the electric heating conductor and the metallic sheath and insulating said conductor from said metallic sheath, which cable extends along the helical passage between the core and the sleeve with at least one of its ends protruding from the device, and electrical terminal means connected to each protruding end of the cable, the cable being so clamped between the core and sleeve and being of such a diameter with respect to the depth of the grooves, that part of the cable fits in the groove in the core and part of the cable fits in the groove in sleeve and that there is an effective heat transfer path between at least one of the cable sheath and the core, and the cable sheath and the sleeve.

2. An elongate heating device as claimed in claim 1, wherein the outer surface of the core and the inner surface of the sleeve each have at least two helical grooves of substantially the same pitch formed in it, each of the grooves of the core being of the same pitch as the complementary groove in the sleeve and wherein at least two separate single lengths of mineral insulated heating cable each having two conductors extend in the helical passages defined by the grooves, the conductors of one cable being of a different cross-sectional area from that of the conductors of the other cable or cables thereby providing at least two heating elements that may be used separately or in combination.

3. An elongate heating device as claimed in claim ll,

wherein the mineral insulated cable is of circular crosssection and each groove is of a semi-circular crosssection having a radius substantially equal to half the overall diameter of the cable.

4. An elongate heating device as claimed in claim ll, wherein one of the core and the sleeve is of a material of low thermal conductivity.

5. An elongate heating device as claimed in claim 1, wherein the terminal means connected to each protruding end of the heating cable is a sealing pot.

6. An elongate heating device as claimed in claim ll, wherein the core is of tubular cross-section.

7. An elongate heating device as claimed in claim 1, wherein the sheath of the heating cable is of stainless steel and at least one of the core and the sleeve is of mild steel.

8. An elongate heating device comprising a preformed elongate core having at least one helical groove in its outer surface; a separately formed sleeve of an internal diameter greater than the external diameter of said surface of the core which surrounds the core and has in its inner surface at least one helical groove that is of the same pitch as that of the groove on the core and that defines with the groove on the core a helical passage, at least one of the core and the sleeve being of a metal of high thermal conductivity; a length of mineral insulated heating cable comprising an elongate metallic sheath of high thermal conductivity, two elongate bare electrical heating conductors in said metallic sheath and compacted powdered mineral insulating material sealing the space between the electric heating conductors and the metallic sheath and insulating said conductors from each other and from said metallic sheath, said heating conductors being electrically connected together at one end of the lengths and enclosed in a sealed termination at said end, which cable extends along the helical passage between the core and the sleeve with said sealed termination secured in the passage near one end of the passage and with the other end of the cable protruding from the device and electrical terminal means connected to the protruding end of the cable, the cable being clamped between the core and sleeve and being of such a diameter with respect to the depths of the grooves, that part of the cable tits in the groove in the core and part of the cable fits in the groove in the sleeve and that there is an effective heat transfer path between at least one of the cable sheath and the core, and the cable sheath and the sleeve.

9. An elongate heating device as claimed in claim 8, wherein the sealed termination at one end of the length of mineral insulated heating cable is welded in the groove in the core or sleeve.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2466676 *Apr 19, 1946Apr 12, 1949BolingLiquid cooling unit
US2851571 *Nov 23, 1954Sep 9, 1958Gen Motors CorpElectric heating unit
US2987300 *May 29, 1959Jun 6, 1961Edward G S GreeneHeat transfer assembly
US3067313 *Feb 6, 1961Dec 4, 1962Keyser Carl AIce melting and melt collecting device
US3121154 *Oct 30, 1959Feb 11, 1964Babcock & Wilcox LtdElectric heaters
US3355784 *Jan 5, 1966Dec 5, 1967Texas Instruments IncHeater for textile machinery
US3384195 *Apr 15, 1955May 21, 1968Sunbeam CorpElectric frying pan
US3401439 *May 19, 1965Sep 17, 1968Gen Binding CorpLaminating apparatus
US3436816 *Oct 22, 1965Apr 8, 1969Lemelson Jerome HMethod of making heat transfer panelling
US3454747 *Mar 27, 1967Jul 8, 1969Hart Oliver MFlexible electric heating cable
US3691347 *Jun 18, 1971Sep 12, 1972John J FinnElectric heater
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4150281 *Mar 13, 1978Apr 17, 1979Tempco Electric Heater CorporationElectric heater construction
US4176274 *Apr 20, 1977Nov 27, 1979Pont-A-Mousson S.A.Method of coupling plastic pipes by welding and a connection piece for coupling same
US4224505 *May 31, 1978Sep 23, 1980Von Roll AgElectrically welding plastic sleeve
US4238671 *May 8, 1979Dec 9, 1980Gellert Jobst USprue bushing with cast in heater element
US4253011 *Dec 13, 1979Feb 24, 1981Tempco Electric Heater CorporationPlastic injection molding system having a temperature controlled electric heater element
US4355460 *Feb 17, 1981Oct 26, 1982Gellert Jobst USprue bushing and method of manufacture
US4386262 *Mar 15, 1982May 31, 1983Gellert Jobst USprue bushing with cast in electrical heating element
US4558210 *Aug 3, 1984Dec 10, 1985Watlow Electric Manufacturing CompanyElectric cast-metal heater
US4586690 *Jul 13, 1984May 6, 1986Metzeler Kautschuk GmbhApparatus for the manufacture of molded parts from molding compounds
US4644140 *Aug 30, 1984Feb 17, 1987Turk & Hillinger GmbhElectric heating arrangement for spray nozzles
US5051563 *Jun 23, 1988Sep 24, 1991Ewikon Entwicklung Und Konstruktion Gmbh & Co. Kg.Surface heating element for components of tools and machines
US6043466 *Feb 20, 1998Mar 28, 2000Husky Injection Molding Systems Ltd.Hot runner heating clamp
US6252210 *Sep 8, 2000Jun 26, 2001Hotset Heizpatronen U.Zubehor GmbhElectrical sleeve heater with built-in thermal sensor
US6394784Mar 8, 2000May 28, 2002Mold-Masters LimitedCompact cartridge hot runner nozzle
US6398264 *Mar 16, 2000Jun 4, 2002The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationThermally activated joining apparatus
US6561789Dec 26, 2001May 13, 2003Mold-Masters LimitedCompact cartridge hot runner nozzle
US6638053Dec 26, 2001Oct 28, 2003Mold-Masters LimitedCompact cartridge hot runner nozzle
US6761557Jun 20, 2003Jul 13, 2004Mold-Masters LimitedCompact cartridge hot runner nozzle
US6780003Aug 2, 2002Aug 24, 2004Mold-Masters LimitedRemovable heater for a hot runner nozzle
US7108502Jun 23, 2003Sep 19, 2006Mold-Masters LimitedHot runner nozzle with interlaced heater and sensor
US7125243Jul 7, 2004Oct 24, 2006Mold-Masters LimitedRemovable heater for a hot runner nozzle
US7377768Aug 28, 2006May 27, 2008Mold-Masters (2007) LimitedHot runner nozzle with removable sleeve
US7413432Mar 2, 2007Aug 19, 2008Mold-Masters (2007) LimitedCompact cartridge hot runner nozzle
US7438551Mar 13, 2007Oct 21, 2008Mold-Masters (2007) LimitedCompact cartridge hot runner nozzle
US7703188May 17, 2006Apr 27, 2010Mold-Masters (2007) LimitedThermal shroud and method of making same
US8418565 *Apr 16, 2013Krohne AgHeated pipe connecting device for installation of a flow meter
US20030228390 *Jun 20, 2003Dec 11, 2003Mold-Masters LimitedCompact cartridge hot runner nozzle and method of making
US20040022891 *Aug 2, 2002Feb 5, 2004Robert SiciliaRemovable heater for a hot runner nozzle
US20040037913 *Jun 23, 2003Feb 26, 2004Mold-Masters LimitedHot runner nozzle with interlaced heater and sensor
US20040069771 *Oct 7, 2003Apr 15, 2004Hotset Heizpatronen U. Zubehor GmbhElectrical sleeve heater
US20040258793 *Jul 7, 2004Dec 23, 2004Mold-Masters LimitedRemovable heater for a hot runner nozzle
US20060263469 *May 17, 2006Nov 23, 2006Mold-Masters LimitedThermal shroud and method of making same
US20060292256 *Aug 28, 2006Dec 28, 2006Gellert Jobst UHot runner nozzle with removable sleeve
US20070148279 *Mar 2, 2007Jun 28, 2007Mold-Masters LimitedCompact Cartridge Hot Runner Nozzle
US20070154588 *Mar 13, 2007Jul 5, 2007Mold-Masters LimitedCompact Cartridge Hot Runner Nozzle
US20080011098 *Jun 29, 2006Jan 17, 2008Krohne AgA heated pipe connecting device for installation of a flow meter
US20100233310 *Sep 16, 2010Mold-Masters (2007) LimitedThermal Shroud and Method of Making Same
CN100418728CAug 4, 2003Sep 17, 2008马斯特模具(2007)有限公司Threaded removable heater for a hot runner nozzle
CN100500319CMay 18, 2006Jun 17, 2009马斯特模具(2007)有限公司Injection mould hot runner nozzle and method of making same
EP1382928A2 *Jul 15, 2003Jan 21, 2004Andreas LewandowskiHeating roll, more particularly for laminators
EP1386717A1 *Aug 4, 2003Feb 4, 2004Mold-Masters LimitedThreaded removable heater for a hot runner nozzle
EP1724090A1 *May 11, 2006Nov 22, 2006Mold-Masters LimitedInjection nozzle with a thermal shroud and method of making the same
EP1951495A1 *Nov 24, 2006Aug 6, 2008Mold-Masters LimitedInjection molding component with low profile terminal connection
Classifications
U.S. Classification219/535, 219/540, 219/537, 338/268, 219/530, 165/169, 219/541, 338/252, 338/303, 219/544
International ClassificationB29C45/27, H05B3/00
Cooperative ClassificationB29C45/2737, B29C2045/2777, H05B3/00
European ClassificationH05B3/00, B29C45/27E