Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3849681 A
Publication typeGrant
Publication dateNov 19, 1974
Filing dateFeb 15, 1972
Priority dateJun 6, 1969
Also published asUS3656217
Publication numberUS 3849681 A, US 3849681A, US-A-3849681, US3849681 A, US3849681A
InventorsGrove L, Kemper D, Kiess R, Scott K
Original AssigneeCts Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Piezoelectric crystal units with malleable terminals and epoxy-filler sealant
US 3849681 A
Abstract
Crystal plate mounting means integral with malleable terminals of a piezoelectric crystal unit accommodate differently dimensioned crystal plates and permit spacing of the terminals for registry with circuit board perforations without stress-loading such plates. Other means integral with the terminals isolate the crystal plate from stress-loading when the free ends of the terminals are stressed. The illustrated mounting means comprise bifurcations formed in one end of each terminal and the illustrated other means comprise a paddle section of each terminal embedded in a resilient organic adhesive securing and hermetically sealing each terminal to an eyelet. The malleable terminals are solderable and readily deformable to secure registry between the free ends of the terminals and perforations in printed circuit boards. The organic sealant is compatible with the malleable terminal material and withstands stresses induced therein when the terminals are stressed and when the eyelet is cold welded to an envelope. The disclosed method includes the steps of securing a pair of terminals to an eyelet, adapting the ends of the terminals to support a crystal plate without stress-loading such crystal plate, securing a crystal plate in a stress free condition to the terminals, and cold welding the eyelet to an envelope by a cold weld processing step to avoid mass-loading the crystal plate.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Scott,'Jr. et al.

[451 Nov. 19, 1974 PIEZOELECTRIC CRYSTAL UNITS WITH MALLEABLE TERMINALS AND EPOXY-FILLER SEALANT [75] Inventors: Kelley E. Scott, Jr., Plano; Daryl M.

Kemper, Sandwich, both of 111.; Lloyd E. Grove, Geneva; Ronald J. Kiess, Decatur, both of 1nd.

[73] Assignee: CTS Corporation, Elkhart, Ind.

[22] Filed: Feb. 15, 1972 [21] Appl. No.: 226,430

Related US. Application Data [62] Division of Ser. No. 830,956, June 6, 1969, Pat. No.

[52] US. Cl 310/9.l, 310/8.9, 310/94 [51] Int. Cl I101v 7/00 [58] Field of Search 310/89, 9.1, 9.4;

[56] References Cited UNITED STATES PATENTS 2,399,919 5/1946 Garrison 310/9.4 2,434,903 1/1948 Bokovoy et a1... 310/9.4 2,457,145 12/1948 Gray 310/9.4 2,513,870 7/1950 Hoffman 310/94 X 2,597,797 5/1952 Holmbeck 310/9.1 X 2,676,275 4/1954 Bigler 3lO/9.4 X 2,785,321 3/1957 lmler 310/9.1 3,017,525 l/1962 Wolfskill 310/9.4 3,022,431 2/1962 McKnight 310/9.4

Primary Examiner-Mark O. Budd Attorney, Agent, or Firm-John J. Gaydos 5 7] ABSTRACT Crystal plate mounting means integral with malleable terminals of a piezoelectric crystal unit accommodate differently dimensioned crystal plates and permit spacing of the terminals for registry with circuit board perforations without stress-loading such plates. Other means integral with the terminals isolate the crystal plate from stress-loading when the free ends of the terminals are stressed. The illustrated mounting means comprise bifurcations formed in one end of each terminal and the illustrated other means comprise a paddle section of each terminal embedded in a resilient organic adhesive securing and hermetically sealing each terminal to an eyelet. The malleable terminals are solderable and readily deformable to secure registry between the free ends of the terminals and perforations in printed circuit boards. The organic sealant is compatible with the malleable terminal material and withstands stresses induced therein when the terminals are stressed and when the eyelet is cold welded to an envelope. The disclosed method includes the steps of securing a pair of terminals to an eyelet, adapting the ends of the terminals to support a crystal plate without stress-loading such crystal plate, securing a crystal plate in a stress free condition to the terminals, and cold welding the eyelet to an envelope by a cold weld processing step to avoid mass-loading the crystal plate.

15 Claims, 7 Drawing Figures PATENTEU sv 1 91914 3, 849.681

SHEET 10F 2 FIGURE 2 PIEZOELECTRIC CRYSTAL UNITS WITH MALLEABLE TERMINALS AND EPOXY-FILLER SEALANT This is a division of application Ser. No. 830,956 filed June 6, 1969 now US. Pat. No. 3,656,217 issued on Apr. 18, 1972.

This invention relates to piezoelectric crystal units and, more particularly, to an improved construction of such units and to a method of making the same.

The satisfactory use of crystal units in frequency control circuits is predicated on the long term accuracy and frequency stability of such units. It will be appreciated that even when it is permissable for a crystal unit to exhibit a change in operating frequency of 3 X parts per day, it is necessary to prevent mass-loading of the crystal plate, i.e., alteration of the resonant characteristics of a crystal plate because of the deposition of contaminants such as water vapor, dust, or other organic or inorganic materials on one or more surfaces of the crystal plate. In addition to avoiding mass-loading, it is desirable to avoid stress-loading of the crystal plate, i.e., alteration of the resonant characteristics of a crystal plate because of mechanical stresses applied to the crystal plate by the means that are used to mount the crystal plate in an enclosure or envelope.

Because of the importance of operating a crystal plate in a contaminant-free environment, elaborate and expensive techniques have been used in the past to hermetically seal one or more crystal plates within a contaminant-free enclosure. This expedient has also been utilized in order to avoid the frequency shift problems that can arise due to the occurrence of chemical reactions involving the electrode material deposited on the crystal plate. Prior art sealing techniques have comprised the steps of hermetically sealing a pair of terminals in an eyelet to form a header, mounting a crystal plate on the header, and hermetically sealing the header to a metal or glass envelope with the crystal plate disposed within such envelope.

Heretofore, headers have been characterized either as matched glass" or compression glass" headers. In

a matched glass header, a single material is used to fabricate the terminals and eyelets; and a vitreous material, having the same thermal coefficient of expansion as the eyelet and terminals, seals the terminals to the eyelet. Normally, the eyelet and terminals are made of Kovar, and the vitreous material is a glass that has been selected to have a thermal coefficient of expansion substantially the same as that of Kovar. The sealing process is accomplished by placing molten or liquid glass in the eyelet around the terminals and then cooling the glass to cause it to shrink and tightly grip the terminals, and become vitreous. Thereafter, the similar coefficients of thermal expansion of the Kovar and vitreous glass ensure that the seal between the terminals and eyelet will be maintained. Compression glass headers are made by generally following the same process steps used to make matched glass headers. However, the vitreous glass is selected to have a coefficient of thermal expansion greater than the terminal material, and the eyelet material differs from the terminal material and is selected to have a coefficient of thermal expansion greater than the vitreous glass. In the processing of these headers, the glass continues to shrink around the terminals after it becomes vitreous whereas the eyelet shrinks around the vitreous glass as the header is cooled.

In both matched glass and compression glass headers, the integrity of the terminal to eyelet seal depends upon the attainment of a good seal between the terminal and glass. In turn, this seal is dependent at least partly upon the presence of a tenacious oxide coating on the portion of the terminal embedded within the glass. As will be understood by those skilled in the art. the requirement for a tenacious oxide coating on the terminal and the necessary exposure of the terminal to a molten glass inherently precludes the use of many potential terminal materials because of the extreme corrosiveness of molten glass and the ease with which many metallic oxides will dissolve in molten glass. This is true in fact. even when glasses having a melting point of as low as 450 C. to 700 C. are used as the vitreous sealant. More specifically, the corrosiveness of molten glass has generally precluded the use of tenninal materials such as copper or tin coated copper. Accordingly, it would be desirable to provide a new and improved hermetically sealed crystal unit wherein a sealant and fabricating process is used that would permit the use of terminals fabricated from copper, tin coated copper, or other easily soldered electrically conductive malleable materials.

The integrity of conventional terminal to eyelet seals also depends, among other things, on the change in coefficient of thermal expansion that is exhibited as a molten glass is cooled from a liquid and supercooled liquid state to a vitreous state. As is well known to persons skilled in the glass art, any given glass is characterized by a relatively constant coefiicient of thermal expansion while the glass is vitreous and below the transformation range temperatures of such glass. At temperatures above the transformation range, i.e., normally above about 600 C., the coefficient of thermal expansion of a given glass increases by a factor of 2 or 3. In practice, this means that when a vitreous glass with a coefficient of thermal expansion equal to Kovar is heated to a liquid state, i.e., to a temperature of l,200 C. to l,500 C., and then allowed to cool, the glass will shrink or contract two to three times as much, per unit measure, as Kovar until a fictive temperature of the glass is reached. Then, the glass becomes vitreous and in theory contracts at the same rate as Kovar. Since the increased rate of contraction takes place over a range of 300 to 600 Centrigrade after the glass has macroscopically become a solid, it will be appreciated that the increased contraction of the glass results in a compression type seal even between such glass and Kovar and this compression inevitably creates stresses in the vitreous sealant that in turn make such sealant relatively susceptible to crazing or cracking. In addition, the observable fictive temperature of a glass varies as a function of the cooling rate of the glass and the actual compressive forces exerted by a vitreous glass cannot be precisely predicted unless the cooling rate of the glass is precisely controlled.

The relative ease with which vitreous materials may be cracked or broken during handling places limitations on many of the process steps that may be practiced during the manufacture of crystal units. For example, only a minimum amount of stress may be applied to a header when securing together the header and envelope in order to avoid damaging the vitreous sealant and thereby destroying the hermetic seal between the terminals and eyelet. Accordingly, it would be desirable to provide a new and improved hermetically sealed crystal unit wherein the header may be subjected to relatively great stresses during a manufacturing process without damaging the hermetic seal. The known hermetic sealants are also susceptible to damage while being installed in electrical equipment making use of standard printed circuit boards. For example, slight deviations in the relative positions of the crystal unit terminals and circuit board perforations can prevent registry of the terminals with such apertures. In such cases, the relatively stiff terminals must be bent or otherwise deformed with the concomitant risk of stressing the vitreous sealant and destroying the hermetic sea].

It is desirable to precisely locate crystal unit terminals so that they will register with apertures in printed circuit boards, and it is also desirable to very precisely locate the terminals so that they can support the crystal plate. In some applications, the required spacing between terminals for proper registry with a printed circuit board prevents optimum terminal spacing from the viewpoint of supporting the crystal plate. In these situations, it is necessary to space the terminals for registry with the circuit board and attach to the terminals separate crystal plate mounting means that resiliently grip the crystal plate and facilitate the completion of a solder connection between the mounting means and electrodes on the crystal plate. In addition to increasing the cost of a crystal unit, this arrangement is objectionable because the mounting means apply a compressive force and stress-load the crystal plate. It therefore would be desirable to provide improved crystal plate mounting means that accommodate variously sized crystal plates without stress-loading such crystal plates.

When separate crystal plate mounting means are spot welded or otherwise secured to the ends of terminals it is necessary to specifically orient the terminals within the eyelet so as to maintain proper orientation of the mounting means relative to the eyelet while a hermetic sealent is applied to secure the terminal to the eyelet. When separate mounting means have been secured to the terminals after the hermetic seal has been completed, it has still been necessary to maintain a precise orientation of the mounting means relative to the eyelet while securing the mounting means to the terminals. Accordingly, it would be desirable to provide an improved mounting means and method of manufacturing a crystal unit that eliminates the necessity of maintaining the critical orientation of mounting means relative to an eyelet while making a hermetic seal between the terminals and such eyelet or while securing the mounting means to the terminals.

In contemporary crystal units, metal eyelets are soldered or brazed to metal envelopes. The use of these high temperature techniques increases the risk of massloading as the result of vapors forming a deposit on a crystal plate within an envelope. The fact that metallic vapors may form a deposit on a crystal plate and thereby cause a change in frequency is well known and described in the Klingspom U.S. Pat. No. 3,028,262, dated Apr. 3, 1962, and entitled Method For The Frequency Tuning Of Piezoelectric Oscillators". It will thus be appreciated that any means used for hermetically sealing an eyelet to a metallic envelope that involves the use of heat or molten materials can potentially result in mass-loading a crystal plate within the envelope. Because of these problems, attempts have been made to secure metal eyelets to a metal envelope by means of apparatus that do not involve the use of heat or molten materials. These attempts have involved the use of apparatus and equipment of the type described in Sowter U.S. Pat. No. 2,522,408 entitled Cold Pressure Welding". In practice, however, these efforts have not been completely satisfactory because the stresses created in the eyelet during the cold welding process can easily damage the vitreous sealant material in the eyelet. Accordingly, it would be desirable to provide an improved crystal unit wherein a metal eyelet is cold welded to a metal envelope without damaging the hermetic seal between a pair of terminals and the eyelet.

Accordingly, it is an object of the present invention to provide a new and improved piezoelectric crystal unit. Another object of the present invention is to provide a new and improved method of making piezoelectric crystal units. A further object of the present invention is to provide a new and improved hermetically sealed crystal unit wherein the hermetic sealant accommodates and permits the use of terminals made from a readily solderable malleable material. An additional object of the present invention is to provide a new and improved crystal unit that is capable of withstanding manufacturing and handling stresses without damage to hermetic seals associated therewith. Yet another object of the present invention is to provide a new and improved means for mounting a crystal plate that does not stress-load such plate. Yet a further object of the present invention is to provide a new and improved means for mounting a crystal plate that dispenses with the need for separate structural elements attached to the terminals of the crystal unit and that will accommodate variously dimensioned crystal plates. Yet an additioal object of the present invention is to provide a new and improved crystal unit wherein the terminals thereof may be deformed and stressed during assembly and subsequent handling without stress-loading the crystal plate and without damaging a hermetic seal between the terminals and eyelet during such deformation. Still another object of the present invention is to provide a new and improved crystal unit incorporating a sealant means that is compatible with malleable and readily solderable terminals. Still a further object of the present invention is to provide an improved crystal unit that facilitates the assembly of a pair of terminals and an eyelet without regard to the orientation of crystal plate mounting means relative to the eyelet. A more specific object of the present invention is to provide a new and improved method of manufacturing a crystal unit wherein a crystal plate is supported directly by a pair of terminals. A still more specific object of the present invention is to provide a new and improved crystal unit wherein an eyelet is hermetically sealed to an envelope without mass-loading a crystal plate within the envelope. An even more specific object of the present invention is to provide a new and improved crystal unit having a resilient hermetic sealant capable of withstanding stresses induced therein. These and other objects and advantages of the present invention will become apparent as the following description proceeds, and the features of novelty characterizing the invention will be pointed out with particularity in the claims annexed to and forming a pan of this specification.

The present invention is concerned with a piezoelectn'c crystal unit that preferably is hennetically sealed. Crystal units embodying the present invention include an envelope, a header comprising an eyelet and terminals, and a crystal plate supported by mounting means integral with the terminals. The mounting means accommodate differently dimensioned crystal plates and permit spacing of the terminals for registry with a circuit board without stress-loading such plates. Other means, integral with the terminals, isolate the crystal plates from stress-loading when the free ends of the terminals are bent or otherwise deformed. In the illustrated embodiment, the mounting means comprise bifurcations that are cut, abraded, or otherwise formed in one end of each terminal. Preferably, the mounting means are formed after the terminals have been assembled with an eyelet in order to avoid maintaining precise orientation of the mounting means relative to each other during assembly of the terminals and eyelet. The exemplified other means integral with the terminals for isolating the crystal plate from stress-loading comprise a paddle section of each terminal that is embedded in the means used to secure the terminals to the eyelet. Preferably, the terminals are made from a malleable material such as aluminum, copper, or tin-coated copper. Other aspects of the invention are concerned with using a cold-welding process to secure together the header and envelope and with using a resilient nonvitreous material such as an organic adhesive material to secure and hermetically seal the terminals to the eyelet. The non-vitreous sealant is compatible with malleable terminal materials and maintains the integrity of a hermetic seal when the header and envelope are coldwelded.

For a better understanding of the present invention, reference may be had to the accompanying drawings wherein the same reference numerals have been applied to like parts and wherein:

FIG. 1 is an isometric view of a piezoelectric crystal unit embodying features of the present invention;

FIG. 2 is an exploded isometric view of the crystal unit illustrated in FIG. 1;

FIG. 3 is a cross-sectional view taken along the lines III-III in FIG. 1;

FIG. 4 is a cross-sectional view taken along the lines IV-IV in FIG. 3, assuming that the crystal unit in FIG. 3 is shown in full;

FIG. 5 is a graph showing the relationship between the specific volume and temperature of a vitreous material and a non-vitreous material;

FIG. 6 is a view similar to FIG. 4 illustrating another embodiment of the invention; and

FIG. 7 is a view similar to FIGS. 4 and 5 illustrating still another embodiment of the invention.

Referring now to the drawings, and more particularly to FIG. 1, a crystal unit 10 embodying the present invention comprises an envelope 11, a pair of terminals l2, l3, and ari eyelet 14 comprising an apertured base, a continuous sidewall connected to the base, and a flange extending from a peripheral edge of the sidewall. Means for supporting the terminals on the eyelet include a hermetic sealant that comprises a resilient organic adhesive 16 which maintains a hermetic seal be tween the terminals and eyelet. As best illustrated in FIGS. 3 and 4, a crystal plate 17 is supported by mounting means that form an integral part of the terminals l2, l3. Deposits of a conductive adhesive material such as solder or epoxy mechanically secure and electrically connect the mounting means with a pair of conventional crystal plate electrodes 19, 21. As best illustrated in FIGS. 2 and 3, the mounting means comprise bifurcated portions 22, 23 of the terminals and when the crystal plate 17 is positioned on such bifurcated portions, deposits of conductive epoxy 24 fixedly secure the crystal plate 17 to the bifurcations 22a, 22b. 23a. and 23b. The bifurcations on each terminal preferably are spaced apart a distance slightly greater than the thickness of the thickest crystal plate expected to be supported by the terminals 12, 13 so that a crystal plate may be readily slipped into place between the bifurcations on each terminal without being stress-loaded. In FIG. 2, the tenninal 12 has been rotated slightly to better illustrate this spacing. When being mounted on the terminals 12, 13, the crystal plate is positioned without constraint between the bifurcations, and conductive epoxy 24 is deposited to secure the crystal plate to the bifurcations. After the epoxy 24 has cured and become relatively rigid, the crystal plate 17 is firmly supported by the terminals 12, 13 and yet remains in a relaxed or unstressed condition. Although it is normally preferred to form each of the mounting means with two bifurcations as illustrated because of the ease with which the crystal plate 17 is assembled therewith, the mounting means may be embodied in other forms. For example, one of the bifurcations may be removed from each terminal so that each mounting means comprises a single bifurcation disposed against a face of the crystal plate and a ledge or shoulder at the base of such single bifurcation for supporting the bottom edge of the crystal plate, i.e., the edge of the crystal plate adjacent to the eyelet 14. When it is desired to form the mounting means from a single bifurcation, such bifurcation may be fabricated by bending and shaping the terminal to form a shoulder and bifurcation, by swaging the end of the terminal to form a shoulder and bifurcation, or by removing one of the pair of illustrated bifurcations from the illustrated terminals 12, 13. When the mounting means are constructed according to any of the above teachings, at least one bifurcation or crystal plate mounting portion of each of the terminals will be disposed adjacent to a face of the crystal plate.

Preferably, the mounting means are not formed until after the eyelet and terminals have been assembled to gether to form a header. When a sealant is used to hermetically seal a pair of terminals in an eyelet, it is only necessary to place the terminals in the apertures of the eyelet, axially position the terminals relative to the eyelet, and maintain the relative positions of these elements until the sealant, whether vitreous or nonvitreous, becomes sufficiently rigid to maintain the terminals in assembled relation with the eyelet. With particular reference to the illustrated embodiment, it will be noted that since the terminals l2, 13 are not bifurcated prior to being secured to the eyelet 16, it is not necessary to orient the terminals with regard to the crystal plate mounting means during the above described steps. Any suitable means may be used for forming the bifurcations 22, 23 and such means includes but is not limited to apparatus such as a saw. By forming the mounting means after the eyelet and terminal is assembled, it will be appreciated that such means may be formed in exact alignment for receiving a crystal plate without stress-loading such plate. Furthermore, this procedure eliminates the necessity of orienting separate crystal plate mounting means that are assembled with the terminals. It should now be apparent that the process of forming crystal plate mounting means integral with the terminals after fabrication of a header is also useful even when such header comprises one or more terminals insert molded or otherwise secured to the eyelet made of a plastic or similar material.

When the terminals 12, 13 are supported in nonvitreous means, such as an organic adhesive material as illustrated, it is preferable that the terminals each be provided with stress isolating means for insulating the mounting means from stresses caused by bending, twisting, or otherwise stressing the free ends of the terminals, e.g., ends 12a and 13a. In the crystal unit 10, such stress isolating means include paddle sections 12b and 1312 which are formed by swaging the terminals to provide debilitated segments between the ends thereof. In many applications, it normally would not be expected that a torque wouldbe applied to the free ends 120, 13a of the terminals. However, when a terminal is inadvertently bent to the dotted line position of terminal 12 in the manner illustrated in FIG. 4, forces directed along a line generally perpendicular to the plane of the drawing and applied to the free end 12a can break the hermetic seal around the tenninal l2 and stress-load the crystal plate 17. Actual tests have been made on two different header and crystal plate assemblies to illustrate the usefulness of the paddle sections 12b and 13b. One of these assemblies, herein referred to as assembly A", corresponded to the construction illustrated in FIG. 4 and the other assembly, herein referred to as assembly B, similarly corresponded except that the terminal corresponding to terminal 12 was not provided with any stress isolating means. After the terminals of assembly A were bent to the dotted line position of tenninal 12 in FIG. 4, forces applied to the free ends of the tenninals caused them to turn about an axis defined by the solid line position of terminal 12 in FIG. 4. Continued application of such forces caused the terminals to actually twist apart at the paddle sections, but at no time during the test was there any indi cation that the portion of the terminal between the paddle sections and mounting means moved relative to the sealant or that the hermetic seal was broken between such portions and the sealant, and at no time during the test was there any indication that a torque was transmitted to the mounting means. However, when a force was applied to the bent terminal 12 of assembly B, the body of the terminal started to turn in the sealant, the mounting means started to turn, and the crystal plate was mechanically stressed. When continued force was applied, the mounting means actually started to turn or rotate about an axis defined by the solid line position of terminal 12 in FIG. 4. As this occurred, the entire portion of the terminal embedded within the sealant started to turn relative to the sealant, thus breaking the hermetic seal therebetween, and the mounting means applied a stress to the crystal plate and actually fractured the corner of the crystal plate to which it was attached. It will be noted that the portions of the terminals l2, l3 embedded within the sealant 16 are substantially straight, i.e., the portions of the terminals above and below the debilitated sections are in line with each other. Therefore, the terminals 12, 13 may each be randomly oriented about the longitudinal axis thereof and have been positioned as shown in the drawings only for clarity of illustration. In summary, the terminals l2, 13 comprise straight or linear portions randomly oriented within the sealant 16, and the paddle sections 12b, 13b formed in such portions prevent the transmission of stresses from the free ends 12a, I3a of the terminals to the mounting means 22, 23. In addition, the sections 12b, 13b prevent the seal between the terminals and sealant 16 from being broken along the portions of the terminals between the mounting means and sections 12b, 13b even when the sealant between the sealant and remaining portions of the terminals is destroyed.

When the terminals l2, 13 are stressed, the organic adhesive sealant 16 will not normally be cracked or chipped because it is relatively resilient. Preferably, the organic adhesive 16 is an epoxy material. Since epoxy will readily adhere to a wide range of materials that may be used to fabricate the eyelet l4 and terminals l2, 13, the specific coefficient of thermal expansion of such material is not as critical as it otherwise would be if the sealant were relatively non-adhesive vitreous material. In the illustrated embodiment of the invention the eyelet 14 is made of aluminum and the terminals 12, 13 are made of tin coated copper and the sealant 16 is a conventional epoxy resin. When using this material the terminals l2, 13 are positioned in the apertures 26, 27 of the eyelet 14 as best indicated by FIGS. 3 and 4, and the uncured epoxy is dispensed into the eyelet 14 around the terminals. Then the eyelet, terminals, and sealant are heated to approximately 177 C. in order to cure the epoxy and form a solidified but relatively resilient sealant around the terminals l2, 13. The adhesive 16 adheres to the terminals and eyelet and maintains a hermetic seal therebetween; and, in order to reduce the strain placed on such seal during thermal cycling, the thermal coefficient of expansion of the epoxy 16 is modified so that it will approximately equal the thermal coefficient of expansion of the aluminum eyelet l4, i.e., about 25 X 10' per degree Centigrade. The epoxy l6 readily adheres to the eyelet and terminals, and is relatively resilient and not readily cracked or crazed. Some of the other advantages attained by the use of the epoxy will be better understood and more readily explained by comparing some of the characteristics of a typical prior known vitreous sealant and the epoxy 16.

Accordingly, reference is now made to the graph of FIG. 5 which shows the relationship between the specific volume (cubic centimeters per gram) and temperature (degrees Centigrade) of these two materials. Curves C, D, E, and F illustrate the manner in which specific volume varies as a function of temperature of a vitrifiable glass sealant. On curve C, point G is representative of a typical melting point of the glass material and at temperatures above T the glass is liquid while at temperatures between T and T the glass is a supercooled liquid. The curves D, E, and F illustrate the relationship between specific volume and temperature of the glass after it has become vitreous, and whether the specific volume follows curve D, E, or F depends on the rate at which the glass is cooled. If the glass is cooled relatively fast, it will have a fictive temperature of T and a specific volume along curve D whereas slow cooling results in a fictive temperature of T and a specific volume along curve F. The curve E and fictive temperature T correspond to one of an infinite number of cooling rates intermediate the two cooling rates corresponding to curves D and F. As will be understood, the temperature range T to T represents the transformation range of the glass and vitrification of the supercooled liquid glass occurs at a temperature within this transformation range. The curves H and K approximately represent the relationships between specific volume and temperature of the epoxy 16, with the curve H illustrating the constant temperature volumetric change that occurs as the epoxy cures and the curve K illustrating the volumetric change of the cured epoxy as the temperature thereof is reduced to room temperature from a curing temperature T of about 177 C.

The slopes of the various curves shown in FIG. are approximately indicative of the coefficients of thermal expansion of the glass and epoxy. With reference to the curves C, D, E, and F, it should be noted that when the molten glass is deposited in an eyelet, it will cool from the melting point T (from 900 to 1,100 C.) and exhibit a relatively constant coefficient of thermal expansion as a fictive temperature is approached. Then, depending upon the rate of cooling of the supercooled liquid glass, a fictive temperature between T and T will be reached and the glass will become vitreous. With further cooling the thermal coefficient of expansion will be reduced to from /:3 to /2 of the coefficient of thermal expansion of the supercooled liquid glass.

It now should be apparent that when a vitreous material is used as a sealant, the eyelet and terminals must be subjected to a much higher temperature, i.e., T than is the case when an organic adhesive material is used which cures at a substantially lower temperature, i.e., T In addition, even though the rate of contraction or shrinkage (the slope of curves D, E, F) of a vitreous material may be predicted with a high degree of certainty, the actual percent change in specific volume, i.e., the actual shrinkage of the vitreous material, is relatively unpredictable unless very rigid control is maintained over cooling rates since the actual shrinkage of the vitreous material is dependent upon the rate of cooling and the fictive temperature at which the supercooled liquid glass becomes vitreous. Therefore, the actual strength of a hennetic seal that depends solely on the actual amount of shrinkage of a vitreous material is not precisely predictable. However, in the case of an epoxy, the actual shrinkage of the material after curing or solidification is realtively predictable and essentially independent of the cooling rate. In addition,

the actual amount of shrinkage or volumetric change of g the epoxy is not as critical as in the case of glass because the seal is aided by the adhesive qualities of the epoxy and does not depend solely on the compressive action of the sealant in the same manner as a vitreous glass seal. Other advantages of using an organic adhesive sealant should also now be readily apparent. For example, the tin coating on the copper terminals remains intact when the sealant 16 is used, whereas the tin coating would be quickly removed if it were exposed to molten glass.

The coefficient of thermal expansion of the epoxy sealant 16 is approximately equal to that of aluminum, i.e., about 25 X per degree Centigrade and the coefficient of thermal expansion of the vitreous glass typified by curves D-F is about 1 l X 10 per degree Centigrade. This difference in coefflcients is indicated by the different slopes of curves D-F and curve K, it of course being understood that the actual coefficient of thermal expansion of the vitreous material and epoxy l6 actually is a nonlinear function of temperature and that such coefficients have been treated as a linear function of temperature solely for the purpose of illustration in FIG. 5. However, the coefficient of thermal expansion may, for practical purposes, be considered to be fairly uniform over a relatively narrow temperature range and thus it will be appreciated that the relatively narrow range of processing temperatures required for an epoxy sealant provides the advantage that the total volumetric change of the epoxy is generally more predictable than the total volumetric change of a vitreous material that must be processed over a relatively wide temperature range.

For the purposes of this application, the term epoxy material is meant to refer to the class of organic adhesive materials characterized by a molecular structure that includes a three member ring consisting of an oxygen atom attached to two adjacent carbon atoms and this term is meant to include catalysts, curing agents, and filler materials, whether organic or inorganic, that are used to extend or modify various properties of such material. In the exemplified construction, the epoxy resin was mixed with an aromatio polyamine based catalyst. The previously mentioned material that was used to modify the coefficient of thermal expansion comprised silica powder passable through a standard 325 mesh sieve and 40 parts by weight of such filler were added to sixty parts by weight of the resin-catalyst mixture.

The present invention alleviates the problems of processing a sealant at extremely high temperatures and the inherent difficulties that are encountered in such processing, including the necessity of exercising rigid control over temperatures and cooling rates of materials. In addition, the eyelet and terminals may now be fabricated from a wide selection of materials. As one example, the terminals may now be made of a malleable electrically conductive material, i.e., a material having the characteristics of copper or aluminum. The prior art techniques have placed limitations on the materials that could be used to fabricate eyelets because, among other things, of limitations imposed by the relatively low thermal coefiicients of expansion of available vitreous sealants and the corrosive action of molten glass sealants. These limitations have necessitated the use of relatively expensive alloy materials such as Kovar and other metal alloys. An extremely well suited inexpensive eyelet material is aluminum and even though some vitreous materials have been heretofore proclaimed as usable for coating aluminum, such vitreous materials have in fact had thermal coefficients of expansion of only about 16.4 X 10* per degree Centigrade. Since the present disclosure teaches how to construct a crystal unit incorporating an aluminum eyelet and a sealant that can be made to very closely match the thermal expansion characteristics of aluminum, it will be appreciated that the present invention constitutes a substantial step forward in the art.

After completion of the steps of forming the bifurcations 22, 23 and securing the crystal plate 17 to the bifurcations, the flange 29 of the eyelet 14 is pressure or cold welded to the flange 31 of the aluminum envelope 11. During this step, high temperatures are avoided so that the crystal plate 17 will not be exposed to metallic or organic vapor contaminants that could mass-load the crystal plate. The stresses applied to the header and sealant 16 during this step do not damage the hermetic seal between the terminals l2, l3 and eyelet 14 because the sealant 16 is sufficiently resilient to withstand such stresses without crazing or cracking. The cold weld between the flanges 29 and 31 is accomplished by placing the flanges between a pair of dies and applying a sufficient amount of pressure to opposite sides of the overlapped flanges to cause the material in the flanges to flow and weld together. When this pressure is applied, the flanges 29, 31 are deformed and assume the cross-sectional configuration illustrated in FIGS. 3 and 4. Prior to cold welding the flanges 29, 31, the surfaces to be welded should be suitably cleaned, and during the cold welding process the cross-section or thickness of the overlapping flanges 29, 31 are preferably reduced approximately 70 percent along the weld line. Details of suitable cleaning and welding techniques are described in the previously identified Sowter patent and such description is specifically incorporated herein by reference.

The ease with which different sizes of crystal plates may be supported on a single size of header or on a pair of terminals spaced for proper registry with a printed circuit board will be best understood by having a reference to FIGS. 6 and 7 wherein the envelopes of the illustrated crystal units have been omitted for purposes of clarity. In FIG. 6, the eyelet 32 and sealant 36 are substantially identical to the eyelet 14 and sealant 16 of the crystal unit 10. In addition, the crystal plate mounting ends 37a, 38a, of the terminals 37, 38 as well as the portions of those terminals embedded within the sealant 36 are substantially identical to the corresponding portions of the terminals l2, 13. However, the crystal plate 39 is physically smaller than the crystal plate 17. In order to accommodate this smaller crystal plate, the terminals 37, 38 have been formed with the bifurcated portions 40, 41 thereof directed toward each other so as to support the crystal plate 39 without mechanically stressing such crystal plate.

The embodiment illustrated in FIG. 7 differs from the embodiment of FIG. 6 only in that the bifurcated portions 44, 46 of the terminals 47, 48 are directed away from each other in order to support the crystal plate 49. As can be seen from a comparison of FIG. 7 and FIG. 4, the crystal plate 49 is physically larger than the crystal plate 17. In other respects, the embodiment of FIG. 7 is the same as the embodiment of FIG. 4 with the eyelet 51 being substantially identical to the eyelet l4 and the sealant 52 being substantially identical to the sealant 16. Although it would be possible to form the bifurcated portions of the terminals 37, 38 and 47, 48 prior to the time that such terminals are hermetically sealed in the eyelets, it is preferable to assemble nonbifurcated straight terminals with the eyelets without regard to the orientation of the terminals and then bifurcate the ends of the terminals and bend or otherwise form the crystal mounting plate ends of the terminals 37, 38, 47, 48 to accommodate the particular crystal plate that is to be mounted thereon. In the embodiments of FIGS. 6 and 7, as in the embodiment of FIG. 4, the bottom of the crystal plate is nestedly supported by the mounting means with at least one bifurcation of the mounting means disposed adjacent to a face of the crystal plate. In all three embodiments of the invention, bifurcations define the ends of a pair of terminals adjacent to a crystal plate within an envelope. As best shown in FIGS. 3 and 4, the peripheral bottom edge of the crystal plate is at least partially bounded by the ledge or shoulder at the base of the bifurcations, but the peripheral side edges of the crystal plate are not covered or enclosed by the mounting means. Each bifurcation on each terminal defines one side of a slot or crystal plate receiving portal that pennits unrestrained lateral movement of the crystal plate. This structural arrangement facilitates the mounting of differently sized crystal plates on a given pair of mounting means and also ensures that the crystal plate will not be stressloaded as a result of the mounting means engaging the peripheral side edges thereof.

the he foregoing description of the various exemplifications of the invention, it will be apparent that there is disclosed herein a new and improved piezoelectric crystal unit and method for making the same that overcome the aforementioned problems and disadvantages in the art and that accomplish the stated objects of the present invention.

While there has been illustrated and described herein what is at present considered to be preferred embodiments of the present invention and a preferred method of manufacturing a crystal unit, it will be appreciated that numerous changes and modifications are likely to occur to those skilled in the art, and it is intended in the appended claims to cover all those changes and modifications which fall within the true spirit and scope of the present invention.

What is claimed as new and desired to be secured by Letters Patent of the United States is:

l. A piezoelectric crystal unit comprising an eyelet having a pair of terminal receiving apertures, a pair of conductive malleable terminals supported in the apertures of the eyelet, each of the tenninals having a free end extending from the eyelet, a crystal plate having a pair of faces, an envelope surrounding the crystal plate and secured to the eyelet, and means formed integrally with the terminals for mounting the crystal plate in a substantially stress-free condition, said means comprising a bifurcated portion on each of said pair of tenninals disposed adjacent to a face of said crystal plate, each of the bifurcated portions being provided with a slot defined by a pair of arms and a bottom edge, the crystal plate being disposed in and supported by the slot by the pair of arms and the bottom edge of the slot whereby stress-loading of the crystal plate by the mounting means is prevented.

2. The piezoelectric crystal unit of claim 1 wherein the eyelet includes a flange, the envelope includes a flange overlapping the flange of the eyelet, and the flanges are cold welded together thereby to secure assembly of the eyelet with the envelope.

3. The piezoelectric crystal unit of claim 1 wherein a sealant secures the terminals to the eyelet and comprises an organic adhesive material mixed with a filler material.

4. The piezoelectric crystal unit of claim 3 wherein said organic adhesive material comprises a material that includes a three-member ring consisting of an oxygen atom attached to two different carbon atoms and wherein such material adhesively secures the terminals to the eyelet.

5. The piezoelectric crystal unit of claim 4 wherein the organic adhesive material has a coefficient of thermal expansion substantially the same as the coefficient of thermal expansion of the eyelet.

6. The piezoelectric crystal unit of claim 1 wherein the crystal plate mounting means define a portal opening upwardly away from the eyelet thereby to accommodate variously dimensioned crystal plates in a stressfree condition.

7. The piezoelectric crystal unit of claim 1 wherein said terminals are provided with stress-isolating means intermediate the free ends thereof and the means for mounting the crystal plate, whereby stresses in the free ends of the terminals are isolated from the means for mounting the crystal plate.

8. The piezoelectric crystal unit of claim 7 wherein the stress-isolating means comprise a paddle section on each of the terminals.

9. A piezoelectric crystal unit comprising a metal eyelet, a pair of terminals extending through the eyelet, means secured to the eyelet supporting the terminals, mounting means on the terminals, a crystal plate supported on said mounting means, and an envelope secured to the eyelet, said means secured to the eyelet supporting the terminals comprising an epoxy material mixed with a filler material having a coefficient of thermal expansion substantially the same as that of the metal eyelet.

10. The piezoelectric crystal unit of claim 9 wherein said mounting means comprise a bifurcated portion on each of the terminals disposed adjacent to a face of the crystal plate.

11. The piezoelectric crystal unit of claim 9 wherein the terminals include a straight segment embedded in the epoxy material for isolating stresses from the mounting means.

12. The piezoelectric crystal unit of claim 11 wherein the means for isolating stresses comprise a debilitated paddle section in the straight segment embedded in the organic material.

13. A piezoelectric crystal unit comprising an eyelet, a pair of terminals each having a section secured to the eyelet and a free end projecting away from the eyelet, mounting means for supporting a crystal plate on the terminals, a crystal plate supported on said mounting means, an envelope secured to the eyelet, and means for isolating stresses in the free ends of the terminals from the mounting means whereby forces applied to the free ends of the terminals are isolated from the mounting means, said means for isolating stresses comprising a debilitated segment of each terminal.

14. The piezoelectric crystal unit of claim 13 wherein a resilient sealant secures the terminals to the eyelet and the debilitated segment of each-terminal is embedded in said sealant.

15. The piezoelectric crystal unit of claim 14 wherein said debilitated segments comprise a swaged section of the terminals.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2399919 *Aug 4, 1944May 7, 1946Standard Telephones Cables LtdFrequency determining unit
US2434903 *Nov 21, 1944Jan 27, 1948Standard Telephones Cables LtdPiezoelectric crystal mounting
US2457145 *Jan 5, 1946Dec 28, 1948Int Standard Electric CorpMounting for piezoelectric crystals
US2513870 *Jan 23, 1948Jul 4, 1950Reeves Hoffman CorpHermetically sealed crystal
US2597797 *Apr 19, 1949May 20, 1952James Knights CompanyCrystal holder
US2676275 *Feb 2, 1953Apr 20, 1954Rca CorpPiezoelectric crystal apparatus
US2785321 *Jan 31, 1952Mar 12, 1957John B BradyApparatus for protecting high frequency piezo-electric crystals
US3017525 *Nov 26, 1956Jan 16, 1962Wolfskill John MMounting support for piezoelectric crystal units
US3022431 *Apr 25, 1958Feb 20, 1962Pye LtdCrystal mounts
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3970880 *Aug 5, 1974Jul 20, 1976Motorola, Inc.Crystal mounting structure and method of assembly
US4266157 *May 18, 1979May 5, 1981The United States Of America As Represented By The Secretary Of The ArmyPiezoelectric resonator assembly with thin molybdenum mounting clips
US4611141 *Feb 20, 1985Sep 9, 1986Kureha Kagaku Kogyo Kabushiki KaishaLead structure for a piezoelectric array-type ultrasonic probe
US5679999 *Dec 19, 1995Oct 21, 1997Nec CorporationPiezoelectric vibrator having U-shaped supports
US6791241 *Dec 16, 1997Sep 14, 2004Seiko Epson CorporationPiezoelectric vibrator and manufacture thereof, and piezoelectric vibrator unit
US7093357Feb 17, 2004Aug 22, 2006Murata Manufacturing Co., Ltd.Method for manufacturing an electronic component
US7254876Oct 17, 2003Aug 14, 2007Seiko Epson CorporationMethod for manufacturing a piezoelectric resonator
US7719171 *Aug 18, 2008May 18, 2010Seiko Instruments Inc.Method of fabricating hermetic terminal and hermetic terminal, method of fabricating piezoelectric oscillator and piezoelectric oscillator, oscillator, electronic appliance, and radio clock
US20020101132 *Dec 10, 2001Aug 1, 2002Murata Manufacturing Co., Ltd.Electronic component and manufacturing method for the same
US20040080241 *Oct 17, 2003Apr 29, 2004Seiko Epson CorporationPiezoelectric resonator, method for manufacturing same piezoelectric rsonator unit
US20040201325 *Feb 17, 2004Oct 14, 2004Murata Manufacturing Co., Ltd.Electronic component and manufacturing method for the same
Classifications
U.S. Classification310/344, 310/346, 310/353
International ClassificationH03H9/05, H03H3/00, H03H9/10, H03H3/02
Cooperative ClassificationH03H9/0528
European ClassificationH03H9/05A3