Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3850161 A
Publication typeGrant
Publication dateNov 26, 1974
Filing dateApr 9, 1973
Priority dateApr 9, 1973
Publication numberUS 3850161 A, US 3850161A, US-A-3850161, US3850161 A, US3850161A
InventorsLiss S
Original AssigneeLiss S
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for monitoring and counteracting excess brain electrical energy to prevent epileptic seizures and the like
US 3850161 A
Abstract
This invention pertains to a biomedical detecting and control apparatus wherein electrical signals in the brain of mammals are continuously monitored by electrodes implanted in certain critical places in the brain wherein excess electrical energy is manifest during epileptic seizure conditions as well as during psychic storms of some types of mental illness. Such signals are processed via electrical systems of various circuits for inversion, comparison, vector analog addition, filtering, modulation, level set, safety level limits and self test to provide a controlled signal output which automatically reduces or eliminates the excess electrical energy at the point of detection. The points of detection and control may be, but do not have to be, the same spots on the brain. The probes may be near the surface of the brain or deep set in the brain depending upon the area affected. In addition to the method, there is described an electronic device which is contemplated to be housed in a small housing outside the body of the mammal and connected through wire conductors connected to the electrodes at the point of detection and at the other end of the conductors to outlet connectors in the housing providing the point of control.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [1 1 Liss [ Nov. 26, 1974 METHOD AND APPARATUS FOR MONITORING AND COUNTERACTING EXCESS BRAIN ELECTRICAL ENERGY TO PREVENT EPILEPTIC SEIZURES AND THE LIKE [76] Inventor: Saul Liss, 555 E. 27th St., Paterson,

[22] Filed: Apr. 9, 1973 [21] Appl. No.: 348,864

[52] US. Cl 128/2.1 R, 128/419 S, 128/422 [51] Int. Cl. A61b 5/04, A61n 1/00 [58] Field of Search 128/2.l R, 2.1 B, 2.1 P,

l28/2.1 Z, 2.06 D, 419 R, 419 S, 422, l C, 410

[56] References Cited UNITED STATES PATENTS 3,032,029 5/1962 Cunningham l28/2.l R 3,495,596 2/1970 Condict l28/l C 3,510,765 5/1970 Baessler A 128/2.06 A 3,513,834 5/1970 Suzuki et al. .1 l28/2.l 8 3,587,563 6/1971 Ragsdale......... 128/206 A 3,699,970 10/1972 Brindey et a1 128/419 R OTHER PUBLICATIONS John Osmundson, Matador with Radio Stops Wired Bull New York Times Newspaper, pg. 1 8!. 20,

Primary Examiner Richard A. Gaudet Assistant ExaminerLee S. Cohen Attorney, Agent, or FirmRalph R. Roberts [57] ABSTRACT This invention pertains to a biomedical detecting and control apparatus wherein electrical signals in the brain of mammals are continuously monitored by electrodes implanted in certain critical places in the brain wherein excess electrical energy is manifest during epileptic seizure conditions as well as during psychic storms of some types of mental illness. Such signals are processed via electrical systems of various circuits for inversion, comparison, vector analog addition, filtering, modulation, level set, safety level limits and self test to provide a controlled signal output which automatically reduces or eliminates the excess electrical energy at the point of detection. The points of detection and control may be, but do not have to be, the same spots on the brain. The probes may be near the surface of the brain or deep set in the brain depending upon the area affected. In addition to the method, there is described an electronic device which is contemplated to be housed in a small housing outside the body of the mammal and connected through wire conductors connected to the electrodes at the point of detection and at the other end of the conductors to outlet connectors in the housing providing the point of control.

10 Claims, 3 Drawing Figures 2 26, i 34 7 F1 1 44 i INVERTING I COMPA -x F i i ELECTRONICS g (Ft-x); E 1 MODULATOR SAFETY ADDITION CIRCUIT F'LTER a LEVEL ser 42 emu, AMPLIFIER 22 BRAIN common I I ELECTRODE I i OUTPUT 'I3 R F28 C 46 1 I I I4 0 /I6 l 7 I REFERENC BATTERY I0 LEVEL POWER s51- av SUPPLY OSCILLATOR oocron *H 54 5s 62/)! SELF rssr CIRCUIT WITH :ZZ' H CONTROL LOW LIMIT PATENTEDHUVEBISM 3 5 sum 2 BF 2 TYPICAL POIN T OF DETECTION TYPICAL PomT 6 OF CONTROL METHOD AND APPARATUS FOR MONITORING AND COUNTERACTING EXCESS BRAIN ELECTRICAL ENERGY TO PREVENT EPILEPTIC SEIZURES AND THE LIKE BACKGROUND OF THE INVENTION 1. Field of the Invention With reference to the classification of art as established in the US. Patent Office the present invention pertains to art found in the Class entitled, Surgery (Class 128) and the subclass of pulsating and alternating electric circuits (subclass 421).

2. Description of the Prior Art Many patents are directed toward analysis of and conditions causing mental illness. These studies of mammal brains and the resulting behaviors have confirmed that electrical impulses within the brain cause predicted results in parts of the body associated with specific areas of the brain. Among these patents are US. Pat. No. 3,495,596 to CONDICT as issued on Feb. 17, 1970; U.S. Pat. No. 2,368,207 to EATON as issued on Jan. 30, 1945 and US. Pat. No. 2,473,378 to LIB ERSON as issued on June 14, 1949.

As a result of these studies of mammals, including humans, it has been found that there are certain types of epilepsy and psychic diseases (mental illness) wherein an aura condition exists prior to the happening of an epileptic or psychic storm. During that period of time it has been found that the level of electrical activity rises by a magnitude of 5 to times the normal 10 millivolt level typically found in the average human brain. The frequency of the brain signals change from 5 to 8 herz down to one-half to one herz. During this storm period in particular areas of the brain, the pattern of electrical activity or irregularity can spread to other various spots and areas of the brain much in the way worn electrical insulation may give way to excess electrical potential causing an electrical discharge either locally or in large areas depending on the specific characteristics of insulation and voltage application. Just as electrical systems of extreme precision are protected and controlled by regulators, filters, fuses, etc. so also is it a purpose of this device to counteract automatically any excess electrical energy in the brain at the spots being monitored and detected.

Cases have been reported wherein olfactory senses have been utilized to overcome the aura effect and by this means prevent the consequential seizure. This has produced a belief that, at least in some cases, the electrical energy in the brain indicated by such reaction can be duplicated under controlled conditions and can be used to control a brain center other than at the place at which the excessive aberrant energy is resent. Hence, the method and present. of this invention contemplates conditions where implanted electrodes for detection and control may be placed in selected parts of the brain not directly involved with the excessive pattern.

Temporal lobe epilepsy is a typical disease where it is believed to be necessary to provide deep implanted electrodes; first of all to detect the electrical presence of the aberrant energy and second of all to counteract locally this excessive aberrant energy. The method and apparatus of this invention is intended to provide the detection means and the electrical signals necessary to counteract and restrain these excesses.

SUMMARY OF THE INVENTION This invention may be summarized at least in part with reference to its objects. It is an object of this invention to provide both the method and the means of monitoring the brain of a mammal by means of permanently inserted electrodes in selected critical areas of the brain. By connecting these electrodes to a monitoring device, safety limits for brain signal outputs can be evaluated and upon indications of excess outputs counteracting signals can be fed to the brain to prevent aberrant activity as produced in certain mental illness conditions and epilepsy seizures.

In addition to the above summary the following disclosure is detailed to insure adequacy and aid in understanding of the invention. This disclosure, however, is not intended to prejudice that purpose of a patent which is to cover each new inventive concept therein no matter how it may later be disguised by variations,

in form or additions of further improvements. For this reason there has been chosen a specific circuit diagram showing a means of employing the signals within a brain of a mammal and by monitoring and counteracting excessive energy showing a preferred means for preventing these excesses. This specific embodiment has been chosen for the purposes of illustration and description as shown in the accompanying drawings wherein:

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 represents a diagram showing the attachment of and the support of the apparatus to and by a human.

In the following description and in the claims various details will be identified by specific names for convenience, these names, however, are intended to be generic in their application. Corresponding reference characters refer to like members throughout the three figures of the drawings.

The drawings accompanying, and forming part of, this specification disclose certain details for the purpose of explanation of the broader aspects of the invention, but it should be understood that details may be modified without departure from the concept of the invention and that the invention may be incorporated in other structural forms than shown.

PRINCIPLE OF OPERATION AS, SEEN IN THE ASSOCIATED BLCXIK DIAGRAM In the skull or head 10 of the mammal a common electrode 12 is placed into the frontal bone or other zero level activity point from which to detect levels of normal and abnormal electrical energy created in the brain. This electrode is connected by a conductor 13 to an electronic circuit.

The second detecting electrode 14 is placed into one of the critical brain areas such as the eleptogenic lesion portions of the skull 10, while a third electrode 16 is placed into a control point of the brain. This may be in the same area as the detecting electrode or a different area of the brain.

Signals from electrode 14 are fed through a conductor 20 to an inverting electronic device 22 which changes the electrical phase of the detected signal in preparation for use by a comparison circuit 24. The signal from the inverter 22 is fed to the comparison circuit through a conductor 26.

A reference voltage level R, which typically may be about millivolts in the case of a human, is set by the doctor in charge who has determined by appropriate tests the level of voltage in the brain beyond which the patient to which the device is affixed needs a countermotive force brought to action to quell the ensuing anticipated storm. This reference voltage after the level has been established is set and then is fed to the comparison circuit 24 through a conductor 28.

The comparison and analog addition circuit 24 will perform a vector addition so that the resultant R-X should be a quantity negative in phase to that of the original detected value X from electrode 14. The resultant is such that X+( R-X) equals the value R, the normal set level. However, it may be found that the point of control as compared to the point of detection may be scale factors apart. When this occurs a level set amplifier provides compensation for such a condition.

Between the output from comparison circuit 24 which is fed to amplifier 30 is a filter 32 which receives the outputKR-X) from circuit 24 as fed through conductor 34. This filter 32 is used to prevent the electronics of the brain analysis from interfering with other electrical functions such as heart beat and respiration. An oscillator 40 is adapted to generate a high frequency signal which signal is used as a carrier for the feedback information being communicated to the brain point of control.

Since the synaptic chains (in the brain) have the manifestation of semiconductors in that they act as diode detectors as in a radio circuit the information provided to the snyaptic circuits is oriented in such a manner that the normal operation of the nervous system will now detect the control data at minimum energy level to accomplish the needed reduction of the brain energy at the localized areas and provide an elimination of the excess electrical energy in the brain.

Signals from the modulator 30 are sent through conductor 42 to a safety limit circuit 44 which provides standby passive and active networks which act as a limiting fuse to insure and prevent any excessive energy from the said electrical apparatus to be fed to the brain to cause or affect the brain or other nervous system. Signals from the circuit44 to electrode 16 is carried by conductor 46. A battery power supply 50 energizes the circuit and because of the serious nature of this control device and what a deficiency in energization would cause preferably includes a self test circuit with a low limit control 54 and an alarm 56 for extra protection.

Referring next to FIG. 3, there is depicted the normal arrangement and mounting of the apparatus on the patient. The electrodes 12, I4 and 16 are implanted in the brain in the skull 10 of the patient 60 to be treated and controlled. Conductors 13, 20 and 46 carry the signals and controlling voltage to the electronic circuits carried in a small case 62. The components carried by the case are enclosed in phantom outline in FIG. 1. Except for the-battery power which is contemplated to be a small battery, the circuits providing the inverter 22, the

comparison and analog addition 24, filter 32, modulator 30, safety circuit 44, oscillator 40 and self test circuit 54 are all contemplated to be solid state minaturized as much as possible. The reference voltage set is usually an adjustable resistor located within the case and set by key means to prevent an accidental change. It is contemplated that the case 62 when used externally is less than the size of a package of cigarettes. With integrated circuitry the case 62 may be made even smaller for implanting under the skin of the patient 60.

USE AND OPERATION Automatic feedback control is the essence of this invention in that this control receives signals indicating aberrant energy from the brain, analyses it electronically as necessary and with a proper safety and power supply means then feeds electric energy back into the brain in opposition to the original aberrant level so that the net resultant voltage, current and/or electrical field in localized areas on the brain is maintained at no level greater than that experienced during normal behavior. The electronicfeedback device of this invention is applied not only to those types of epilepsy where aura is electrically seen prior to an actual seizure (typified by some types of Grand Mal and Temporal Lobe Epilepsy) but also is applied to some types of mental illness where psychic storms occur providing electrical activity in the brain similar to that of epilepsy but having as its manifestations psychic storms instead of physiological seizures.

The means of detecting and controlling the voltage level of the brain is through the use of implanted electrodes 12, 14 and 16. The reason for employing implanted electrodes as compared to surface electrodes is to provide the exact point of application in the brain where either the point of detection or the point of control can be found without having the electrical path through the skull either deterioriate the signal in terms of the detection signal due to the impedance of the fluids, tissue, skull bone and other media between such point of detection and an external point. Similarly, a control signal for feedback data, if applied externally, would require a larger electrical signal to produce a comparable control. Typical electrical voltages repre sented in medical research studies reveal that when monitored internally a normal brain pattern signal can reach 10 millivolts while the same signal monitored outside the skull produces a level of approximately 10 microvolts.

The aura condition of an epileptic seizure can in fact increase the electrical activity a factor of 10 times to a level 100 millivolts (when monitored internally). Hence, for a corrective signal to be applied in opposition to such an aberrant level, a minus millivolts level would be internally applied whereas approximately minus 90 volts would be externally applied; a quantity which could be dangerous. Therefore, in the present invention internal electrodes are to be used so that the voltage control will be at low levels which is safe.

The concept of automatic feedback has been used in the field of servo technology for many years. The uniqueness of the present invention is the application of automatic feedback theory and devices wherein the electrical energy of a mammal such as a'human is considered part of a servo loop in the automatic feedback.

The normalizing of this current flow provides a resultant improvement in the mammals performance where without such feedback control afflictions such as epilepsy and mental illness prevent the normal behavior of that particular mammal and the resulting deterioration caused by the affliction.

The employment of this system requires implanted electrodes, transdermal wires and external electronics. It is noted that just as history with heart pacemakers has shown that totally implanted devices can be made practical, so also is it anticipated that this device with sufiicient experience and history will be implanted with the application of electronic miniaturization. The miniature electronic detection and control device of this invention will be capable of being totally implanted thus eliminating transdermal wire with the inherent possibility of damage and failure of the system.

In use, detected signal from electrode 14 is carried by conductor 20 to an inverting circuit 22 where the signal is reversed in polarity (minus the reference voltage level) in order to be added to the aberrant brain electrical level during the epileptic or psychic storms. This causes the brain voltage to be reduced to that of the reference level. This action is similar to that of adding several voltages together in an analog computer at a summing junction where the resultant electrical levels are the algebraic sum of all voltages added at that point. This, of course, takes into consideration the sign or phase of the voltages being added.

The common or ground electrode 12 is used as a reference point against which the electrical levels at the point of detection, the point of control and all other computing reference and safety electrical levels is judged and conditioned.

The inverted signal X from circuit 22 is carried by conductor 26 to the comparison and analog addition circuit 24. Also to electronic circuit 24 is fed signal R which is carried by conductor 28 and is the reference voltage level set by the doctor. Another signal is the brain signal from the common electrode 12 which is fed to this comparison circuit. Direct current power to operate the electronic circuitry is derived from the power supply 50 which has its own related safety and self-test circuitry 54 which when used as a permanently installed unit includes a low limit alarm 56 which indicates when a malfunction or voltage loss occurs.

The comparison and analog addition circuitry 24 receives the inverted signal X from conductor 26 and combines this algebraically with signal R carried by conductor 28 so that the electrical quantity R-X is produced as a raw signal yet to be conditioned for use as the ultimate feedback signal. This raw signal is fed by conductor 34 to the filter 32 which removes all frequency components which could effect vital functions such as respiration and heart action. The frequency band usable for these functions is approximately 5 to 40 herz. The signal entering the modulation and level set amplifier 30 is the electrical quantity R-X limited within the frequencies of F to F2 (approximately 5 to herz).

The oscillator 40 and modulator level set amplifier 30 are both operated from the same battery power supply 50, noted above.

The oscillator generates a high frequency carrier signal wherein there is created a selected frequency having a range from 40,000 herz to 1 million herz. The need to use a high frequency carrier is so as to utilize 6 the lowest voltage possible in the carrier electrical signals and also to utilize the inherent electrical phenomenon manifest in the synapsis of the brain. Since the electrical nerve pathways in the body are-really c0mposed of synapsis which react to provide electrical energy transfer similar to the semiconductor devices called diodes the operator of the device is able to forecast the utilization of these synaptic pathways as diode detectors. This means that the diode characteristic which is used in radio circuits to separate the audio information from the high frequency carrier signal is like the present circuit of this invention where it is planned to use the conditioned feedback signal to detect and provide for brain control utilizing the brain synapsis. The brain synapsis is emloyed to demodulate the correct data from the high frequency carrier which by itself is not seen by the rest of the body. The level set amplifier, 30 is set by the doctor so that the particular mammal being treated has the determined electrical levels set to compensate for the particular levels required to stablize the brain activity of that mammal. If the control signal is fed back into the same area from which the electrode received signals are set, the voltage is likely to be at unity value with respect to the originating signal. However, when it is necessary to apply the control signal at a point of control which is different from the point of detection by the electrodes it will be required to use a ratio scale to increase or decrease the control signal experimentally to determine that signal level necessary at the point of control which is required to quell or stabilize the detected aberrant energy in the brain.

The modulator 30 receives the high frequency signal generated by the oscillator 40 and impinges on the signal the envelope of frequencies entering the modulator and level set amplifier 30. These frequencies include the electrical signal quantity R-X filtered from F1 to F2 by filter 32 which modulates in amplitude the high frequency signal. The resulting conditioned electrical signal is sent by conductor 42 to the safety limit circuit 44.

This safety limit circuit 44 provides additional electrical safeguards to prevent either momentary or long term pulses or continuous electrical signals from developing to a level which will be injurious to the mammal involved. As the time constant of energy of the physiological mammal is in terms of milliseconds and the electrical condition and functioning of the control circuit is in terms of microseconds, the electronic circuit acts at a rate which is responsive and available to assist the physiological needs of the mammal.

Self-test circuit 54 is designed to assure the mammal, when human, to which this device is connected that the electronic circuit is in an operative condition ready for activiation without any jeopardy of the operation arising from low battery voltage.

It is anticipated, as above noted, that the initial electronics and power source (battery and control safety circuits) will occupy a volume less than a pack of standard cigarettes and be externally carried on the user. With the use of micro electronics it is further anticipated that this size can ultimately be further reduced and the electronics and power source be mounted beneath the skin surface of the user in the form of a small wafer.

Terms such as left," right, up, down," bottom," top, front, back, in, out and the like are applicable to the embodiment shown and described in conjunction with the drawings. These terms are merely for the purpose of description and do not necessarily apply to the position in which the apparatus for monitoring and counteracting excess brain energy may be constructed or used.

While this particular embodiment of the apparatus and method of use has been shown and described it is to be'understood the invention is not limited thereto since modifications may be made within the scope of the accompanying claims and protection is sought to the broadest extent the prior art allows.

What is claimed is:

1. Apparatus for monitoring, analyzing and when required counteracting excess brain electrical energy of a patient to prevent epileptic seizures and the like, said apparatus including: (a) three electrodes adapted to be implanted in the brain being monitored, each electrode connected through conductors to a constantly ener gized and connected electronic circuit, said electrodes including a first implantable electrode adapted to be placed in a zero activity point of the brain, the electrical output from this first electrode detecting the levels of normal and abnormal electrical energy and feeding this output as a signal to the electronics circuit portion of the apparatus, a second implantable electrode adapted to be placed in a typical point of detection area of the brain, the output from this electrode sent as a signal from this area to the electronic circuit, and a third implantable electrode adapted to be placed in a typical point of control of the same brain, this electrode receiving countermotive forces from the electronic circuit when said circuit so determines; (b) an electronic means and an amplifier means in said electronic circuit, said electronic means receiving the output of the implantable second electrode and inverting this output after which the resulting electrical signal is fed to said amplifier means of the electronic circuit, said amplifier means providing a comparison and addition means to incoming signals; (c) a conductor connected to the first electrode, said conductor being connected to said amplifier means and carrying the electrical energy level of the zero activity portion of the brain to the amplifier which analyzes and compares this energy level in rela tion to previously established normal; (d) means for sending a reference voltage to the amplifier comparison and addition circuit, this reference voltage established and set by the operator in accordance to previously determined electrical thresholds of the brain of the patient in which the electrodes are to be implanted, this reference voltage being compared by and in said amplifier circuit and where necessary a vector addition is made by this amplifier circuit to add voltage to the inverted received voltage; (e) a circuit means in the electronic circuit for receiving and monitoring the signal from the comparison and addition circuit means and when this signal exceeds a set level amplifies this signal a determined amount; (f) a circuit means providing both passive and active electronic network means for receiving the monitored and amplified signal indicative of excess energy outputs from the second electrode and within predetermined maximum limits provides a countermotive force which is sent through a conductor to the third electrode which force quells this storm in the brain, and (g) a power means connected to the electrical circuit to supply a constantly on" power necessary to energize the electrical circuit to normal operating levels.

2. Apparatus for monitoring and counteracting excess brain electrical energy as in claim 1 in which the power means is a battery whose energy level is monitored by a self .test circuit means and there is additionally circuit means connected to said power means providing a limit control and an alarm which is actuated when the voltage drops below that set by the limit control.

3. Apparatus for monitoring and counteracting excess brain electrical energy as in claim 2 in which there is provided an oscillator which generates a high frequency signal connected to the circuit means for receiving and monitoring the signal from the comparison and addition circuit, this high frequency signal being used as a carrier for a feedback signal when such a signal is sent to the third electrode.

4. Apparatus for monitoring and counteracting excess brain electrical energy as in claim 3 in which the electronic circuit includes a filter connected between said comparison and analog addition means and said circuit means for receiving and monitoring the signal from the comparison and analog addition means which receives the signal output from electronic circuit means providing the comparison and analog addition function and filters the electronic flow to prevent this flow from interfering with other electrical brain functions such as heart beat and respiration, said filtered signal being conducted and fed to the circuit means for receiving and monitoring the signal from the comparison and addition circuit means.

5. Apparatus for monitoring and counteracting excess brain electrical energy as in claim 4 in which the electrodes are adapted to be permanently implanted and the electronics and battery therefore are encased so as to provide a small size unit which may be easily carried on and by the body of the one being monitored.

6. A method for monitoring and counteracting excess brain electrical energy to prevent epileptic seizures which includes the steps of: (a) implanting three electrodes in the brain of the mammal being monitored, the first electrode being placed in a zero activity point of the brain and from this electrode feeding its electrical output to a constantly energized and connected electronic circuit, the second electrode being placed in a typical point of detection area of the brain and a third electrode being placed in a typical point of control of the same brain; (b) connecting the electronic circuit to the second electrode by a conductor and inverting electronically the output of the brain from this second electrode and feeding the resulting inverted signal to an electronic means in said circuit to provide a comparison and addition means to incoming signals; (0) connecting a conductor to the first electrode which carries the electrical energy level of the zero activity in the brain, this electrical energy being fed to the comparison circuit for analysis of the energy in relation to a normal energy level; (cl) setting by the one in charge of the apparatus a reference voltage control level, this reference voltage being fed to the electronic means providing the comparison, said means performing vector addition when necessary; (e) feeding the output signal current of the addition means to a level set amplifier portion of the electronic circuit, which, when necessary, amplifies this current signal; (f) sending the signal cess brain electrical energy as in claim 6 in which the step of providing the power means is a battery whose energy level is monitored by a self-test circuit having a low voltage limit control and an alarm.

8. The method for monitoring and counteracting excess brain electrical energy as in claim 7 which includes the further step of connecting an oscillator which generates a high frequency signal so as to feed said oscillating signal to the level set amplifier portion of the electronic circuit with this high frequency signal'providing a carrier for the feedback signal to the third electrode.

9. The method for monitoring and counteracting excess brain electrical energy as in claim 8 which includes the step of providing a filter which receives the signal output from the electronic means providing the comparison and analog addition and filters the electronic current therefrom to prevent this current signal from interfering with other electrical brain functions such as the heart beat and respiration and feeding said filtered signal to the level set amplifier portion of the electronic circuit.

10. The method for monitoring and counteracting excess brain electrical energy as in claim 9 which includes permanently implanting the electrodes and further includes encasing the electronics and battery to provide a small unit which may be easily carried on the body of the one monitored.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3032029 *Jul 9, 1958May 1, 1962Thompson Ramo Wooldridge IncSystem controlling apparatus and method
US3495596 *Mar 23, 1965Feb 17, 1970Medel CorpApparatus for and method of processing a bioelectrical signal
US3510765 *Jul 31, 1967May 5, 1970Humetrics CorpMethod and apparatus for gating variably recurrent waveforms
US3513834 *Nov 21, 1967May 26, 1970Hitachi LtdAnesthetic depth measuring system
US3587563 *Jan 8, 1969Jun 28, 1971Us ArmyHeartbeat monitor
US3699970 *Jun 23, 1970Oct 24, 1972Nat Res DevStriate cortex stimulator
Non-Patent Citations
Reference
1 *John Osmundson, Matador with Radio Stops Wired Bull New York Times Newspaper, pg. 1 & 20, 5 17 65.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3888260 *Apr 26, 1974Jun 10, 1975Univ Johns HopkinsRechargeable demand inhibited cardiac pacer and tissue stimulator
US3993046 *Nov 6, 1974Nov 23, 1976Heriberto FernandezSeizure suppression device
US4165750 *Mar 9, 1978Aug 28, 1979Aleev Leonid SBioelectrically controlled electric stimulator of human muscles
US4230125 *Jul 9, 1979Oct 28, 1980Schneider Daniel EMethod and apparatus for effecting the prospective forewarning diagnosis of sudden brain death and heart death and other brain-heart-body growth maladies such as schizophrenia and cancer and the like
US4440160 *Jan 19, 1982Apr 3, 1984The Johns Hopkins UniversitySelf-injurious behavior inhibiting system
US4524773 *Aug 24, 1983Jun 25, 1985The John Hopkins UniversityApparatus for inhibiting self-injurious behavior (SIB) in patients
US4554928 *Sep 16, 1983Nov 26, 1985Webster Wilton W JrElectrophysiological switching unit
US4702254 *Dec 30, 1985Oct 27, 1987Jacob ZabaraMethod of controlling/preventing involuntary movements
US4709700 *Mar 11, 1985Dec 1, 1987Vaclav HyrmanElectro convulsive therapy method
US4867164 *Oct 26, 1987Sep 19, 1989Jacob ZabaraNeurocybernetic prosthesis
US4883057 *Sep 9, 1986Nov 28, 1989Research Foundation, The City University Of New YorkCathodic electrochemical current arrangement with telemetric application
US5025807 *Jan 25, 1989Jun 25, 1991Jacob ZabaraNeurocybernetic prosthesis
US5167229 *Mar 24, 1986Dec 1, 1992Case Western Reserve UniversityFunctional neuromuscular stimulation system
US5299569 *May 3, 1991Apr 5, 1994Cyberonics, Inc.Treatment of neuropsychiatric disorders by nerve stimulation
US5311876 *Nov 18, 1992May 17, 1994The Johns Hopkins UniversityAutomatic detection of seizures using electroencephalographic signals
US5349962 *Nov 30, 1993Sep 27, 1994University Of WashingtonMethod and apparatus for detecting epileptic seizures
US5443710 *Nov 18, 1992Aug 22, 1995Research Foundation, The City University Of New YorkGraphite, oil and a compound selected from lipids, glycolipids lipoproteins, fatty acid and derivatives, water insoluble species, perfluorosulfonated compounds and salts; used in vivo voltammetric measurement of biogenic chemicals
US5522863 *Aug 19, 1994Jun 4, 1996The United States Of America As Represented By The Secretary Of The NavyPulsating behavior monitoring and modification system for neural networks
US5559498 *Dec 30, 1994Sep 24, 1996Innotek Inc.Combination confinement and remote training system
US5609617 *Feb 21, 1995Mar 11, 1997C. Norman ShealyElectronic stimulation of acupuncture points
US5683422 *Apr 25, 1996Nov 4, 1997Medtronic, Inc.Method and apparatus for treating neurodegenerative disorders by electrical brain stimulation
US5690681 *Mar 29, 1996Nov 25, 1997Purdue Research FoundationMethod and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US5700282 *Oct 13, 1995Dec 23, 1997Zabara; JacobHeart rhythm stabilization using a neurocybernetic prosthesis
US5707396 *Apr 25, 1996Jan 13, 1998Institute National De La Sante De La Recherche Medicale (Inserm)Method of arresting degeneration of the substantia nigra by high frequency stimulation of subthalamic nucleus
US5713922 *Apr 25, 1996Feb 3, 1998Medtronic, Inc.Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5713923 *May 13, 1996Feb 3, 1998Medtronic, Inc.Techniques for treating epilepsy by brain stimulation and drug infusion
US5716377 *Apr 25, 1996Feb 10, 1998Medtronic, Inc.Method of treating movement disorders by brain stimulation
US5743854 *Mar 29, 1994Apr 28, 1998The Regents Of The University Of CaliforniaMethod and apparatus for inducing and localizing epileptiform activity
US5752979 *Nov 1, 1996May 19, 1998Medtronic, Inc.Method of controlling epilepsy by brain stimulation
US5792186 *Apr 30, 1997Aug 11, 1998Medtronic, Inc.Method and apparatus for treating neurodegenerative disorders by electrical brain stimulation
US5797965 *Mar 26, 1997Aug 25, 1998The United States Of America As Represented By The Secretary Of The NavyMethod of modifying behavior of a neural system
US5800474 *Nov 1, 1996Sep 1, 1998Medtronic, Inc.Method of controlling epilepsy by brain stimulation
US5814092 *May 8, 1997Sep 29, 1998Medtronic Inc.Neural stimulation techniques with feedback
US5833709 *Apr 30, 1997Nov 10, 1998Medtronic, Inc.System for treating movement disorders resulting in abnormal motor behavior
US5913882 *Jun 5, 1998Jun 22, 1999Medtronic Inc.Neural stimulation techniques with feedback
US5916239 *Nov 24, 1997Jun 29, 1999Purdue Research FoundationMethod and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US5938689 *May 1, 1998Aug 17, 1999Neuropace, Inc.Electrode configuration for a brain neuropacemaker
US5954758 *Jan 20, 1998Sep 21, 1999Case Western Reserve UniversityFunctional neuromuscular stimulation system
US5975085 *May 1, 1997Nov 2, 1999Medtronic, Inc.Method of treating schizophrenia by brain stimulation and drug infusion
US5995868 *Jan 6, 1997Nov 30, 1999University Of KansasSystem for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US6006124 *May 1, 1998Dec 21, 1999Neuropace, Inc.Means and method for the placement of brain electrodes
US6018682 *Apr 30, 1998Jan 25, 2000Medtronic, Inc.Implantable seizure warning system
US6023642 *May 8, 1997Feb 8, 2000Biogenics Ii, LlcCompact transcutaneous electrical nerve stimulator
US6026328 *Jan 20, 1998Feb 15, 2000Case Western Reserve UniversityFunctional neuromuscular stimulation system with shielded percutaneous interface
US6066163 *Feb 2, 1996May 23, 2000John; Michael SashaAdaptive brain stimulation method and system
US6128537 *May 1, 1997Oct 3, 2000Medtronic, IncTechniques for treating anxiety by brain stimulation and drug infusion
US6161044 *Nov 23, 1998Dec 12, 2000Synaptic CorporationMethod and apparatus for treating chronic pain syndromes, tremor, dementia and related disorders and for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation
US6161045 *Jun 1, 1999Dec 12, 2000Neuropace, Inc.Method for determining stimulation parameters for the treatment of epileptic seizures
US6163725 *Jan 20, 1998Dec 19, 2000Case Western Reserve UniversityFunctional neuromuscular stimulation system
US6227203Sep 9, 1998May 8, 2001Medtronic, Inc.Techniques for controlling abnormal involuntary movements by brain stimulation and drug infusion
US6230049 *Aug 13, 1999May 8, 2001Neuro Pace, Inc.Integrated system for EEG monitoring and electrical stimulation with a multiplicity of electrodes
US6263237Feb 14, 2000Jul 17, 2001Medtronic, Inc.Techniques for treating anxiety disorders by brain stimulation and drug infusion
US6304775Sep 22, 1999Oct 16, 2001Leonidas D. IasemidisSeizure warning and prediction
US6354299Jun 30, 2000Mar 12, 2002Neuropace, Inc.Implantable device for patient communication
US6366813Jun 25, 1999Apr 2, 2002Dilorenzo Daniel J.Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US6374140 *Apr 30, 1998Apr 16, 2002Medtronic, Inc.Method and apparatus for treating seizure disorders by stimulating the olfactory senses
US6459936 *Aug 17, 2001Oct 1, 2002Neuropace, Inc.Methods for responsively treating neurological disorders
US6463328 *Jan 10, 2000Oct 8, 2002Michael Sasha JohnAdaptive brain stimulation method and system
US6549804Jun 10, 1999Apr 15, 2003University Of KansasSystem for the prediction, rapid detection, warning, prevention or control of changes in activity states in the brain of a subject
US6594524Dec 12, 2000Jul 15, 2003The Trustees Of The University Of PennsylvaniaAdaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
US6606521Jul 9, 2001Aug 12, 2003Neuropace, Inc.Implantable medical lead
US6647296 *Aug 17, 2001Nov 11, 2003Neuropace, Inc.Implantable apparatus for treating neurological disorders
US6658287Aug 24, 1999Dec 2, 2003Georgia Tech Research CorporationMethod and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity
US6665562Dec 6, 2000Dec 16, 2003George Mason UniversityAdaptive electric field modulation of neural systems
US6678548Oct 20, 2000Jan 13, 2004The Trustees Of The University Of PennsylvaniaUnified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
US6718210Oct 23, 2000Apr 6, 2004Case Western Reserve UniversityFunctional neuromuscular stimulation system
US6725086Nov 20, 2001Apr 20, 2004Draeger Medical Systems, Inc.Method and system for monitoring sedation, paralysis and neural-integrity
US6819956Nov 11, 2001Nov 16, 2004Dilorenzo Daniel J.Optimal method and apparatus for neural modulation for the treatment of neurological disease, particularly movement disorders
US6845271May 3, 2002Jan 18, 2005Neurocontrol CorporationTreatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
US6873872Oct 11, 2002Mar 29, 2005George Mason UniversityAdaptive electric field modulation of neural systems
US6988006Sep 20, 2002Jan 17, 2006Medtronic, Inc.Technique for adjusting the locus of excitation of electrically excitable tissue
US7003352May 2, 2003Feb 21, 2006Advanced Bionics CorporationTreatment of epilepsy by brain stimulation
US7013177Jul 3, 2002Mar 14, 2006Advanced Bionics CorporationTreatment of pain by brain stimulation
US7079977Oct 15, 2003Jul 18, 2006Medtronic, Inc.Synchronization and calibration of clocks for a medical device and calibrated clock
US7146211Oct 15, 2003Dec 5, 2006Medtronic, Inc.Signal quality monitoring and control for a medical device system
US7146218Feb 4, 2003Dec 5, 2006The Trustees Of The University Of PennsylvaniaAdaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
US7149572Oct 15, 2003Dec 12, 2006Medtronic, Inc.Phase shifting of neurological signals in a medical device system
US7203548Jun 20, 2002Apr 10, 2007Advanced Bionics CorporationCavernous nerve stimulation via unidirectional propagation of action potentials
US7209787Nov 20, 2003Apr 24, 2007Bioneuronics CorporationApparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7212851Oct 24, 2002May 1, 2007Brown University Research FoundationMicrostructured arrays for cortex interaction and related methods of manufacture and use
US7231254Jul 12, 2004Jun 12, 2007Bioneuronics CorporationClosed-loop feedback-driven neuromodulation
US7242983Oct 15, 2003Jul 10, 2007Medtronic, Inc.Channel-selective blanking for a medical device system
US7242984Jan 6, 2004Jul 10, 2007Neurovista CorporationApparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7277758Apr 5, 2004Oct 2, 2007Neurovista CorporationMethods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US7280867Oct 15, 2003Oct 9, 2007Medtronic, Inc.Clustering of recorded patient neurological activity to determine length of a neurological event
US7280870Jun 4, 2003Oct 9, 2007Brown University Research FoundationOptically-connected implants and related systems and methods of use
US7282030Oct 15, 2003Oct 16, 2007Medtronic, Inc.Timed delay for redelivery of treatment therapy for a medical device system
US7292890 *Jun 20, 2002Nov 6, 2007Advanced Bionics CorporationVagus nerve stimulation via unidirectional propagation of action potentials
US7299096Dec 9, 2003Nov 20, 2007Northstar Neuroscience, Inc.System and method for treating Parkinson's Disease and other movement disorders
US7321837Feb 15, 2006Jan 22, 2008Medtronic, Inc.Synchronization and calibration of clocks for a medical device and calibrated clock
US7324851Jun 1, 2004Jan 29, 2008Neurovista CorporationClosed-loop feedback-driven neuromodulation
US7333851Sep 12, 2003Feb 19, 2008The Trustees Of The University Of PennsylvaniaUnified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
US7353064Feb 19, 2004Apr 1, 2008Northstar Neuroscience, Inc.Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of movement disorders and/or other neurologic dysfunction
US7392079Mar 16, 2006Jun 24, 2008Brown University Research FoundationNeurological signal decoding
US7403820May 25, 2005Jul 22, 2008Neurovista CorporationClosed-loop feedback-driven neuromodulation
US7437196Jul 18, 2006Oct 14, 2008Northstar Neuroscience, Inc.Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US7483747Jul 15, 2005Jan 27, 2009Northstar Neuroscience, Inc.Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US7565199Dec 9, 2003Jul 21, 2009Advanced Neuromodulation Systems, Inc.Methods for treating and/or collecting information regarding neurological disorders, including language disorders
US7565200Nov 12, 2004Jul 21, 2009Advanced Neuromodulation Systems, Inc.Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US7601116May 16, 2006Oct 13, 2009Neuropace, Inc.Low frequency magnetic neurostimulator for the treatment of neurological disorders
US7616998Jul 9, 2004Nov 10, 2009Medtronic, Inc.Electrical stimulation of structures within the brain
US7623928May 2, 2007Nov 24, 2009Neurovista CorporationControlling a subject's susceptibility to a seizure
US7624293Feb 15, 2006Nov 24, 2009Medtronic, Inc.Synchronization and calibration of clocks for a medical device and calibrated clock
US7627383Mar 15, 2005Dec 1, 2009Boston Scientific Neuromodulation CorporationImplantable stimulator
US7630757Aug 1, 2002Dec 8, 2009Flint Hills Scientific LlcSystem for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US7647097Dec 20, 2004Jan 12, 2010Braingate Co., LlcTranscutaneous implant
US7657318Nov 14, 2005Feb 2, 2010Medtronic, Inc.Technique for adjusting the locus of excitation of electrically excitable tissue
US7660631Apr 22, 2005Feb 9, 2010Boston Scientific Neuromodulation CorporationMethods and systems for electrical and/or drug stimulation as a therapy for erectile dysfunction
US7676263Jun 21, 2007Mar 9, 2010Neurovista CorporationMinimally invasive system for selecting patient-specific therapy parameters
US7684866Aug 2, 2004Mar 23, 2010Advanced Neuromodulation Systems, Inc.Apparatus and methods for applying neural stimulation to a patient
US7689289Mar 22, 2006Mar 30, 2010Medtronic, Inc.Technique for adjusting the locus of excitation of electrically excitable tissue with paired pulses
US7715919Oct 15, 2003May 11, 2010Medtronic, Inc.Control of treatment therapy during start-up and during operation of a medical device system
US7729758Nov 30, 2005Jun 1, 2010Boston Scientific Neuromodulation CorporationMagnetically coupled microstimulators
US7747325Sep 28, 2005Jun 29, 2010Neurovista CorporationSystems and methods for monitoring a patient's neurological disease state
US7751877Nov 19, 2004Jul 6, 2010Braingate Co., LlcNeural interface system with embedded id
US7756584Sep 27, 2002Jul 13, 2010Advanced Neuromodulation Systems, Inc.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7783362Nov 6, 2007Aug 24, 2010Boston Scientific Neuromodulation CorporationVagus nerve stimulation via unidirectional propagation of action potentials
US7801600May 26, 2005Sep 21, 2010Boston Scientific Neuromodulation CorporationControlling charge flow in the electrical stimulation of tissue
US7801602Mar 24, 2006Sep 21, 2010Boston Scientific Neuromodulation CorporationControlling stimulation parameters of implanted tissue stimulators
US7803148Jun 7, 2007Sep 28, 2010Neurosystec CorporationFlow-induced delivery from a drug mass
US7831305Oct 15, 2002Nov 9, 2010Advanced Neuromodulation Systems, Inc.Neural stimulation system and method responsive to collateral neural activity
US7853329Dec 29, 2006Dec 14, 2010Neurovista CorporationMonitoring efficacy of neural modulation therapy
US7860570Jun 20, 2002Dec 28, 2010Boston Scientific Neuromodulation CorporationImplantable microstimulators and methods for unidirectional propagation of action potentials
US7865243Jan 24, 2006Jan 4, 2011Boston Scientific Neuromodulation CorporationDevice and therapy for erectile dysfunction and other sexual dysfunction
US7877136Sep 28, 2007Jan 25, 2011Boston Scientific Neuromodulation CorporationEnhancement of neural signal transmission through damaged neural tissue via hyperpolarizing electrical stimulation current
US7881780Dec 30, 2005Feb 1, 2011Braingate Co., LlcBiological interface system with thresholded configuration
US7890177Jan 24, 2006Feb 15, 2011Boston Scientific Neuromodulation CorporationDevice and therapy for erectile dysfunction and other sexual dysfunction
US7899539Sep 28, 2006Mar 1, 2011Boston Scientific Neuromodulation CorporationCavernous nerve stimulation via unidirectional propagation of action potentials
US7901368Dec 29, 2005Mar 8, 2011Braingate Co., LlcNeurally controlled patient ambulation system
US7917206Nov 7, 2006Mar 29, 2011Medtronic, Inc.Signal quality monitoring and control for a medical device system
US7930035May 2, 2007Apr 19, 2011Neurovista CorporationProviding output indicative of subject's disease state
US7933646Aug 13, 2007Apr 26, 2011Medtronic, Inc.Clustering of recorded patient neurological activity to determine length of a neurological event
US7966073 *May 16, 2006Jun 21, 2011Neuropace, Inc.Differential neurostimulation therapy driven by physiological therapy
US7970722Nov 9, 2009Jun 28, 2011Aloft Media, LlcSystem, method and computer program product for a collaborative decision platform
US7974696Jul 23, 2005Jul 5, 2011Dilorenzo Biomedical, LlcClosed-loop autonomic neuromodulation for optimal control of neurological and metabolic disease
US7976465Oct 17, 2006Jul 12, 2011Medtronic, IncPhase shifting of neurological signals in a medical device system
US7983762Dec 3, 2008Jul 19, 2011Advanced Neuromodulation Systems, Inc.Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US7991461Dec 23, 2005Aug 2, 2011Braingate Co., LlcPatient training routine for biological interface system
US8005777Jul 27, 2010Aug 23, 2011Aloft Media, LlcSystem, method and computer program product for a collaborative decision platform
US8036736Mar 21, 2008Oct 11, 2011Neuro Vista CorporationImplantable systems and methods for identifying a contra-ictal condition in a subject
US8060194Dec 30, 2005Nov 15, 2011Braingate Co., LlcBiological interface system with automated configuration
US8065011Aug 31, 2006Nov 22, 2011The Trustees Of The University Of PennsylvaniaAdaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
US8065012Aug 6, 2007Nov 22, 2011Advanced Neuromodulation Systems, Inc.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US8073546Jul 12, 2010Dec 6, 2011Advanced Neuromodulation Systems, Inc.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US8086294Aug 13, 2007Dec 27, 2011The Trustees Of The University Of PennsylvaniaUnified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
US8095209Dec 27, 2005Jan 10, 2012Braingate Co., LlcBiological interface system with gated control signal
US8160988Jul 27, 2010Apr 17, 2012Aloft Media, LlcSystem, method and computer program product for a collaborative decision platform
US8187181Oct 15, 2003May 29, 2012Medtronic, Inc.Scoring of sensed neurological signals for use with a medical device system
US8224452May 17, 2011Jul 17, 2012Neuropace Inc.Differential neurostimulation therapy driven by physiological therapy
US8249713Nov 5, 2007Aug 21, 2012Spr Therapeutics, LlcTreatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
US8295934Nov 14, 2006Oct 23, 2012Neurovista CorporationSystems and methods of reducing artifact in neurological stimulation systems
US8298176Jul 19, 2010Oct 30, 2012Neurosystec CorporationFlow-induced delivery from a drug mass
US8326431Apr 28, 2006Dec 4, 2012Medtronic, Inc.Implantable medical device for the concurrent treatment of a plurality of neurological disorders and method therefore
US8423145Jun 14, 2012Apr 16, 2013Neuropace, Inc.Differential neurostimulation therapy driven by physiological therapy
US8433415Apr 18, 2012Apr 30, 2013The Trustees Of Dartmouth CollegeApparatus and method for modulating neurochemical levels in the brain
US8467879Oct 14, 2005Jun 18, 2013Boston Scientific Neuromodulation CorporationTreatment of pain by brain stimulation
US8473060Dec 30, 2009Jun 25, 2013The Trustees Of Dartmouth CollegeApparatus and method for modulating neurochemical levels in the brain
US8543199Sep 2, 2011Sep 24, 2013Cyberonics, Inc.Implantable systems and methods for identifying a contra-ictal condition in a subject
US8543214Oct 15, 2003Sep 24, 2013Medtronic, Inc.Configuring and testing treatment therapy parameters for a medical device system
US8548604Dec 6, 2010Oct 1, 2013Boston Scientific Neuromodulation CorporationImplantable microstimulators and methods for unidirectional propagation of action potentials
US8560041Oct 3, 2005Oct 15, 2013Braingate Co., LlcBiological interface system
US8560075Oct 13, 2009Oct 15, 2013Alejandro CovalinApparatus and method for the treatment of headache
US8579786Oct 15, 2003Nov 12, 2013Medtronic, Inc.Screening techniques for management of a nervous system disorder
US8588933Jan 11, 2010Nov 19, 2013Cyberonics, Inc.Medical lead termination sleeve for implantable medical devices
US8594798Oct 15, 2003Nov 26, 2013Medtronic, Inc.Multi-modal operation of a medical device system
US8606361Jul 8, 2011Dec 10, 2013Advanced Neuromodulation Systems, Inc.Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US8626302Aug 3, 2009Jan 7, 2014Spr Therapeutics, LlcSystems and methods to place one or more leads in muscle for providing electrical stimulation to treat pain
US8712547Feb 28, 2011Apr 29, 2014Boston Scientific Neuromodulation CorporationCavernous nerve stimulation via unidirectional propagation of action potentials
US8725243Dec 28, 2005May 13, 2014Cyberonics, Inc.Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8738136Aug 13, 2007May 27, 2014Medtronic, Inc.Clustering of recorded patient neurological activity to determine length of a neurological event
US8762065Jun 22, 2005Jun 24, 2014Cyberonics, Inc.Closed-loop feedback-driven neuromodulation
US8781597May 5, 2010Jul 15, 2014Cyberonics, Inc.Systems for monitoring a patient's neurological disease state
US8786624Jun 2, 2010Jul 22, 2014Cyberonics, Inc.Processing for multi-channel signals
US8812096Dec 30, 2005Aug 19, 2014Braingate Co., LlcBiological interface system with patient training apparatus
US20130090706 *Jun 14, 2012Apr 11, 2013Randolph J. NudoMethods and associated neural prosthetic devices for bridging brain areas to improve function
EP0911061A2Oct 26, 1998Apr 28, 1999Neuropace, Inc.System for the treatment of neurological disorders
EP1554011A2 *Oct 15, 2003Jul 20, 2005Northstar Neuroscience, Inc.Neural stimulation system and method responsive to collateral neural activity
WO1985001213A1 *Sep 11, 1984Mar 28, 1985Jacob ZabaraNeurocybernetic prosthesis
WO1985001214A1 *Sep 14, 1984Mar 28, 1985Wilton W Webster JrElectrophysiological switching unit
WO1986002567A1 *Oct 18, 1985May 9, 1986Zion FoundationMethod and apparatus for delivering a prescriptive electrical signal
WO1995015117A1 *Jun 22, 1994Jun 8, 1995Univ WashingtonMethod and apparatus for detecting epileptic seizures
WO2002038031A2 *Oct 30, 2000May 16, 2002Neuropace IncSystem and method for determining stimulation parameters for the treatment of epileptic seizures
WO2004023983A2 *Sep 12, 2003Mar 25, 2004Univ MichiganNoninvasive nonlinear systems and methods for predicting seizure
WO2004043536A1Nov 12, 2002May 27, 2004Neuropace IncSystem for adaptive brain stimulation
WO2006044793A2 *Oct 17, 2005Apr 27, 2006Univ Louisiana Tech FoundationMedical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto
Classifications
U.S. Classification600/544, 607/45, 607/68, 607/63
International ClassificationA61B5/0476
Cooperative ClassificationA61B5/0476
European ClassificationA61B5/0476