Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3849840 A
Publication typeGrant
Publication dateNov 26, 1974
Filing dateSep 20, 1973
Priority dateSep 26, 1972
Also published asCA991923A1
Publication numberUS 3849840 A, US 3849840A, US-A-3849840, US3849840 A, US3849840A
InventorsF Yamada, Y Fukuda, T Uraya
Original AssigneeKanebo Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for imparting pressure sensitive adhesion to velvet type fasteners
US 3849840 A
Abstract
Velvet type fasteners are imparted with pressure sensitive adhesion by applying to the respective back surfaces of the male and female pieces of a velvet type fastener, a composition consisting of: 100 parts by weight of a polymer, containing at least 65 percent mol of an ester of an acrylic acid or methacrylic acid and from 0.2 to 5 parts by weight of glycidyl ester of an unsaturated organic acid; from 0.5 to 5 parts by weight of a zirconyl salt of organic acid, and; from 0.01 to 0.1 part by weight of a volatile acid addition salt of organic amine.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 I 'Yamada et 'al.

[ 1 Nov. 26, 1974 [54] METHOD FOR IMPARTING PRESSURE Tittle .Q 260/414 S NSI IV ADHESION o VELVET Y 3,224,419 12/1965 Jubilee 117/122 PA 3,280,059 /1966 Giesen 260/23.7 A FASTENERS a 1 3,284,383 11/1966 Proopsm. 260/414 [75] Inventors: Fukuo Yamada; Yoshihiro Fukuda, 3,284,423 11/ 1966 Knapp 156/330 X mflflmm W I M Osaka; To u Uraya, Kobe, all of 3,419,587 12/1968 Harson 260/414 Japan 3,423,764 l/1969 Cassling 2 337 3,499,102 3/1970 Gillemot 24/204 UX [73] Ass1gnee: Kanebo Limited, Tokyo, Japan 3,563,953 2 1971 Lehmann 117 122 PA 3,574,019 4/1971 Girard 156/66 [22] Wed Sept 1973 3,579,490 5 1971 Kordzinski 260/80.72 21 L 399 114 3,639,504 2/1972 Paleologo 156/332 X 3,773,580 11/1973 Provostm. 156/66 3,773,589 1l/1973 Kaiser 156/330 X Foreign Application Priority Data I Sept/26, 1972 Japan 47-96937 Primary Examiner Ra]ph S, Kendal] Assistant ExaminerDennis L. Albrecht [52] US. Cl. 24/204, 46/D1G. 1, 117/122 PA, 117/161UC, 117/161ZB, 156/66, 156/330,

. 156/332, 161/53, 260/2 EC, 260/47 EC, [57] ABSTRACT 260/-75 R, 2,60/ E, A 269/414 Velvet type fasteners are imparted with pressure sensil5 Cl 1 C 3/14: 7/ 04 tive adhesion by applying to the respective back sur- Fleld of Search faces of the male and female pieces of a velvet 117/122 P 161 1 UC; 24/DIG- 18, fastener, a composition consisting of:' 100 parts by 204; 161/53; 2/DIG- 6; 46/DIG- 1; 260/2 weight of a polymer, containing at least 65 percent EC147 EC, 45-75 R, L, 82-72, E, mol of an ester of an acrylic acid or methacrylic acid A, 414 and from 0.2 to 5 parts by weight of glycidyl ester of an unsaturated organic acid; from 0.5 to 5 parts by 1 References Cited weight of a zirconyl salt of organic acid, and; from I UNITED STATES PATENTS 0.01 to 0.1 part by weight of a volatile acid additio 2,739,902 3/1956 Mackmf. 106/264 Salt of Orgamc amme- 1 2,739,905 3/1956 Mack..,.. 106/264 X 2,773,850 12/1956 Willis 260/23 R 8 Claims 2 Drawmg Flgures 2,802,847 8/1957 Blumenthal 260/414 SOO- IOO

PATENTEL. mvzsum Fig.

The present invention relates to a method for imparting pressure sensitive adhesion to velvet type fasteners. More particularly, it relates to a method for imparting pressure sensitive adhesion to the respective back surfaces of the male and female pieces of velvet type fasteners.

It is well known that there are two different kinds of velvet type fasteners. One of them is a'fastener composed of a male piece having a plurality of upright hook elements disposed on a base fabric and a female piece having a plurality of loop elements formed on a working surface of a base fabric. In the other kind of velvet type fastener, a male element is provided with a laterally expanded cap formed at the top end portion of a stem is utilized instead of the hook element. As to the materials for making these kinds of fasteners, synthetic fibers such as polyamides polyesters, polypropylene and polyoxymethylene fibers have been preferably utilized. This is because the synthetic fibers mentioned above have desirable physical properties such as elasticity, rigidity, flexibility, thermal stability and strength.

The term velvet type fastener or fastener used herein refers to the above-mentioned two kinds of fasteners.

It is also known that the'velvet type fastener has been widely utilized for clothing, interior decorations and industrial materials, including woven and knitted fabrics of various types, because of the velvet type fasteners easilydetachable fastening of a pair of articles.

Generally, the male and female pieces have been secured on woven and knitted fabrics by sewing. However, it has been difficult to carry out such a sewing operation owing to the presence of the engagingelements of the 'male and female pieces and, in addition, the engaging elements of these pieces have many times been partly sewn in by the sewing thread. The inevitable consequences of these problems have been lower securing efficiency and poorer fastening effect. For thick or stiff materials such as carpet, natural or synthetic wood and shaped resinous articles, it has been very difficult or impossible to effect the above-mentioned sewing operation.

To overcome the above problems, it has been proposed to impart heat sensitive adhesion or pressure sensitive adhesion to the back surface of each piece of the fastener. in the former method, the heat sensitive adhesion is imparted by coating a heat meltable resin layer onto the respective back surfaces of the male and female pieces. However, it is necessary that each piece of the fastener obtained by this method be secured by being pressed under an elevated temperature satisfactory to melt the resin. This often results in damage to the pieces from both or either the pressure and/or the 'heat applied. On the other hand, the fastener obtained with pressure sensitive adhesive agents according to the a velvet type fastener composed of synthetic fibers, a l

tener often occurs owing to creep of the adhesive agent when the fastener and the material are subjected to even a weak shearing force for a long period of time.

The principal object of the present invention is to provide a method for imparting pressure sensitive adhesion which enables a velvet type fastener to be secured easily and quickly to the material on which the fastener is used said fastener and possessing excellent adhesive strength and creep resistance in practical use.

The object of the present invention can be accomplished by applying an adhesive composition of the nature disclosed hereinafter to the velvet type fastener.

The method according to the present invention is a novel method for imparting pressure sensitive adhesion to velvet type fasteners, comprising applying to the re spective back surfaces of the male and female pieces of composition consisting of: parts by weight of a polymer, containing at least 65 percent mol of an ester of acrylic acid or methacrylic acid and from 0.2 to '5 parts by weight of a glycidyl ester of an unsaturated organic acid; from 0.5 to 5 parts by weight of a zirconyl salt of organic acid, and; from 0.01 to 0.1 part by weight of a volatile acid addition salt of an organic amine.

It has been found that the method of the present invention can suitably impart superior and stable adhesive strength and creep resistance to the velvet type fastener. The velvet type fastener to which the adhesive composition according to the present invention has been applied can be secured easily and quickly to the desired materials.

The velvet type fasteners composed of synthetic fi bers and usable for the method ofthe present invention include fasteners composed of the fibers such as polyamides, polyesters and polyolefins. For example, woven or knitted multifilament yarn fabrics of polyamides or polyesters may be suitably used for the loop elements and the base fabric of the. female piece, and woven or knitted fabrics of densified polyethylene, polypropylene or polyvinyl chloride as well as fabrics of polyamides or polyesters maybe suitably used for the base fabric of the male piece, because of their desirable properties such as tensile strength and elasticity. For the male elements which may be in hook form or in the laterally expanded cap form at the top end portion of the stern, a monofilament yarn of polyamides, polypropylene polyethylene, polyoxymethylene or the like may be suitably used in view of the necessity of excellent elasticity and rigidity. Of the above, the polyamides are preferably utilized for the loop elements of the female piece and the base fabrics of the male and female pieces and also polypropylene is preferably utilized for the engaging male elements of the male piece.

The ester of the acrylic acid or methacrylic acid usable for the adhesive composition according to the present invention includes acrylic and methacrylic esters having at least two carbon atoms in the alkyl moimonomer such as vinyl acetate, methyl methacrylate and styrene may be used. The copolymers may optionally comprise unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid and itaconic acid. The acrylic or methacrylic ester mainly participate in the pressure sensitive adhesion. When the ester is present in an amount of less than 65 percent mol in the polymer, the pressure sensitive adhesion of the fastener with the adhesive composition applied is undesirably reduced. The monomers copolymerized with the above ester participate in yielding hard polymers. The monomers serve to control the tacking, improve the cohesive adhesion and also to elevate the creep resistance, of the adhesive composition.

The glycidyl ester of unsaturated organic acid which is a component of and usable for the polymer in the pressure sensitive adhesive composition may be the glycidyl esters of acids such as acrylic acid, methacrylic acid and crotonic acid. These glycidyl esters impart creep resistance and thermal stability to the adhesive composition and are suitably used in an amount of from 0.2 to 5 parts based on the weight of 100 parts of the polymer. The glycidyl esters also react with a zirconyl compound as described hereinafter. When the glycidyl esters are used in an amount of less than 0.2 parts, it is difficult to obtain appropriate cohesive adhesion and creep resistance, while when the glycidyl esters are used in an amount of more than. 5 parts, the stability of the composition and the durability of the pressure sensitivity are reduced, more or less depending on the amount of the added zirconyl compound.

It should be noted that the most important features of the method of the present invention are that a specific amount of the zirconyl salt of an organic acid is added in the composition, and that the volatile acid addition salt of the organic amine is also used as an accelerator for the reaction of the zirconyl compound with the polymer. The resinous composition comprising the polymer containing mainly the acrylic or methacrylic ester and partly the glycidyl ester of unsaturated organic acid, but not comprising the above-mentioned zirconyl compound and amine compound, is known as a reactive acrylic resin. These known types 'of resinous compositions are generally utilized in the flocking of textile articles. However, these known compositions cannot be utilized for the purpose of the present invention, because they are inferior in adhesion to the fastener, in durability of the adhesion and also in creep resistance. In addition, it is necessary that these compositions be cured at a high temperature for a long period oftime, after coating, for the prevention of the gelation of the composition owing to the change of viscosity during practical use thereof.

The zirconyl salts of the organic acid usable for the present invention include, for example, zirconyl acetate, zirconyl p'ropionate, zirconyl caprate and zirconyl stearate. Particularly, zirconyl salts of higher fatty acids are preferably used. The suitable amount of the zirconyl salts is from 0.5 to 5 parts based on the weight of 100 parts of the polymer, while they are preferably used in a range between 70 and 120 percent, based on the weight of the glycidyl ester of unsaturated organic acid. In the case where the zirconyl compounds are used in an amount of less than 0.5 part based on the weight of 100 parts of the polymer. or less than 70 percent based on the weight of the glycidyl ester, appropriate adhesion and durability of adhesion of the resultant composition cannot be obtained. On the other hand, when the zirconyl compounds are used in an amount of more than 5 parts, based on the weight of parts of the polymer, durability of pressure sensitivity of the composition becomes inferior and the obtained fastener feels unpreferably hard. The use of the zirconyl compounds in an amount of more than percent based on the weight of the glycidyl ester does not, to a large extent, increase the. effects for adhesion or creep resistance and, therefore, is uneconomical.

It should also be noted that the other important features of the present invention are that the adhesive composition used in the present method is stable under acidic conditions and that the composition is in the acidic pH range owing to the presence of the acid addition salt of the organic amine. The composition is very stable at a pH below 6, preferably at a pH below 5.

The volatile acid addition salts of the organic amines include, for example, the salts of mono-, dior triethanolamine or mono-, dior tripropanolamine with acids, readily and relatively volatilized by heat, such as hydrochloric acid and acetic acid. These acid addition salts exhibit acidic properties and can control the cohesive adhesion and the durability of adhesion of the resultant composition as mentioned above. Therefore, the composition containing the acid addition salts is slowly reacted while volatilizing the acid after being coated onto the fastener and produces excellent adhesion and creep resistance. When the composition is heated after being coated, it rapidly volatilizes the acid and also produces the above-mentioned effects. For such effects, the composition according to this invention may optionally comprise a small amount of hydrochloric acid, acetic acid or the like. The acid, addition salts of organic amine are suitably used in an amount of from 0.0] to 0.1 part based on the weight of 100 parts of the polymer. When the amount of the acid addition salts is less than 0.01 part, the increasing of the cohesive adhesion of the composition cannot be obtained; while when the amount of the acid addition salts is more than 0.1 part, the pressure sensitivity of the adhesion is lost and the stability during. storage becomes slightly inferior.

The adhesive compositions usable for the method of the present invention may be prepared as follows. The polymer is firstly prepared by known emulsion polymerization or solution polymerization procedures. The emulsion polymerization may be effected by reacting the desired monomers as mentioned hereinbefore, at a reflux temperature or in a redox system for from 2 to l0 hours, in the presence of from 0.0l to 1 percent, based on the weight of the monomer, of a watersoluble initiator such as hydrogen peroxide, potassium persulfate and ammonium perborate andfrom 0.1 to l0 percent, based on the weight of the monomer, of an emulsifying and dispersing agent. The emulsifying and dispersing agent may be, for example, nonionic'surface active compounds such as a polyoxyethylene alkyl ether, a polyoxyethylene alkylphenyl ether and polyoxyethylene sorbitan monoalkylate; anionic surface active compounds such as sodium dodecylbenzenesulfonate and sodium lauryl sulfate; cationic surface active compounds such as polyoxyethylene laurylamine and lauryl trimethyl-ammonium chloride, and; watersoluble polymers such as polyvinyl alcohol, hydroxyethyl cellulose and carboxymethyl cellulose. These may be used alone or as a mixture. In the above reaction,

resultant composition than the polymer obtained by emulsion polymerization, and solution polymerization is more capable of controlling the operations of the .production than the emulsion polymerization.

To the remaining emulsion or solution, a solution or dispersion of the volatile acid addition salt of organic amine in water, alcohols, ethers, ketones or other hydrocarbons are added and stirred so as to be uniformly mixed. Thus, the desired adhesive composition can be obtained.

The adhesive composition this obtained may then be coated on the respective back surfaces of the male and female pieces of a velvet type fastener by conventional coating methods suchas doctor coating, roll coating and spray coating. The suitable amount of the coated composition is in general between 80 and 400 g, preferable l20 and 250 g, based on the dry weight of the composition, per square meter. The coated surfaces of the fastener may then be secured to a releasing paper. Alternatively, the composition may. be coated onto a releasing paper and, after semi-drying, the coated surface of the releasing paper is secured to the respective back surfaces of the two pieces of a velvet type fastener. Then, the composition which may be sandwi'ched between the fastener and the releasing paper is dried at a temperature below 80C, preferablybelow 60C. The fastener thus obtained and the releasing paper may then be rolled up together.

The features of the adhesive composition and the structure of the velvet type fastener according to the present invention are further illustrated with reference to the accompanying drawings, wherein:

FIG. 1 is a graph showing ductility (heat flowability) of the composition heat treated at various temperatures plotted against the pH of the original composition prior to the drying and the heat treatment;

FIG. 2 is a partial section view of the male and the female piece of the fastener obtained by the method of the present invention.

Referring to FIG. 1 ductility (heat flowability) of the composition dried at room temperature and heat treated at the indicated temperatures is plotted against the pH of the original composition prior to the drying and the heat treatment. The composition was prepared by adding 2 parts by weight of zirconyl stearate to 250 parts by weight of a 40 percent emulsion of a polymer of 86 parts by weight of acrylic acid butyl ester, 12

parts by weight of styrene and 2 parts by weight of acrylic acid glicidyl ester. To the mixture 0.05 parts by weight of monopropanolamine hydrochloride was added and then hydrochloric acid or ammonia was following test'for ductility. The species of 5 X 5 mm From FIG. 1, it is evident that the self-cohesion of the composition according to the present invention is intimately connected with the pH- and the heat treatment temperature. It is also evident that the heat treatment of the composition can desirably impart excellent cohesive adhesion to the composition by volatilizing the volatile acid from the acid addition salt of organic acid. The suitable heat treatment temperature is from to 160C, preferably to C and the suitable heat treatment time is from 15 seconds to 3 minutes. Heat treatment at a temperature higher than C risks damaging the fibers of the fastener. The composition,

the ductility of which is below 100 percent, gives an undesirable hard feel to the fastener.

Referring to FIG. 2, a velvet type fastener according to the present invention comprises a male piece 1 and a female piece 2. The male piece 1 is composed of a base fabric 3, a plurality of engaging elements 4 projecting perpendicular to the face surface of the base fabric 3, a pressure sensitive adhesive composition layer 5 covering the back surface of thebase fabric 3 and a releasing paper 6 secured provisionally to the composition layer 5. Each engaging element is provided with a laterally expanded cap formed at the tip portion. However, in the fastener according to the invention, the engaging element may also be in a hook form. On the other hand, the female piece 2 is composed of a base fabric 7, a plurality of upright loops 8 projecting from the face surface of the base fabric 7, a pressure sensitive adhesive composition 9 covering the back surface of the base fabric 7 and a releasing paper 10 secured provisionally to the composition layer 9.

According to the method of the presentinvention, excellent pressure sensitive adhesion can be imparted to velvet type fasteners composed of synthetic fibers. The fasteners can beeasily and quickly secured by hand pressure to various materials such as textile fabrics, wood, synthetic resin articles, glass and metals. That is, they can be secured even to materials to which velvet type fasteners could not previously be secured by sewing or heat melting. The velvet type fasteners imparted with pressure sensitive adhesion by the method of the present invention possess satisfactorily good strength of adhesion and creep resistance. On repeated usages, the fasteners do not tend to lose their adhesion to the secured materials and, also the adhesive composition does not tend to lose its adhesion to the surfaces of the fastener to which it is applied. The adhesion of -the applied composition becomes greater with the aging thereof. The method of the present invention can be effectively applied'to the fasteners wherein the base fabric of the male piece is composed of polyamides and the male elements thereof are composed of polypropylene. The male elements composed of polypropylene do not slip out of the base fabric, a common trouble with fasteners to which conventional adhesive compositions are applied. The fasteners obtained by the present method are preferably heated with an iron, hot air or the like which imparts more effective adhesion, creep resistance and wash fastness of the adhesion. The heat treatment is particularly effective in the case where the fasteners are to be exposed to heavy loads or to repeated washings. The fasteners advantageously have desirable softness and flexiblity even after the heat treatment, and these properties are particularly preferable when the fasteners are utilized for clothing.

It is another advantage of the fasteners obtained by the present method that it is not necessary to apply backings to the fasteners. The fasteners possess sufficient adhesion and flexiblity as well as good dimensional stability, and these properties are advantageously improved by the abovementioned heat treatment. Therefore, backings are not needed except in the case where high dimensional stability is desired. Comrylate, 3 parts of methacrylic acid glycidyl ester, 80 parts of methyl alcohol and 1 part of benzoyl peroxide were added to a three neck glass flask of 2 liters, provided with a stirrer, a reflux condenser and a thermometer, and heated at 60 to 65C for 8 hours with stirring. As the polymerization proceeded, a translucent viscous polymer solution was obtained. Then, 45 parts of 10 percent solution of zirconyl caprate in a mixture of 50 parts of ethyl acetate with 100 parts of toluole and 0.004 part of monoethanolamine hydrochloride were added to the polymer solution and the resulting mixture was stirred until whole mixture became satisfactorily homogeneous. The obtained composition was of a pH of 5.7, a resin concentration of about 35 percent and pared with this, backings with thermoseuin resi a viscosity of 3,000 centi-poises. The composition was such as aminoplasts or modified thermosetting resins. then coated over the back surfaces of the male and feare generally required for the conventional fasteners male pieces Ofa Velvet type fastener by means ofa flow for the purpose of rendering dimensional stability coater in such a way that the weight of the component thereto or fixing the male elements to the base fabric. polymer of the coated composition was 160 g per square meter. The solvent was removed by drying in a As is disclosed hereinbefore, the method of the preshot air dryer at 48 to 52C for l0 minutes and silicone ent invention can advantageously impart excellent coated releasing papers were attached onto the respecpressure sensitive adhesion to the velvet type fasteners tive back surfaces of the male and female pieces composed of synthetic fibers. Further, the fasteners obthrough the coated resin layers. As to the fastener used tained by the method of the present invention can be herein, the base fabrics of the male and female pieces utilized for clothing such as underwear, as well as for were composed of Nylon 6 yarn of 210 denier/l2 filainterior decorations and industrial materials, because ments and the engaging elements of the male piece of their excellent adhesive strength and flexiblity and were mp d O a polypropylene OrlOfilament yarn their easily detachable fastening. of 0.2 millimeter diameter, the top of the element being The following examples further illustrate the method m laterally expanded Cap form' and the fasteners according to the present invention, The male pleee and the female pleeehf one fastener wherein parts are indicated by weight. in the Examples, thus coated were each secured to a plain woven fabric the creep resistance was determined by securing the Composed f 65 percent polyester and Percent adhesive surface of a sample of the fastener having an by piessmg wlth by hand The male place and the adherence dimension of 625 2 (25 X 25 Cm), to a emale piece of another fastener thus coated were also perpendicularly fixed substrate attaching a load of 200 each seemed to fabne of the Same e as the above g to the fastening piece and then measuring the shear by press'hg by and thereafter heahhg 15 e in mm after 24 hours. The friction strength was deterh e the e eurfaee of h Secured plam fabric mined by tensile test .with a Schoppers tensile tester for 40 wlth an mhmtamed at 130 Then these Spec" a sample of the fastener having an adherence dimenh were subleeted to the tests or Strength of adhe' Sion (-6.25 (25 X 25 The Stripping Strength sion, creep resistance and strength of adhesion on rewas determined at an angle of 180C by a SchOpper-S peated fastemngof the male and female pieces. The retensile tester for a sample of the fastener of 2 cm width Suhs are Showh m Table and 10 cm length. Further, the repeated fastening test For eompahsoh: three other epelelmehs were was carried out, wherein one piece of the fastener was pared and tested m a manner S'mhar that stated engaged by pressing with g/cmz of pressure with above, except that the following respective procedures the other piece, the adhesive surface of which had been p y Comparison 1. parts of Z-ethylhexyl secured to a fixed substance and then the former piece aerylme and 9 parts of Why! acetate were used "mead was rapidly released from the latter piece. The engag- 50 of 20 parts of vmyl acetate 7 e of lz'ethylhexyl ing and detaching was repeated 300'times. In the above rylafei 3 Ph' of methaeryhe glyeldyl esler; test, the adhesive surface of the latter piece had dimenpal-Son Zheohyl Caprate and mhhoethaholamme Y Sions of 2 cm width and 5 cm length. drochloride were not used. In this case, the compositron coated fastener was cured at C for 3 minutes EXAMPLE 1 55 after being secured to the fabric by hand pressure. Comparison 3: monoethanolamine hydrochloride was 20 Fans of Vinyl acetate 77 Parts of zethylhexyl not used. The results are also shown in Table I.

Table l Creep Friction Stripresiststrength ping Repeated fastening No. ance strength test (m (kg/cm) g/ m) 1. The 0.7 25 3.2 Appearance not changed invention stripping strength: (not heated) 2.9 kg/cm 2. The trace 32 4.9 Appearance not changed invention stripping strength: (heated) 4.5 kg/cm Table I- Continued Creep Friction Stripresiststrength ping Repeated fastening No. ance strength test (mm) (kg/cm) (kg/cm) 3. Comparison Fastener released I 4.6 17 1.2 from the object after about 180 times of repetition 4. Comparison Fastener released 6.3 14 0.7 from the object after about 60 times of repetition 5. Comparison Fastener released 3 5.9 13 0.9 from the object after about 80 timesof repetition From Table 1, it is eyident that the fastener to which the adhesive composition was applied, according to the present invention, exhibits superior and stable strength of adhesion and creep resistance. Further, the fastener indicated as No. 2 in Table l was subjected to the following washing test. The fastener was washed with water containing 0.2 percent of Monogen (fatty alcohol ester, Daiichi Kogyo Seiyaku Kabushiki Kaisha, Japan) and 0.2 percent of washing soda at 40C, for 15 minutes, by a conventional washing machine, and dried with air at 30C for 30 minutes. After five repeated washing tests, the friction strength and the stripping strength were reduced about 10 percent and aboutpercent, respectively. However, the fastener was satisfactory for practical use.

sitions was coated onto the releasing-surface of a silicone coated releasing paper by roll coating and the coated paper was dried at C for 6 minutes. Then, the adhesive composition thus coated was secured to the respective back surfaces of the male and female pieces of a velvet type fastener of the same type as in Example I, together with the releasing paper. and further dried at 40C for 10 minutes.0ne piece of the fastener was secured to a plywood consisting of l'auan and the other piece of the fastener was secured to a twill woven fabric composed of Nylon 6. by pressing'each piece by hand, and these were heated by hot air at 120C for l5 minutes. The obtained specimens were subjected to the tests as in Example 1. The results are shown in Table ll.

Table ii I Creep Friction Composition resistance (mm) strength (kgfcml Repeated fastening test zirconyl amine plywood fabric plywood fabric comcompound pound l. Comparison 0.4 0.06 6.2 7.3 l4 8 Fastener released from Y the ohjectnfter about I40 times cl repetition 2. The 0.6 0.06 0.9 L0 24 22 Appearance not changed Invention 3. Comparison 2.0 0 3.2 4.1 l2 l0 Fastener released from the object after about 30 times of repetition 4. The l Appearance not changed invention 2.0 0.02 0.7 0.9 a 25 2| 5. The 2.0 0.06 trace trace 32 29 Appearance not changed invention 6. The 2.0 i 0.08 trace trace 34 31 Appearance not changed invention 7. Comparison 2.0 0.l2 trace trace 33 30 Appearance not changed (rough and hard feel in hands) ti. The

invention 4.0 0.06 0.4 0.6 35 3| Appearance not changed 9. Comparison 6.0 0.06 trace trace 35 32 Appearance not changed (rough and hard feel in hands) EXAMPLE 2 As IS evident from Table ll. there are certain ranges for the appropriate amounts of organic amine hydrochlorides and zirconyl salts of organic acids. in addition the use of organic amine hydrochlorides and zirconyl salts of organic acids in large amounts does not result in increasing the effect on the friction strength of adhe sion. though the creep resistance generally becomes better. The specimens indicated as Nos. 7, and 9 in What we claim is:

l. A method for imparting pressure sensitive adhesion to velvet type fasteners, comprising applying to the respective back surfaces of the male and female pieces of a velvet type fastener composed of synthetic fibers, a composition consisting of: 100 parts by weight of a polymer, containing at least 65 percent mol of an ester of an acrylic acid or methacrylic acid and from 0.2 to

'5 parts by weight of glycidyl ester of an unsaturated organic acid; from 0.5 to parts by weight of a zirconyl salt of organic acid, and; from 0.01 to 0.1 part by weight of a volatile acid addition salt of an organic amine.

2. A method for imparting pressure sensitive adhesion to velvet type fasteners according to claim 1,

'wherein the composition is adjusted to a pH below 6,

preferably below 5, and optionally by adding an acid selected from hydrochloric acid and acetic acid.

3. A method for imparting pressure sensitive adhesion to velvet type fasteners according to claim 1, wherein the ester of the acrylic acid or methacrylic acid is a member selected from the group consisting of ethyl acrylate, butyl methacrylate, butyl acrylate, 2- ethylhexyl acrylate and 2-ethylhexyl methacrylate.

4. A method for imparting pressure sensitive adhesion to velvet type fasteners according to claim 1, wherein the polymer is mainly composed of a copolymer of an ester of acrylic acid or methacrylic acid a monomer selected from the group consisting of vinyl acetate, methyl methacrylate and styrene.

5. A method for imparting pressure sensitive adhesion to velvet type fasteners according to claim 1, wherein the glycidyl ester of the unsaturated organic acid is a member selected from the group consisting of acrylic acid glycidyl ester, methacrylic acid glycidyl ester, and crotonic acid glycidyl ester.

6. A method for imparting pressure sensitive adhesion to velvet type fasteners according to claim 1, wherein the zirconyl salt of organic acid is a member selected from the group consisting of zirconyl acetate, zirconyl caprate and zirconyl stearate.

7. A method for imparting pressure sensitive adhesion to velvet type fasteners according to claim 1, wherein the volatile acid addition salt of the organic amine is a salt the group consisting of selected from the salts of mono-, dior triethanolamine or mono-, dior tripropanolamine with hydrochloric acid and acetic acid.

8. A velvet type fastener composed of synthetic fibres which has applied to the respective back surfaces of the male and female pieces thereof a composition consisting of: parts by weight of a polymer, containing at least 65 percent mol of an ester of an acrylic acid or methacrylic acid and from 0.2 to 5 parts by weight of a glycidyl ester of an unsaturatedorganic acid; from 0.5 to 5 parts by weight of a zirconyl salt of an organic acid, and; from 0.01 to 0.1 part by weight of a volatile acid addition salt of an organic amine.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2739902 *Aug 29, 1952Mar 27, 1956Carlisle Chemical WorksDrier compositions
US2739905 *Aug 29, 1952Mar 27, 1956Carlisle Chemical WorksZirconyl 2-ethylhexoate
US2773850 *Dec 20, 1952Dec 11, 1956Sherwin Williams CoFortified emulsion paints containing a zirconyl compound
US2802847 *Aug 2, 1951Aug 13, 1957Nat Lead CoBasic zirconyl soaps and method for preparing the same
US3036101 *Jun 29, 1959May 22, 1962Magnesium Elektron LtdProduction of zirconium soaps
US3224419 *Dec 13, 1961Dec 21, 1965Combustion EngVapor generator with tangential firing arrangement
US3280059 *Dec 11, 1964Oct 18, 1966Carlisle Chemical WorksLatex paints containing zirconyl salts of monocarboxylic acids
US3284383 *Dec 29, 1961Nov 8, 1966Union Carbide CorpEpoxide compositions
US3284423 *Dec 20, 1963Nov 8, 1966Monsanto CoPressure-sensitive creep-resistant resin composition
US3419587 *May 17, 1965Dec 31, 1968Hardman & Holden LtdZirconium compounds
US3423764 *Sep 14, 1965Jan 28, 1969Carl E CasslingGarment anchor
US3499102 *Sep 9, 1968Mar 3, 1970Gillemot George WProtective cover and method of anchoring same to a supporting surface
US3563953 *Feb 2, 1970Feb 16, 1971Beiersdorf AgCurable copolymer of an alkyl acrylate,a glycidyl acrylate or methacrylate and diketene
US3574019 *Aug 23, 1968Apr 6, 1971American Velcro IncMethod of making a laminated fastening device
US3579490 *Aug 31, 1964May 18, 1971Ashland Oil IncMethod of producing resins for use in adhesives
US3639504 *Jul 10, 1968Feb 1, 1972Sir Soc Italiana Resine SpaProcess for preparing hardened polyester resins using mixtures of organic metal derivatives of vanadium and zirconium as accelerators
US3773580 *Jul 27, 1971Nov 20, 1973American Velcro IncBonding fastening members to a substrate
US3773589 *Nov 26, 1971Nov 20, 1973American Can CoCan body
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3938805 *Jul 23, 1974Feb 17, 1976Kei SakumaGolf accessory
US4489115 *Feb 16, 1983Dec 18, 1984Superturf, Inc.Synthetic turf seam system
US4646397 *Jun 13, 1985Mar 3, 1987Yoshida Kogyo K. K.Surface-type fastener
US4707893 *May 2, 1986Nov 24, 1987Kanebo Bell-Touch, Ltd.Fabric fastener
US4761318 *Aug 29, 1986Aug 2, 1988Minnesota Mining And Manufacturing CompanyLoop fastener portion with thermoplastic resin attaching and anchoring layer
US4884323 *Jan 14, 1988Dec 5, 1989Velcro Industries B. V.Quiet touch fastener attachment system
US4955113 *Apr 25, 1989Sep 11, 1990Kimberly-Clark CorporationFastening means, apparatus, and methods
US4973326 *Nov 30, 1987Nov 27, 1990Minnesota Mining And Manufacturing CompanyDisposable diaper with improved fastener attachment
US5012764 *Jul 26, 1990May 7, 1991Minnesota Mining And Manufacturing CompanyAnimal protective collar
US5097570 *Jan 23, 1991Mar 24, 1992Bruce GershensonFastening system
US5100400 *Nov 17, 1989Mar 31, 1992Minnesota Mining And Manufacturing CompanyDisposable diaper with thermoplastic material anchored hook fastener portion
US5399409 *Jul 16, 1992Mar 21, 1995Whiteman; Gaylen L.Tacking device for attaching to textured surfaces
US5505747 *Jan 13, 1994Apr 9, 1996Minnesota Mining And Manufacturing CompanyMolding, bonding, deforming
US5515583 *Sep 8, 1994May 14, 1996Kuraray Co., Ltd.Mixed hook/loop separable fastener and process for its production
US5605729 *Jan 19, 1995Feb 25, 1997Minnesota Mining And Manufacturing CompanyLoop fastener material storage/dispensing assembly
US5611122 *Jul 19, 1994Mar 18, 1997Minnesota Mining And ManufacturingInterengaging fastener having reduced noise generation
US5614232 *Feb 28, 1996Mar 25, 1997Minnesota Mining And ManufacturingMethod of making an interengaging fastener member
US5639327 *Jan 21, 1992Jun 17, 1997Minnesota Mining And Manufacturing CompanyDisposable diaper with thermoplastic material anchored hook fastener portion
US5662853 *Nov 22, 1995Sep 2, 1997Minnesota Mining Manufacturing CompanyAffixation member for decorating or protecting structures and methods of making same
US5667540 *Mar 13, 1996Sep 16, 1997Minnesota Mining And Manufacturing CompanyMethod of making an abrasive article
US5671511 *Aug 25, 1994Sep 30, 1997Minnesota Mining And Manufacturing CompanyInterengaging fastener member having fabric layer
US5671512 *Jan 19, 1996Sep 30, 1997Minnesota Mining And Manufacturing CompanyInterengaging fastner having reduced engagement force
US5672186 *Mar 13, 1996Sep 30, 1997Minnesota Mining And Manufacturing CompanyRolling flowable polymeric material onto surface of base sheet, then shaping polymer into projections which are bent to form releasable fastener hooks when solidified and bonding reverse of base sheet to reverse of abrasive sheet
US5691026 *Mar 8, 1994Nov 25, 1997Minnesota Mining And Manufacturing CompanyFastener member with a dual purpose cover sheet
US5691027 *Sep 29, 1995Nov 25, 1997Minnesota Mining And Manufacturing CompanyFastener with a dual purpose cover sheet
US5699593 *Aug 30, 1996Dec 23, 1997Minnesota Mining & Manufacturing CompanyLoop fastening material
US5713111 *Jan 23, 1997Feb 3, 1998Minnesota Mining And Manufacturing CompanyMethod for making an interengaging fastener having reduced engagement force
US5725423 *Mar 3, 1997Mar 10, 1998Minnesota Mining And Manufacturing CompanyAbrading apparatus
US5785784 *Jul 23, 1997Jul 28, 1998Minnesota Mining And Manufacturing CompanyCoating the substrate with abrasives containign radiation curable binder, exposing to radiation and curing the binder
US5830298 *Aug 5, 1997Nov 3, 1998Minnesota Mining And Manufacturing Co.Loop fastening material
US5840089 *Jul 29, 1997Nov 24, 1998Minnesota Mining And Manufacturing CompanySubstrate having abrasive means on one surface and providing a plurality of hooking stems on the oppostie surface
US5852855 *Dec 2, 1996Dec 29, 1998Minnesota Mining And Manufacturing CompanyDisposable diaper with fastener
US5902427 *Jul 11, 1997May 11, 1999Minnesota Mining And Manufacturing CompanyFastener arrangement with dual purpose cover sheet
US6202264 *Feb 17, 1999Mar 20, 2001Ykk CorporationSurface fastener made of fiber and method for manufacturing the same
US6579161Dec 6, 1996Jun 17, 20033M Innovative Properties CompanyAbrasive article
US6579162Dec 15, 2000Jun 17, 20033M Innovative Properties CompanyAbrasive article
US6637079 *May 15, 1995Oct 28, 2003The Procter & Gamble CompanyMulti-layer female component for refastenable fastening device and method of making the same
US6884157Mar 25, 2003Apr 26, 20053M Innovative Properties CompanyAbrasive article
US7044834Apr 20, 2005May 16, 20063M Innovative Properties CompanyAbrasive article
US7225569Aug 16, 2005Jun 5, 2007Agripa Holdings LimitedFlexible frame and mutually engageable fastening means
US7394039Oct 6, 2006Jul 1, 2008Fujitsu Component LimitedKeyboard and membrane switch for keyboard
EP0693889A1 Feb 22, 1994Jan 31, 1996Minnesota Mining & MfgLoop fastener material storage/dispensing assembly
WO1992012650A1 *Jan 22, 1992Aug 6, 1992Bruce GershensonFastening system
WO1998011007A1 *Sep 5, 1997Mar 19, 1998Leija Cordero Jorge LuisProcess for handling packages with their lids
WO1999041440A1 *Feb 12, 1999Aug 19, 1999Ning ShiReinforced composites including bone-shaped short fibers
Classifications
U.S. Classification24/448, 525/329.9, 525/329.5, 526/916, 525/327.3, 273/DIG.300, 525/370, 526/273, 156/66, 24/450, 156/330, 528/361, 156/332, 526/212, 428/100, 554/72
International ClassificationC09J133/04, A44B18/00
Cooperative ClassificationY10S273/30, A44B18/0023, Y10S526/916
European ClassificationA44B18/00D