Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3850464 A
Publication typeGrant
Publication dateNov 26, 1974
Filing dateJun 3, 1974
Priority dateMay 23, 1973
Publication numberUS 3850464 A, US 3850464A, US-A-3850464, US3850464 A, US3850464A
InventorsR Bisbing, J Vickers
Original AssigneeR Bisbing, J Vickers
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Slam-latch
US 3850464 A
Abstract
A sliding-action slam latch for securing a door panel, especially a hinged door panel, in closed position is constructed of one piece and is installed in a single opening in the door panel and is self-retained therein. The latch operates by spring-biased sliding action to engage the door frame or striker plate. In one form, the spring bias is provided by the resilience of the plastic material of which the latch is made. Modified embodiments are shown in which the spring bias is provided by a separate spring member. Several forms of separate spring members are shown.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

1 Nov. 26, 1974 [52] U.S. Cl. 292/175, 292/DIG. 38

[51] Int. Cl. EOSc l/10 [58] Field of Search 292/163', 175, DIG. 38, 292/74, 75

[56] References Cited UNITED STATES PATENTS Risley 292/175 Ahlgren 292/175 3,632,007 l/l972 Kantor 217/57 FOREIGN PATENTS OR APPLICATIONS 2,029,081 12/1970 Germany I. 292/D1G. 38

Primary Examiner-Albert G. Craig, Jr. Attorney, Agent, or Firm-Paul & Paul [57] ABSTRACT A sliding-action slam latch for securing a door panel, especially a hinged door panel, in closed position is constructed of one piece and is installed in a single opening in the door panel and is self-retained therein. The latch operates by spring-biased sliding action to engage the door frame or striker plate. In one form, the spring bias is provided by the resilience of the plastic material of which the latch is made. Modified embodiments are shown in which the spring bias is provided by a separate spring member. Several forms of separate spring members are shown.

3 Claims, 13 Drawing Figures SLAM-LATCH This is a division of application Ser. No. 363,070, filed May 23, 1973.

BACKGROUND OF THE INVENTION This invention relates to latches used to secure, in closed position, hinged panels on doors.

The invention relates especially to that class of latches in which a camming surface on the end of a sliding-bolt element co-operates with a striker surface on the door frame to cause the bolt action to secure the door upon its closing against the frame.

The slam action principle has been widely used in the prior art and has been embodied in various latch designs which usually incorporate a housing which encloses several components, one of which is a slidingbolt element. The general characteristic of this type of latch is that it is activated to secure the door by cooperation of a door-frame-mounted striker when the door is merely pushed shut or slammed, but some operation of the latch mechanism is required to release the latch and open the door.

The particular class of latches to which the present invention belongs uses a cam surface on the end of the bolt element to co-operate with the striker surface to slide the bolt into the housing against the force of a spring contained therein. This spring force thereafter urges the bolt to engage behind the door frame or to engage a keeper element provided on the door frame. In order to open a door secured with such a latch, a hand grip is usually provided to operate the mechanism which withdraws the end of the bolt from engagement with the keeper on the door frame.

Presently available latches of the sliding-bolt slam type are installed by mounting the latch assembly to the door panel using rivets, or bolts and nuts, or screws, or other fastening means.

SUMMARY OF THE INVENTION The primary object of the present invention is to provide a latch of the sliding-bolt slam-action type which may be more easily installed, at low cost, without the use of rivets, or bolts and nuts, or screws, or other fasteners.

The foregoing object is accomplished, in accordance with one embodiment of the present invention. by constructing a latch of material having sufficient resilience or spring characteristics to achieve both snap in" installation and also slam-latching function with but single component construction.

The foregoing object is accomplished in accordance with other embodiments of the present invention, by constructing a latch of material having sufficient resilience or spring characteristics to achieve snap in" installation but wherein the slam-latching function is provided by a separate spring.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a perspective representation of one embodiment of the latch of the present invention. wherein the latch is of single-component construction.

FIG. 2 illustrates the embodiment of FIG. I in an interim position during its installation into a door panel.

FIG. 3 illustrates the embodiment of FIGS. 1 and 2 fully installed in a door panel. The latch unit in FIG. 3 is shown in its forward or latched position.

FIG. 4 illustrates the latch of FIG. 3 being pushed to its rearward or unlatched position.

FIGS. 5 and 6 are views showing a modification of the latch of FIGS. I4 wherein the single flexible leg element of FIG. I is a plurality of segments.

FIG. 7 illustrates a modification in which the hand grip is a thumb-andfinger knob, rather than the finger recess shown in FIGS. L4.

FIGS. 8-13 illustrate additional embodiments wherein the spring bias is provided by an additional spring component. In FIGS. 8-10, the additional spring component is a torsion bar spring. In FIG. II, the additional spring component is a coil-type torsion spring. In FIG. 13, a compression spring is shown.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. I, this figure is a perspective view of one embodiment of the invention wherein the slam latch consists of a single component of a resilient plastic material formed by molding or by other manufacturing methods. The slam latch of FIG. 1 includes a latch body I!) having at one end a frame-engaging portion I2 adapted to engage the frame F, an angled camming surface 13, an adjacent guide surface 14, and a shaped recess I5. Latch body 10, at its other end, has an upstanding resilient flexible leg 16 which is integral with the body of the latch at its base but which is spaced therefrom thereabove. A top surface 17 covers the latch body It] and projects therebeyond in all direc tions forming a peripheral flange I8. Flange 18 overlaps the perimeter of the installation hole provided in the door or other panel. A finger cavity 19 is provided in top surface I7 having a rearward wall which inclines rearwardly downwardly. By means of finger cavity I9, the latch may be manually slid rearwardly to its unlatched position, as indicated in FIG. 4, whereupon the door maybe pulled open by the finger, shown in phantom in FIG. 4, as indicated by the phantom arrows.

FIG. 2 illustrates the manner in which the latch body of FIG. I is inserted into a rectangular opening prepared in the door panel P. It is to be noted that the recess I5 has a specific shape and size for receiving the forward edge of the opening in the door panel P. The rear edge of the opening contacts the flexible leg 16. From the partial insertion position illustrated in FIG. 2, the latch body is rotated counterclockwise about the forward edge of the panel opening. During this rotation. the flexible leg to is forced to bend forwardly, toward the latch body, to allow the ridge 24 of the flexible leg I6 to pass by the rear edge ofthe panel opening. In this manner, the latch is inserted into the panel opening into its final position, illustrated in FIG. 3. In FIG. 2, the installation force is indicated by the arrow.

Referring now to FIG. 3, the latch is here shown in its normal latched position. All edges of the panel opening underlie and are concealed by the peripheral flange 18 of the top 17. The shaped upper end 25 of flexible leg I6 bears against the rear edge of the panel opening. The panel portion adjacent the front edge of the opening is slidingly maintained between the under surface of flange I8 and the guide surface 114. The frame-engaging portion 12 retains the latch body, and hence the door panel P, in closed position with respect to frame F.

In FIG. 4, by means of the finger shown in phantom, the latch has been pushed slidingly to its rearward position against the action of resilient leg 16. This is the unlatched position of the latch, with the frame-engaging portion 12 being clear of the door frame F. The front edge of the panel opening has moved forwardly in the cavity 15 but nevertheless remains captive beneath the flange 18, as is clearly seen in FIG. 4. The rear edge of the panel opening continues to be retained in the shaped end of the flexible leg 16 formed by the portions 24 and 25. The leg 16 has flexed toward the body 10. It is, of course, this flexing of leg 16 which has allowed sliding movement of the latch in the panel opening. When the rearwardly applied force supplied by the finger in cavity 19 is removed, or, for that matter, when the latch body is free from that or any other outside force, the resilient flexible leg 16 returns to the position shown in FIG. 3, and this force urges the latch body 10 to slide forwardly with respect to the panel P until the forward edge of the panel opening abuts against the rearward edge of cavity 15, as illustrated in FIG. 3. Thus, the flexible leg 16, by returning to its unflexed position, causes the frame-engaging portion 12 of the latch body to engage the door frame F.

FIGS. 5 and 6 illustrate a modification wherein the flexible leg 16, instead of being comprised of one piece, is comprised of three resilient segments, a middle segment 31 and two side segments 32. At least one of the segments (the middle segment 31 in the embodiment shown in FIG. 5) is of proper length and cross section to contact the rear edge of the panel opening, so as to be able to bias the latch body toward the latched position. In addition, at least one segment is (in FIG. 5, both end segments 32 are) of proper length and cross section to underlie the door panel p adjacent the rear edge of the panel opening, so as to slidingly retain the latch body in the panel.

FIG. 7 illustrates another modification wherein, in lieu ofa finger cavity, such as 19 shown in FIG. 1, latch is provided with an upper thumb-and-finger projection 39.

FIGS. 8, 9 and 10 illustrate a presently preferred embodiment wherein a separate metal torsion-bar spring 28 is used to provide the spring bias to bias the latch body 10 toward the latched position. In FIG. 8, the latch body is shown in its latched position. In FIG. 9, the latch body is shown in its unlatched position to which it has been slidingly moved against the action of torsion-bar spring 28. FIG. 10, which is a view looking along the line l0l0 of FIG. 8, shows that when the latch is in latched position, the opposite extremities of the torsion-bar spring 28 are restrained beneath the underside of the flange 18 of the latch top 17 with one said extremity against the rear edge of the opening in panel P, the other extremity against the latch body. When the latch has been moved to the limit of its motion to be in the unlatched position (FIG. 9), both opposite extremities of the torsion-bar spring 28 are restrained between the latch body and the rear edge of the panel opening.

In the embodiment of FIGS. 8-10, the resilient leg 16 does not flex when the latch is slid to its unlatched position. and the bias is provided only by the torsion-bar spring 28. The leg 16 flexes. however, during insertion of the latch into the panel opening, after which leg 16 snaps back to its natural unflexed position in which it functions to retain the latch body in the panel opening.

FIGS. 11 and 12 show an alternate form of metallic spring element 29 in which the spring is a torsion coil spring, rather than-a torsion-bar spring as in FIGS. 8-10.

FIG. 13 shows yet another form of metallic bias spring in which the spring 30 is a compression spring.

In FIGS. 11-13, as in FIGS. 8-10, the flexible leg 16 flexes to allow insertion of the latch body into the panel opening after which leg 16 snaps back into a position to retain the latch in the panel. The spring bias for the sliding movement of the latch is provided only by the metallic spring element.

It is to be understood that other forms of metallic spring elements other than those illustrated may be used. The use of a metallic spring element, rather than relying on the resilience of the flexible plastic leg 16, is preferable particularly in those conditions where the environmental temperature may be too warm or too cold. If too warm, the plastic material may creep and lose its elasticity. If too cold, the plastic leg 16 may become brittle and snap when flexed.

The new slam latch which has been described and illustrated has a number of advantages over prior art sliding-action slam-type latches. Its cost of manufacture is low, due to its design as a single component molded of low-cost plastic material. It is fast and simple, and also economical, to install since it requires no fastening devices, no tools, and no fixtures. Once installed, it should operate without mechanical failure since it incorporates no mechanical components which are prone to fail, or to jam, or to malfunction. Installed, it has a neat and attractive appearance. Only the flat top surface of the latch with the finger-grip cavity is visible from the outside of the installation. No unsightly screw heads or other fasteners are present to detract from its appearance and from its style. Finally, the plastic material of which the body of the latch is made is not subject to corrosion or to deterioration under normal environmental conditions.

Having described our invention, we claim:

1. A latch of the sliding-action slam type for installation in an opening in a door panel for releasably retaining said door panel relative to a frame, said latch comprising:

a. a latch body having a shaped recess at its forward end for receiving cooperatively the edge of the panel at the forward edge of the panel opening;

b. said latch body at its forward end having a first portion which projects forwardly beyond said recess for retaining said latch body in said panel and for guiding said latch body in its back-and-forth sliding movements;

c. said latch body at its forward end having a second portion which projects forwardly beyond said first portion, said second portion being adapted to cooperate with said frame when said latch body is in its forward position to maintain said door panel in latched position relative to said frame;

d. said latch body having a flexible leg element at its rearward end, the upper end of said leg element being spaced rearwardly from the main portion of said latch body and adapted to flex forwardly during snap-in insertion of the latch body into the panel opening and to thereafter snap back into said spaced position;

trusion near its upper end and thereabove a panel-edge engaging portion.

3. A latch according to claim I wherein said flexible leg element has a plurality of segments at least one of which engages the under-surface of said panel and at least another of which engages the rear edge-of the panel opening.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3380770 *Oct 31, 1966Apr 30, 1968Keystone Lighting CorpLatch for diffuser panel doors in lighting fixtures
US3469875 *Nov 6, 1967Sep 30, 1969Amerock CorpLatching assembly
US3632007 *Dec 4, 1969Jan 4, 1972Plasson Maagan Michael Ind LtdDoor latch
DE2029081A1 *Jun 12, 1970Dec 23, 1970 Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4082329 *Sep 30, 1976Apr 4, 1978Haines Richard KPrivacy latch for folding and sliding doors
US4390198 *May 27, 1980Jun 28, 1983Motorola, Inc.Molded multifunction latch mechanism
US4492396 *Oct 28, 1981Jan 8, 1985Siemens-Allis, Inc.One-piece, slam-type latch for snap-in installation
US4790579 *Mar 1, 1988Dec 13, 1988Siemens Energy & Automation, Inc.Sliding spring latch
US4838054 *Jul 10, 1987Jun 13, 1989The Eastern CompanyLatch and lock assemblies with lift and turn handles
US4838056 *Jul 10, 1987Jun 13, 1989The Eastern CompanyLatch and lock assemblies with expansible latch elements
US4841755 *Jul 10, 1987Jun 27, 1989The Eastern CompanyLatch and lock assemblies with spring-biased slide bolts
US4850208 *Jul 10, 1987Jul 25, 1989The Eastern CompanyLatch and lock assemblies with spring-biased pivot bolts
US4850209 *Jul 10, 1987Jul 25, 1989The Eastern CompanyLatch and lock housings, handles and mounting brackets
US4872366 *Aug 29, 1988Oct 10, 1989General Motors CorporationHood release assembly with integral snap in retention at instrument panel
US4969916 *Mar 23, 1989Nov 13, 1990The Eastern CompanyLatch and lock assemblies with spring-biased pivot bolts
US5046340 *Jul 17, 1990Sep 10, 1991The Eastern CompanyLatch and lock assemblies with spring-biased pivot bolts
US5121952 *Jul 15, 1991Jun 16, 1992Elastolatch, Inc.Slam latch
US5158329 *Sep 20, 1991Oct 27, 1992Southco, Inc.Slam latch
US5358291 *Jul 22, 1993Oct 25, 1994Tempress, Inc.Hatch with improved latch and hinge assembly
US5482333 *Nov 15, 1993Jan 9, 1996Eaton CorporationOne-piece polymeric door latch with an integral spring
US5628534 *Mar 27, 1996May 13, 1997Siemens Energy & Automation, Inc.Door and door latch for an electric load center
US5758987 *Sep 4, 1996Jun 2, 1998Southco, Inc.Snap-in fastener for flush-mounted panels
US5878608 *Jul 2, 1998Mar 9, 1999Southco, Inc.Locking slide latch
US5897147 *Jan 8, 1997Apr 27, 1999Southco, Inc.Locking slide latch
US5934716 *Feb 27, 1998Aug 10, 1999Southco, Inc.Slam latch and method of assembly
US5974842 *Sep 19, 1997Nov 2, 1999Southco, Inc.Locking slide latch
US5986722 *Oct 29, 1997Nov 16, 1999Acer Peripherals, Inc.Cover for covering a recessed portion of a case
US6019400 *Apr 3, 1998Feb 1, 2000Ferco International Ferrures Et Serrures De BatimentLock for sliding closure
US6042296 *Mar 3, 1998Mar 28, 2000Southco, Inc.Snap-in fastener for panels
US6050618 *Apr 20, 1998Apr 18, 2000Southco, Inc.Slide latch
US6053544 *May 11, 1998Apr 25, 2000White Consoldiated Industries, Inc.Locking handle for refrigerators
US6113160 *Mar 9, 1998Sep 5, 2000Southco, Inc.Latch
US6134116 *Apr 27, 1999Oct 17, 2000Dell Usa, L. P.Apparatus and method for latching a door in a computer system
US6183024 *May 7, 1999Feb 6, 2001Ashland Products, Inc.Tilt-latch for a sash window
US6230443 *May 5, 1999May 15, 2001Ashland Products, Inc.Hardware mounting
US6266237Dec 22, 1999Jul 24, 2001Dell Usa, L.P.Apparatus for releasably securing an access panel of a computer system
US6575503Oct 28, 2000Jun 10, 2003Southco, Inc.Latch
US6603655Aug 3, 2001Aug 5, 2003Dell Products L.P.Rotating and translating four bar media door for a computer chassis
US6672693 *Jan 14, 2002Jan 6, 2004Sanyo Electric Co., Ltd.Cooling receptacle
US6719337Nov 3, 2000Apr 13, 2004Southco, Inc.Push-push latch
US6729701Jun 29, 2001May 4, 2004Justrite Manufacturing Company LlcSafety cabinet
US6786518 *Jun 13, 2001Sep 7, 2004Southco, Inc.Load floor latch
US6832792Aug 14, 2002Dec 21, 2004Newell Operating CompanyActuator for a tilt-latch for a sash window
US6874826Nov 14, 2000Apr 5, 2005Ashland Products, Inc.Actuator for a tilt-latch for a sash window
US6948278Dec 4, 2000Sep 27, 2005Ashland Products, Inc.Adjustable tilt-latch for a sash window
US7140650 *Sep 22, 2005Nov 28, 2006Southco, Inc.Slide latch
US7146831 *Nov 19, 2004Dec 12, 2006Southco, Inc.Slide latch
US7171784Apr 10, 2003Feb 6, 2007Newell Operating CompanyTilt-latch for a sash window
US7222458Mar 14, 2005May 29, 2007Newell Operating CompanyActuator for a tilt-latch for a sash window
US7431355Jun 23, 2006Oct 7, 2008Newell Operating CompanyTilt-latch for a sash window
US8360487 *May 19, 2010Jan 29, 2013Harris CorporationLatch assembly, over-center reverse draw
US20110285151 *May 19, 2010Nov 24, 2011Harris CorporationLatch assembly, over-center reverse draw
US20120318121 *May 3, 2012Dec 20, 2012ION Audio, LLCTablet computer guitar controler
CN1641171BDec 22, 2004Jun 16, 2010索斯科公司滑动闩锁
DE3620865A1 *Jun 21, 1986Dec 23, 1987Peter SeitzCollecting container and plastic lid
DE4015602A1 *May 15, 1990Nov 21, 1991Weidenhammer PackungenChild-proof free-flowing material container
DE19605377A1 *Feb 14, 1996Aug 28, 1997Seitz PeterLid clip, for sealing of merchandising containers
DE19605377C2 *Feb 14, 1996Feb 1, 2001Seitz PeterVerschlußriegel für den Deckel eines Warenversandbehälters
EP0104136A2 *Jun 6, 1983Mar 28, 1984Georg Utz AGContainer with a cover and a locking device
EP0845563A1 *Nov 21, 1997Jun 3, 1998LegrandHandle for openable wing, and cabinet having a door equiped with such a handle
EP0859107A1 *Feb 18, 1997Aug 19, 1998Aluminio Tecnologia Y Producto S.A.Fastening device for sliding objects
EP0869241A1 *Mar 26, 1998Oct 7, 1998Ferco International Ferrures et Serrures de BâtimentSliding wing lock
EP0962613A2 *May 28, 1999Dec 8, 1999BSH Bosch und Siemens Hausgeräte GmbHLocking element
EP1070811A1 *Jul 21, 2000Jan 24, 2001Winlock Security LimitedA housing for a closure member retaining assembly and a method of attachment thereof
EP1365092A2 *Oct 16, 2002Nov 26, 2003Böllhoff GmbH Verbindungs- und MontagetechnikSliding bolt fastener for a pivotable cover element in a vehicle
EP1528192A1 *Oct 28, 2004May 4, 2005Ferco International Ferrures et Serrures de Bâtiment Société par actions simpliféeLock fitting for sliding wing
EP1588955A1 *Mar 10, 2005Oct 26, 2005Fritz Schäfer GmbHStorage and transport container
EP2572975A1 *Sep 21, 2011Mar 27, 2013Spiethoff's Bevrachtingskantoor BVCover member for an opening in a cargo space
WO1998030774A1Jan 7, 1998Jul 16, 1998SouthcoLocking slide latch
WO2000079080A1 *Jun 23, 2000Dec 28, 2000SouthcoCompression latch
WO2001007737A1 *Jul 19, 2000Feb 1, 2001SouthcoSlide latch
WO2013041578A1 *Sep 19, 2012Mar 28, 2013Spliethoff's Bevrachtingskantoor BvCover member for an opening in a cargo space of a ship
Classifications
U.S. Classification292/175, 292/DIG.380
International ClassificationE05B9/08, E05C1/10, E05B5/00, E05B15/04, E05B15/16
Cooperative ClassificationE05C1/10, E05B9/08, Y10S292/38, E05B2015/0472, E05B5/00, E05B15/1635
European ClassificationE05C1/10, E05B5/00, E05B9/08, E05B15/16C