Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3850785 A
Publication typeGrant
Publication dateNov 26, 1974
Filing dateAug 14, 1973
Priority dateOct 21, 1971
Publication numberUS 3850785 A, US 3850785A, US-A-3850785, US3850785 A, US3850785A
InventorsA Mcquade, G Arons
Original AssigneeUs Army
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Reinforced carbon fabrics
US 3850785 A
Abstract
Activated carbon fabrics, having poor textile properties in terms of tensile strength, abrasion resistance and flex performance, are substantially upgraded by laminating the carbon fabric to at least one other fabric having significantly better textile properties. Lamination is effected without substantial loss of fabric air permeability or excessive increase in weight by using a hot-melt adhesive fabric or netting as the binding medium.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

- United McQuade et a1.

v wag wa Hum- REINFORCED CARBON FABRICS Inventors: Allan J. McQuade, Ashland; Gilbert N. Arons, Newton Highlands, both of Mass.

The United States of America as represented by the Secretary of the Army, Washington, DC.

Filed: Aug. 14, 1973 Appl. No.: 388,309

Related US. Application Data Continuation of Ser. No. 191,557, Oct. 21,v 1971, abandoned.

Assignee:

US. Cl. 161/88, 55/527, 117/46 CC, 156/290, 156/295, 156/309, 161/146,

Int. Cl B32b 7/14, B321) 31/00 Field of Search 55/514, 527; 156/290, 295, 156/309; 117/46 CC; 161/85, 88, 92, 146,

References Cited UNITED STATES PATENTS H1950 Platt 156/157 sashes 0R IN-'-428/248 I Nov. 26, 1974 3,203,849 3/1965 Katz et al 161/96 3,239,403 3/1966 Williams et al. 156/275 Primary Examiner-Charles E. Van Horn Assistant Examiner-Robert A. Dawson Attorney, Agent, or Firm-Eugene E. Stevens, 111; Lawrence E. Labadini; Charles C. Rainey [5 7] ABSTRACT 3 Claims, No Drawings BACKGROUND OF THE INVENTION Activated carbon is a material that finds widespread use because of its unusual ability to adsorb significant quantities of gaseous or liquid matter. This property is attributable to the extensive surface area and developed pore structure of the carbon material. Activated carbon in the form of powder or granules is widely used for the removal of odors, selected gases and vapors, especially toxic gases and vapors from the atmosphere, for decoloring liquids and for solvent recovery. Recent developments have made it possible to obtain activated carbon as fibers in fabric form. As fabrics, activated carbon can be used for applications not possible with powder or granules, e.g., as clothing to provide protection against toxic liquid, vapor or gaseous agents, as filters or screens in air systems to eliminate odors and pollution without restricting the flow of air, etc. A serious drawback, however, exists in connection with the use of such carbon fabrics, in that such fabrics have extremely poor textile properties, notably, low tensile strength, poor abrasion resistance and poor flex performance. Improvement in the foregoing properties without any substantial impairment of the sorption or air permeability properties of the carbon fabric would greatly enhance the suitability of such fabrics for any of the described uses.

SUMMARY OF THE INVENTION This invention relates to a reinforced, activatedcarbon, fabric constructed by laminating an activatedcarbon fabric having poor textile properties to at least one other fabric having good textile properties and bonding said fabrics together by means of a hot-melt adhesive fabric or netting. The resulting laminate composite has textile properties that far exceeds those of the carbon fabric alone and is suitable for most textile applications. The use of hot-melt adhesive fabric or netting rather than conventional adhesive coatings to effect bonding results in an inherently more air permeable fabric composite than would otherwise be obtained, does not excessively increase the weight or stiffness of the fabric composite. and does not significantly reduce the sorptive properties of the activated carbon by solvent poisoning.

DETAILED DESCRIPTION The objective of this invention, to prepare an activated-carbon fabric having textile properties suitable for typical textile applications, is achieved by lamination of an activated-carbon fabric to one or more non-carbon fabrics having significantly better textile properties. Such laminate composite is formed in a manner which does not result in any substantial loss of air permeability characteristics or sorptive capacity. Conventional adhesives require solvents and solvents will poison the activated carbon material.

Carbon fabrics are known and commercially available and may vary from weakly activated to highly activated. The activity of carbon is a function of the surface area and pore development ofthe carbon material. The more highly active carbon materials adsorb greater quantities of materials and depending on pore size and development can selectively adsorb certain gases, va-

'2 pors or liquids. For purposes of this invention, it is necessary that the activated carbon have a surface area of at least lm /g and have micropores with an effective diameter of less than A for gas and vapor sorption and preferably a transitional pore structure with an effective diameter ranging from 30 A" up to 2,000-4,000 A for liquid sorption. While activated carbon materials are produced by techniques well known in the art and constitute no part of this invention, U.S. Pat. Nos. 3,253,323 and 3,484,183 may be referred to as illustrating or describing techniques for the fabrication of certain carbon fabrics.

Activated carbon fabrics are known to have relatively poor textile properties which properties further decline with increase in activation. The poor or weak textile properties of activated carbon fabrics are typified by low breaking (tensile) strength, poor abrasion resistance, and poor flexing properties. Carbon yarns, for example, normally have a breaking strength'of less than I gm/denier. The expression carbon fabric," as used herein, refers to fabrics whose yarns are composed of fibers having a carbon content of from 50% up to 99+%. Carbon fabrics can be produced by pyrolysis of any fabric made from non-melting organic fibers. Activation is usually accomplished with a heated oxi dizing gas, e.g., CO H O, or 0 Because of the weakness of the carbon yarns, it is usual and preferred that the finished fabric be pyrolyzed to the carbon derivative and then activated, although it is possible to form fabrics from activated carbon yarns. The expression fabric," as used herein, refers to woven, knitted or felt materials.

The fabrics which are laminated to the activatedcarbon fabrics to improve the textile properties of the latter are light in weight and woven or knitted from common, commercial, yarns (containing man-made or natural fibers) having a breaking strength in the range of 2 to 5 gin/denier. These fabrics, which may be referred to as "non-carbon fabrics," i.e.,. they are composed of yarns containing less than 50% carbon, include such materials as wool, silk, cotton, viscose, acetate, acrylic. modacrylic, nylon, Nomex, a product of E. l. DuPont de Nemours and Co., and other specialpolyamides, polyester and blends of the same. Nylon tricot, nylon-cotton (50/50), poplin or sateen, Nomex muslin, Nomex twill and acetate taffeta are but some examples of suitable lightweight fabrics.

Lamination of the activated carbon fabric to thenoncarbon fabric is accomplished by use of a hot-melt adhesive fabric or netting as the bonding agent. Such hotmelt adhesives are well-known and include thermoplastic materials, such as polyamides, polyesters and polyolefins that melt at temperatures that range from 300F. to 400F.'The adhesive fabric or netting is an open type structure and weighs from 0.1 oz/yd to 3.0 oz/yd". Unlike conventional adhesives, hot-melt adhesives do not require solvents to effect bonding. The temperture applied to the fabric layers for the lamination step to activate the adhesive will vary with the adhesive material employed but will oridinarily range from 325F. to 375F. Pressures applied will ordinarily range from 2 to 20 psi. and the dwell time is such as to permit the adhesive to fuse and wet the fabric layers. The open fabric or net nature of the adhesive means that more of the surface area of the laminated composite will be free of adhesive material. As a consequence,

the air permeability of the fabric assembly is not affected to any significant degree.

EXAMPLE l A weakly activated carbon fabric. Pluton B-l, 6 ozlyd. a product of 3M Co.. having a saturated carbon tetrachloride vapor sorption capacity of 15% by weight. a surface area of 250m /g. and a yarn breaking strength in the warp direction of approximately 0.4

The results ofthe foregoing tests for each of the lamigm/denier and in the filling direction of approximately Samples are Set forth in TABLE rics. Nine inch squares of the different textile fabrics are cut and assembled in the following laminate sequence: Acetate taffeta fabric (2.56 oz/yd )/adhesive fabric/carbon fabric/adhesive fabric/nylon tricot fabric (0.9 ozlyd The adhesive fabric is Thermogrip 5030A, polyester-type adhesive, having a weight of 1.23 oz/yd, a product of USM Chemical Company. The fabric assembly is laminated at 370F., at 4 p.s.i. for seconds in a commercial press. Upon removal from the press, the laminate is allowed to cool. The laminate has good air permeability values ranging from 26 to 41 cubic feet per minute per sq. ft. when tested under Method 5450 of Federal Test Method Standard 191. The laminate also had good flexible properties and suffers no weight loss or significant visible damage when flex tested 1.260 cycles as specified in Federal Test Method Standard l9l, Method 5320. The laminate layers are securely bonded together and the outer ,fabric layers protected the inner carbon layer from abrasive influences.

EXAMPLE ll 3. A polyolefin type. Delnet X230. 21 produ'et of Hercules. lnc.. weighing 0.53 oz/yd". The laminates are inserted in a commercial press and bonded at 4 p.s.i. for l6 seconds at temperatures which range from 325F. to 375F. and are allowed to cool before testing. The laminates are tested as follows:

1. Air permeability in accordance with Method 5450 of Federal Test Method Standard l9l.

.EXAMPLE iii A moderately activated carbon fabric, Pluton H-l 4 oz/yd a product of 3M Company, having a saturated carbon tetrachloride vapor sorption capacity of 30% by weight. a surface area of 450 m lg is reinforced with nylon and a selection of three other fabrics. 24 inch by 20 inch rectangles of different textile fabrics are cut and assembled in the following laminate sequence: Any one of three fabrics. l) nylon-cotton (50/50) twill. (5

'oz/yd), or (2) Nomex muslin, (3.1 oz/yd?) or (3) Nomex twill, (4.5 oz/yd together with adhesive fabric/carbon fabric/adhesive fabric/nylon tricot fabric (2 ozlyd The adhesive fabric is Thermogrip 5030A as in EXAMPLE l. The fabric assembly is laminated at 350F. at 4% p.s.i. for 20 seconds on a commercial press and allowed to cool. The laminates have the following air permeabilities when tested in accordance with Method 5450 of Federal Test Method Standard 19!:

Fabric Air Permeability (cu ft 'lminlft) Nylon-cotton (50/50) twill. 31.6

5.0 oz/yd Nomex muslin. 55.5

3.] oz/yd Nomex twill 4.5 oz/yd 66.9

specification is susceptible to changes and modifications as may occur to persons skilled in the art without departing from the principle and spirit thereof. The terminology used is for purpose of description and not limitation, the scope of the invention being defined in the claims.

We claim:

1. A reinforced activated-carbon fabric formed by laminating an activated-carbon fabric constructed of activated-carbon yarns having a breaking strength of less than 1 gm/denier to at least one other non-carbon fabric in such a manner as not to poison the activatedcarbon and so as not to substantially reduce the permeability ofthe fabric layers wherein the lamination is accomplished by a. placing a layer of hot-melt adhesive fabric or netting between said activated-carbon fabric layer and said non-carbon fabric layer,

b. subjecting said combined layers to sufficient heat

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2495761 *Oct 19, 1944Jan 31, 1950Chicopee Mfg Corp Of GeorgiaMethod of splicing sheet material
US3203849 *Mar 31, 1961Aug 31, 1965Thiokol Chemical CorpComposite heat shield
US3239403 *Jan 6, 1965Mar 8, 1966Lord CorpMethod of joining two members by means of an adhesive coated carbon cloth resistance member
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4181513 *Apr 26, 1977Jan 1, 1980Toyobo Co., Ltd.Carbon adsorptive filter material with layers of reinforcing non woven fabrics needle punched
US4186499 *May 22, 1978Feb 5, 1980Dayco CorporationConstruction for absorbing odors caused by perspiration and method of making same
US4391616 *Jul 21, 1981Jul 5, 1983Toyo Boseki Kabushiki KaishaCarbon black fibers
US4539249 *Sep 6, 1983Sep 3, 1985Textile Products, IncorporatedMethod and apparatus for producing blends of resinous, thermoplastic fiber, and laminated structures produced therefrom
US4565727 *Apr 23, 1985Jan 21, 1986American Cyanamid Co.Non-woven activated carbon fabric
US4809690 *Jul 23, 1986Mar 7, 1989Commissariat A L'energie AtomiqueProtective skull cap for the skull
US5112666 *Jun 21, 1988May 12, 1992Charcoal Cloth LimitedBreathable fabric, chemical and biological warfare
US5567501 *Jun 15, 1994Oct 22, 1996International Paper CompanyThermally apertured nonwoven product
US5656119 *Jun 5, 1995Aug 12, 1997International Paper CompanyCombining a layer of higher melting fibers and a lower melting heat-shrinkable polymeric layer, then heating and pressing them together through calendering points of rollers to melt, bond and shrink areas of polymer layer for holes
US5830555 *May 22, 1996Nov 3, 1998International Paper CompanyThermally apertured nonwoven product and process for making same
US5851935 *Aug 29, 1996Dec 22, 1998Bba Nonwovens Simpsonville, Inc.Cross-directionally stretchable elastomeric fabric laminated by thermal spot bonding
US6025050 *Jun 19, 1998Feb 15, 2000Bba Nonwovens Simpsonville, Inc.Thermally appertured nonwoven laminates for wipes and coverstock for hygienic articles
US6939395 *Dec 20, 2002Sep 6, 2005M+W Zander Facility Engineering GmbhAdsorber for cleaning raw gases, filter module comprising such an adsorber, filter unit comprising at least two such filter modules, and device for conditioning outer air or for treatment of escaping air with such filter modules
US7589034May 26, 2004Sep 15, 2009Milliken & CompanyTreated activated carbon and process for making same
US8069496Nov 14, 2003Dec 6, 2011Als Enterprises, Inc.Odor absorbing article of clothing
EP0058489A1 *Feb 2, 1982Aug 25, 1982Dunlop LimitedProsthetic devices for pressure sores
EP0374426A2 *Oct 24, 1989Jun 27, 1990E.I. Du Pont De Nemours And CompanyLaminated fabric for protective clothing
WO1988010134A1 *Jun 21, 1988Dec 29, 1988Charcoal Cloth LtdProtective clothing against chemical and biological agents
Classifications
U.S. Classification442/2, 428/408, 442/244, 156/295, 428/902, 156/291, 55/DIG.430, 156/306.6, 55/DIG.450, 55/527, 156/290
International ClassificationD06M17/00, A62D5/00
Cooperative ClassificationY10S55/45, D06M17/00, A62D5/00, Y10S55/43, Y10S428/902
European ClassificationD06M17/00, A62D5/00